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Quantum Information

Pre and Post-Selection

Alice prepares a system in a certain state |pre) at time ty,
(11) Bob measures some observable M on the svstem at time to.

(111) Alice measures an observable of which |post) is an

eigenstate at time t3, and post-selects for |post).

then Alice can assign probabilities to the outcomes of Bob's
M-measurement at ts. conditional on the states |pre) and |post)
at times t; and t3, respectively, as follows:

(pre|Py|post)|?
hl'{';lf}{{’ﬂ;) — J"E ©IF k|POSE,

(0)

\-‘jfprp;l:’i|l’h'}::r F

where P; is the projection operator onto the i'th eigenspace of

M.
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Quantum Information

Quantum Key Distribution

@ If M is unknown to Alice. she can use the ABL-rule to
assign probabilities to the outcomes of various hypothetical
M-measurements.

@ The interesting peculiarity of the ABL-rule. by contrast
with the usual Born rule for pre-selected states, is that it is
possible—for an appropriate choice of observables M. M’.

, and states |pre) and |post)—to assign unit probability
to the outcomes of a set of mutually noncommuting
observables.
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Quantum Information

Quantum Key Distribution

@ If M is unknown to Alice. she can use the ABL-rule to
assign probabilities to the outcomes of various hypothetical
M-measurements.

@ The interesting peculiarity of the ABL-rule. by contrast
with the usual Born rule for pre-selected states. is that it is
possible—for an appropriate choice of observables M. M.

, and states |pre) and

post)—to assign unit probability
to the outcomes of a set of mutually noncommuting
observables.
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Quantum Information

Quantum Key Distribution

@ Alice can be in a position to assert a conjunction of
conditional statements of the form: “If Bob measured M.
then the outcome must have been m;, with certainty, and if
Bob measured M, then the outcome must have been 11'1’;.
with certainty, ...." where M, M. ... are mutually |
noncommuting observables.

@ Since Bob could only have measured at most one of these
noncommuiting observables. Alice’s conditional information
does not, of course, contradict quantum mechanics: she
only knows the eigenvalue m; of an observable M if she
knows that Bob in fact measured M.
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Quantum Information

Quantum Key Distribution

@ Vaidman. Aharonov, and Albert discuss a case of this sort,
where the outcome of a measurement of any of the three
spin observables X = oy, Y =o0y. Z=o0, of a 51‘.}111—%
particle can be inferred from an appropriate pre- and
post-selection.

@ Alice prepares the Bell state
pre) = ——(‘ 'z) .jt‘ [z)c +| l2)A] lz)c

where | T,) and | |,) denote the o,-eigenstates.
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Quantum Information

Quantum Key Distribution

@ Alice sends one of the particles—the channel particle,
denoted by the subscript C—to Bob and keeps the ancilla.
denoted by A. Bob measures either X.Y. or Z on the
channel particle and returns the channel particle to Alice.

@ Alice can be in a position to assert a conjunction of
conditional statements of the form: "If Bob measured M.
then the outcome must have been m;, with certainty, and if
Bob measured M. then the outcome must have been 111’;,
with certainty, ...." where M. M. ... are mutually |
noncommuting observables.
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Quantum Information

Quantum Key Distribution

@ Since Bob could only have measured at most one of these
noncommiiting observables. Alice’s conditional information
does not. of course, contradict quantum mechanies: she
only knows the eigenvalue m; of an observable M if she
knows that Bob in fact measured M.

@ Vaidman. Aharonov, and Albert discuss a case of this sort,
where the outcome of a measurement of any of the three
spin observables X = oy, Y =0y. Z =0, of a Hl}ill-%
particle can be inferred from an appropriate pre- and
post-selection.
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Quantum Information

Quantum Key Distribution

Alice prepares the Bell state

‘ F

(‘ T,;{‘ 'z;(_‘ +‘ l.{f%‘ J,z_’{

—

pre) =

2|

<
where | 1) and | |,) denote the g, -eigenstates.
Alice sends one of the particles—the channel particle,
to Bob and keeps the ancilla.

denoted by the subscript C
denoted by A. Bob measures either X. Y. or Z on the

channel particle and returns the channel particle to Alice.
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Quantum Information

