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Cuscuton: Dark Energy meets



Outline

> What i1s Cuscuton?

> |s Cuscuton causal?
« Cuscuton: soap bubbles in Minkowski space

« An underlying theory for Cuscuton

> Cuscuton Cosmology:
« Dark Energy meets Modified Gravity
« Quadratic Cuscuton: Early Dark Energy
« Exponential Cuscuton. DGP-like cosmic history

> Why should we care?



What is Cuscuton? W

« Choose F such that in the homogeneous limit of the field the kinetic term
becomes a total derivative for 70 and thus the field becomes non-
dynamical




~ Whatis Cuscuton? | ¥

o= f d*z/=gl5F(X.¢) = V(©)

o« Choose F such that in the homogeneous limit of the field the kinetic term

becomes a total derivative for 70 and thus the field becomes non-
dynamical

> [ake the scalar field action:




What is Cuscuton®? A

o« Choose F such that in the homogeneous limit of the field the kinetic term

becomes a total derivative for ‘f’ and thus the field becomes non-
dynamical

> [ake the scalar field action:

> In the field comoving frame,

5p, = 0; but P, =0 >
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! What is Cuscuton? I
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o« Choose F such that in the homogeneous limit of the field the kinetic term
becomes a total derivative for ‘f’ and thus the field becomes non-
dynamical

> Take the scalar field action:

> In the field comoving frame,

op,= 0, but P, =0 >
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s Cuscuton Causal?

> Phase space volume of linear
perturbations vanishes in the
nomogeneous limit
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nomogeneous limit

— They cannot carry information




s Cuscuton Causal?

> Phase space volume of linear
perturbations vanishes in the
nomogeneous limit

- They cannot carry information

— Causality will constrain Cuscuton
couplings




Cuscuton as Soap bubbles

> Field equation yields JEEEEEE , where K(¢) is
the extrinsic curvature of Constant field
hypersurfaces - analog of soap bubbles and

soap films in Euclidian space
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Cuscuton as Soap bubbles

> Field equation yields gEEEEE , where K(9) is
the extrinsic curvature of constant field
hypersurfaces = analog of soap bubbles and
soap films in Euclidian space




A constant mean curvature (CMC) surface in W
Euclidean space can be viewed as a surface where

the pressure difference and the surface tension

forces are balanced




A constant mean curvature (CMC) surface in
Euclidean space can be viewed as a surface where
the pressure difference and the surface tension

forces are balanced
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A constant mean curvature (CMC) surface in
Euclidean space can be viewed as a surface where
the pressure difference and the surface tension

forces are balanced
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EXACT SOLUTIONS, UNIQUENESS AND
SINGULARITIES??

> |In general, the question of existence and uniqueness of
CMC surfaces for a given boundary condition, is of
significant subtlety.

> In dimensions, field equation can be solved.

» Dirichlet data fixes the MinkowskKi
curvature of hyperbolae at t=0 slices.




> After imposing just the Dirichlet conditions, general
initial condition, which fixes both  and

typically the system globally, resulting in
no solution!
» The hyperbolae can . In these cases, or

will generically develop in the solutions within a finite
time (in nature similar to development of in fluid mechanics)!




3+1 Dimensions: \J/
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- CMC are also a family of exact
solutions in 3+1 dimensions (not the most
general solution, only accommodate
surfaces in ).
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- CMC are also a family of exact
solutions In 3+1 dimensions (not the most
general solution, only accommodate
surfaces in ).

~ Given Dirichlet initial/boundary conditions,
admitting a of solutions is still a
reasonable conjecture.



3+1 Dimensions:

- CMC are also a family of exact
solutions in 3+1 dimensions (not the most
general solution, only accommodate
surfaces in ).

~ Given Dirichlet initial/boundary conditions,
admitting a of solutions is still a
reasonable conjecture.

~ Generic of the solutions are also
expected as in 1+1.



An underlying theory for
Cuscuton

> Imagine a field theory with discrete

degrees of freedom




An underlying theory for %
Cuscuton

> Imagine a field theory with discrete
degrees of freedom

> The only action in the
limit (in lieu of other couplings) Is the discrete
Cuscuton action




» The Euclidian instanton action for the successive W
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» The Euclidian instanton action for the successive W
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> For long wavelength fluctuations and in
the thin-wall approximation limit




» [he Euclidian instanton action for the successive W

> For long wavelength fluctuations and in
the thin-wall approximation limit
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» The Euclidian instanton action for the successive W

- -
T — [{341’[51'2}” Yda X + V(x)]

> For long wavelength fluctuations and in
the thin-wall approximation limit

SE.eff > Z Ji ['fEf : /d*.r V(y)
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> For long wavelength fluctuations and in
the thin-wall approximation limit




» The Euclidian instanton action for the successive W
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> For long wavelength fluctuations and in
the thin-wall approximation limit

Sut = 12 Y (i1 — 7) [fs . /J*.r V()




» The Euclidian instanton action for the successive W

. ' :
e = / {.""J_’i;tt., xax + V(X)]

» For long wavelength fluctuations and in

the thi . n .
Ml Because this action is based on

E analytic continuation into
Euclidean space, the extent to
which Cuscuton action can be

interpreted as instanton is
Defining a 1 unclear.
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> For long wavelength fluctuations and in
the thin-wall approximation limit

Defining a new field:




» The Euclidian instanton action for the successive W
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» For long wavelength fluctuations and in

the thi . B .
Ml Because this action is based on

E analytic continuation into
Euclidean space, the extent to
which Cuscuton action can be

interpreted as instanton is
Defining a 1 unclear.