Quantum Key Distribution

Alice then measures an observable R on the pair of particles.
where R has the eigenstates (the subscripts A and C are
suppressed ):

y -I- . % l 3 ! 3 j'r I y _";-
1) = &1 1zl lz atl 1E] €7 ) dxl) =l
I =| 12)| T2) + 51 12)] L2)e™* +] 12)] 12)e7™%)

v 2 o
‘l"_'l' = —7‘ ]zﬂ‘ Z, _?(‘ zf‘ lif'ﬁlh" l"‘u Lz ‘ [z : I)
v Z s
I. 3 |— —FR ._1 | W[ -L
‘1*. — ——| lz)| 1z ‘|_,_H /:‘ = € = N2 | | z)€ )
) )
Y & L
1 = 1 x |
B — i) — il e 4‘|_| L2)| Tz)€ J‘)
9 )
\U"._ s
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Quantum Information

Quantum Key Distribution

Alice then measures an observable R on the pair of particles.
where R has the eigenstates (the subscripts A and C are
suppressed ):

| 1 T T e
‘rl-’ — —_‘ [2)| Tz) + _(‘ z,:" lz)€ l*| lz‘ [z)€ Jr)
) )
Vi it
1 1 _. | e
‘1' = —j‘ ]Z ‘ Z _?(‘ _{f‘ lsz"l P | L:{:‘ ]z.’t‘ - l)
I \ 1 r o\ \ o—i7/4 l \ \ 17T/ 4
r3) = ——)\ l2)| 1z, +3(‘ 2| lz)e T+ | 1) Tz)€7 )
V & Pt
1 1 e =
‘11 — ——)‘ l/_." Lz __)(‘ Vi ‘ l.»:f‘"‘ 1 -L—I_ [x | [x’ e -1)
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Quantum Information

Quantum Key Distribution

Note that:

‘Pl‘t‘.} = ——)(‘ z_f-‘ z) + | 1z ‘ Lz/ (1)

\V 4
1 : .

= —(| Tx)| Tx) + | Ix)] Ix (2)
2

— AL (3)

== \(E Vv h 3
1 ., |

= () + |r2) + [r3) + [ra)) (4)
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Quantum Information

Quantum Key Distribution

Note that:

pre) = ——(‘ z)| Tz) +| l2)| l2) (1)
V2

(|r1) + |r2) + |r3) + |ra)) (4)
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Quantum Information

Quantum Key Distribution

Alice can now assign values to the outcomes of Bob's spin
measurements via the ABL-rule, whether Bob measured X.Y.
or Z. based on the post-selections |ry), |r2). |r3). or |ry).
according to the following lable (where 0 represents the
outcome | and 1 represents the outcome |):

Ox Oy Oy
Il 0 0 U
ro | 1 1 0
I's U 1 1
ra | 1 0 1

Table: oy, oy, 0; measurement outcomes correlated with eigenvalues

of R
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Quantum Information

Quantum Key Distribution

@ This case can be exploited to enable Alice and Bob to
share a private random key in the following way:

@ Alice prepares a certain number of copies (depending on
the length of the key and the level of privacy desired) of
the Bell state |pre).

@ She sends the channel particles to Bob in sequence and
keeps the ancillas.

@ Bob measures X or Z randomly on the channel particles
and returns the particles. in sequence, to Alice.

Pirsa: 06110042 Page 27/149




Quantum Information

Quantum Key Distribution

@ Alice then measures the observable R on the ancilla and
channel pairs and divides the sequence into two
subsequences: the subsequence Sy, for which she obtained
the outcomes ry or ry. and the subsequence So3 for which
she obtained the outcomes ro or rj.

@ To check that the channel particles have not been
monitored by Eve, Alice now publicly announces
(broadcasts) the indices of the subsequence Sos.
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Quantum Information

Quantum Key Distribution

@ As i1s evident from the Table, for this subsequence she can
make conditional statements of the form: “For channel
particle 1. if X was measured, the outcome was 1 (0). and if
Z was measured. the outcome was 0 (1),” depending on
whether the outcome of her R-measurement was ro or rj.

@ She publicly announces these statements as well. If one of
these statements, for some index 1, does not agree with
Bob’'s records, Eve must have monitored the 1'th channel
particle.

@ Of course. agreement does not entail that the particle was
not monitored.
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Quantum Information

Quantum Key Distribution

Alice can now assign values to the outcomes of Bob's spin
measurements via the ABL-rule, whether Bob measured X.Y.
or Z. based on the post-selections |ry), |r2). |r3). or |ry).
according to the following lable (where U represents the
outcome | and 1 represents the outcome |):

Ox Oy Oy
I 0 0 §)
ro | 1 1 §
Is U 1 1
|1 0 1

Table: o, oy, 0, measurement outcomes correlated with eigenvalues

of R
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Quantum Information

Quantum Key Distribution

Alice can now assign values to the outcomes of Bob's spin
measurements via the ABL-rule, whether Bob measured X.Y.
or Z, based on the post-selections |ry), |r2). |r3),

3), OF |T4),
according to the following Table (where 0 represents the

outcome | and 1 represents the outcome |):

Ox Oy Oy
I'l § §] 9]
I 1 1 0

I's U 1 1
|11 0 1

Table: oy, oy, 0; measurement outcomes correlated with eigenvalues

of R
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Quantum Information

Quantum Key Distribution

Alice can now assign values to the outcomes of Bob's spin
measurements via the ABL-rule., whether Bob measured X.Y.
or Z, based on the post-selections |ry), |r2). |r3), or |ry).
according to the following Table (where 0 represents the
outcome | and 1 represents the outcome |):

X z
ri | U U U
I 1 1 0
ra2 | U 1 1

nl1 0 1

Table: o, oy, 0, measurement outcomes correlated with eigenvalues

of R
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Quantum Information

Quantum Key Distribution

@ This case can be exploited to enable Alice and Bob to
share a private random Kkey in the following way:

@ Alice prepares a certain number of copies (depending on
the length of the key and the level of privacy desired) of
the Bell state |pre).

@ She sends the channel particles to Bob in sequence and
keeps the ancillas.

@ Bob measures X or Z randomly on the channel particles
and returns the particles. in sequence, to Alice.
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Quantum Information

Quantum Key Distribution

@ Alice then measures the observable R on the ancilla and
channel pairs and divides the sequence into two
subsequences: the subsequence S, for which she obtained
the outcomes ry or ry. and the subsequence So3 for which
she obtained the outcomes ro or rj.

@ lo check that the channel particles have not been
monitored by Eve, Alice now publicly announces
(broadcasts) the indices of the subsequence So3.
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Quantum Information

Quantum Key Distribution

@ As is evident from the Table, for this subsequence she can
make condifional statements of the form: "For channel
particle 1. if X was measured, the outcome was 1 (0). and if
Z was measured, the outcome was 0 (1),” depending on
whether the outcome of her R-measurement was ro or rj.

@ She publicly announces these statements as well. If one of
these statements, for some index 1, does not agree with
Bob’s records, Eve must have monitored the i'th channel
particle.

@ Of course. agreement does not entail that the particle was
not monitored.
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Quantum Information

Quantum Key Distribution

Alice can now assign values to the outcomes of Bob's spin
measurements via the ABL-rule, whether Bob measured X. Y.
or Z, based on the post-selections |ry), |r2). |r3),

3), OF |Ty),
according to the following lable (where 0 represents the

outcome | and 1 represents the outcome |):

Tx Oy Oy
rr 0 0 0
I'9 1 1 0
I's U 1 1
wml1 0 1

Table: oy, oy, 0 measurement outcomes correlated with eigenvalues

of R
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Quantum Information

Quantum Key Distribution

@ As 1s evident from the Table, for this subsequence she can
make conditional statements of the form: ‘For channel
particle 1. if X was measured, the outcome was 1 (0), and if
Z was measured. the outcome was 0 (1).” depending on
whether the outcome of her R-measurement was ro or rj.
She publicly announces these statements as well. If one of
these statements, for some index 1, does not agree with
Bob’'s records, Eve must have monitored the i'th channel
particle.