Cuscuton Cosmology
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Friedmann Cuscuton Cosmology

> Fleld Equation (remember bubbles):

> Friedmann equation:
(3u°H) sgn(p) + V'(p) = 0.

> (in a flat universe)




Friedmann Cuscuton Cosmology 4

> Fleld Equation (remember bubbles):

> Friedmann equation:
(_BH.QH ) sgn(¢) + V'(¢) = 0.

- (in a flat universe)




Cuscuton as Modified Gravity *

> Since Cuscuton has no internal dynamics, it
can be viewed as a (hon-local) modification
to gravity

a=

= 9H(2H + 3H2Q. : il
(_q) b+ [3]{ i ICE & S o) (6 + Ho) + (2M2) " '6p,, = 0.

2 (& —3H)




Cuscuton as Modified Gravity *

> Since Cuscuton has no internal dynamics, it
can be viewed as a (hon-local) modification
to gravity

)
a=

k2 9H(2H + 3H2Q : __—

2 (& - 3H)

> Non-locality is exponentially suppressed
beyond the Hubble radius, i.e. for k << H, the
evolution is local




More cosmology with Cuscuton™

> Cuscuton is a
dark energy, as it has




More cosmology with Cuscuton®

> Cuscuton is a
dark energy, as it has

> Examples:
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» Geometry evolves exactly as ACDM
. Only differs after fluctuations cross horizon




More cosmology with Cuscuton™

> Cuscuton is a
dark energy, as it has

> Examples:

FUGHIGHCDOISITESTS | () | - amzﬁ

« Geometry evolves exactly as ACDM
» Only differs after fluctuations cross horizon
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Quadratic Cuscuton Cosmology

1

> UBEEREE + Friedmann eq. =
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Quadratic Cuscuton Cosmology

1

> UEEAEEEE + Friedmann eq. =

ACDM expansion history, but:




Quadratic Cuscuton Cosmology Y

UEEAR + Friedmann eq. >

ACDM expansion history, but:

Early Dark Energy




Quadratic Cuscuton Cosmology Y

D : n 2
perturbations decay W
1 X

0.001 .D.Dl | {J.'!_. 1
k(h/Mpe)  [Qo = 0,0.05,0.1




Preliminary constraints on
Quadratic Cuscuton

> Main constraints from
ISV effect, 1.e. WMAP3

of retativistic vV

Likelihood




Preliminary constraints on
Quadratic Cuscuton

> Main constraints from

ISV effect, 1.e. WMAP3
> Qn < 0.035 (99%)
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(in Planck units) for the
action:
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Exponential (DGP-like) Cuscuton

self- acceleratmg model (no dﬁfercnca in
geometric tests)

=it diffierent stlb-hioizen peruiation 1=
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Exponential (DGP-like) Cuscuton

” EXE!GT o '—J,"" ANSIC NISIOrY as T ial C1 e

self-acce!eratmg model (no dﬁferance in
geometric tests)

=it difiierent stb-olizoen pertliation =2

« Like quintessence with the same
expansion history




Exponential (DGP-like) Cuscuton

- = cl-isgme expansion histery as flat OGP
Self-acceleratlng model (no difference in
geometrlc tests)

— =llic diffierent sub-hehzen peruiation theory

B Like quintessence with the same
expansion history

> 5-10% difference with DGP

Song, Sawicki, & Hu 06
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Exponential (DGP-like) Cuscuton

it |

= =« same expansion history as flat C
Self-aoceleratlng model (no dlffererlce in
geometric tests)

~ =it different sub-lielizen pentiation theory

« Like quintessence with the same
expansion history

> 5-10% difference with DGP

- with weak lensing+ext
(Huterer & Linder 06)

Song, Sawicki, & Hu 06
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Exponential (DGP-like) Cuscuton

> Exact =iz =XPansior nistory as flat UGHF

Self-aoceleratmg model (no dlffererlce in
geometrlc: {esis)

— =it diffierent sub-hicizoen perturati
B L:ke qumtessence with the same
expansion history

> 95-10% difference with DGP

| 9 and can only o
be marginally disting'**~hed at low z

1 the ory

Song, Sawicki, & Hu 06

___________________
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Exponential (DGP-like) Cuscuton

> Exact === =XPansior mistery as fat OGP

Self-aoceleratmg model (no dlfference in
geometric tests)

> BUE, cliffer=init stiosnioiiZeinl gz rillfgziile i theony
« Like quintessence with the same
expansion history

> 5-10% difference with DGP

| % and can only
' be marginally distinguished at low z

Song, Sawicki, & Hu 06

|
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ISW effect: DGP-like Cuscuton vs.'y
DGP

Song, Sawicki, & Hu 06
Due to anisotropic stress (?) DGP gives much larger ISW
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ISW effect: DGP-like Cuscuton vs.'y
DGP

Song, Sawicki, & Hu 06

Due to an DGP-like Cuscuton yields only . 5% r ISW
larger C,'s than DGP-like quintessence

>
Xy

7
Jff
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, CUSCuton




ISW effect: DGP-like Cuscuton vs.'y
DGP

Song, Sawicki, & Hu 06
Due to anisotropic stress (?) DGP gives much larger ISW




Why should we care?

> (minimal) Cuscuton is causal
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Why should we care?

> (minimal) Cuscuton is causal

> IS a of
(no Internal dynamics)

> 1S probably
at low energies (geometric
model)

> blurs the observational distinctions
between modified gravity and dark energy
models
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