Of course, agreement does not entail that the particle was
not monitored.
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Quantum Information

Quantum Key Distribution

@ As 1s evident from the Table, for this subsequence she can
make conditional statements of the form: “For channel
particle 1, if X was measured, the outcome was 1 (0). and if

Z was measured. the outcome was 0 (1)." fll'%[?l't‘li* ling on
whether the outcome of her R-measurement was ro or rj.
She publicly announces these statements as well. If one of
these statements, for some index 1, does not agree with
Bob’'s records, Eve must have monitored the i'th channel
particle.

@ Of course, agreement does not entail that the particle was
not monitored.
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Quantum Information

Quantum Key Distribution

@ For suppose Eve measures a different spin component
observable than Bob on a channel particle and Alice
subsequently obtains one of the eigenvalues ro or r3 when
she measures R.

Bob’s measurement outcome, either 0 or 1. will be
compatible with just one of these eigenvalues, assuming no
mtervention by Eve.

But after Eve's measurement. both of these eigenvalues will
be possible outcomes of Alice’s measurement.
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Quantum Information

Quantum Key Distribution

@ So Alice’s retrodictions of Bob’s measurement outcomes for
the subsequence So3 will not necessarily correspond to
Bob’s records.

@ In fact. one can show that if Eve measures X or Z
randomly on the channel particles, or if she measures a
particular one of the observables X, Y, or Z on the channel
particles (the same observable on each particle). the
probability of detection in the subsequence So3 is 3/8.
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Quantum Information

Quantum Key Distribution

@ Note that even a single disagreement between Alice’s
retrodictions and Bob’s records is sufficient to reveal that
the channel particles have been monitored by Eve.

@ This differs from the eavesdropping test in the Ekert
protocol.
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Quantum Information

Quantum Key Distribution

@ Note also that Eve only has access to the channel particles.
not the particle pairs.

So no strategy is possible in which Eve replaces all the
channel particles with her own particles and entangles the
original channel particles, treated as a single system. with
an ancilla by some unitary transformation. and then delavs
anv measurements until atter Alice and Bob have
communicated publicly.

There is no way that Eve can ensure agreement between
Alice and Bob without having access to the particle pairs,
or without information about Bob’s measurements.
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Quantum Information

Quantum Key Distribution

@ The keyv distribution protocol as outlined above solves the
keyv distribution problem but not the kev storage problem.
[f Bob actually makes the random choices. measures X or
Z. and records definite outcomes for the spin measurements
before Alice measures R, as required by the protocol., Bob's
measurement records—stored as classical
information—could in principle be copied by Eve without
detection.

@ In that case, Eve would know the raw key (which is
contained n this information). following the public
communication between Alice and Bob to verify the
mtegrity of the quantum communication channel.
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Quantum Information

Quantum Key Distribution

@ To solve the kev storage problem, the protocol is modified
in the following way: Instead of actually making the
random choice for each channel particle, measuring one ot
the spin observables, and recording the outcome of the
measurement, Bob keeps the random choices and the spin
measurements ‘at the quantum level” until after Alice
announces the indices of the subsequence So3 of her R

measurements.

@ To do this. Bob enlarges the Hilbert space by entangling
the quantum state of the channel particle via a unitary
transformation with the states of two ancilla particles that
he introduces.
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Quantum Information

Quantum Key Distribution

@ One particle is associated with a Hilbert space spanned by
two eigenstates. |[dx) and |dz), of a choice observable or
‘quantum die” observable D.

@ The other particle is associated with a Hilbert space
spanned by two eigenstates, |p;) and |p|). of a pointer
observable P.
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Quantum Information

Quantum Key Distribution

@ On the modified protocol (assuming the ability to store
entangled states indefinitely), Alice and Bob share a large
number of copiles of an entangled 4-particle state.

When they wish to establish a random key of a certain
length, Alice measures R on an appropriate number of
particle pairs in her possession and announces the indices
of the subsequence So4.

Before Alice announces the indices of the subsequence So;.
neither Alice nor Bob have stored any classical information.
So there is nothing for Eve to copy.
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Quantum Information

Quantum Key Distribution

@ After Alice announces the indices of the subsequence So3.
Bob measures the observables D and P on his ancillas with
these indices and announces the eigenvalue |py) or |p|) as
the outcome of his X or Z measurement. depending on the
eigenvalue of D.

[f Alice and Bob decide that there has been no
eavesdropping by Eve. Bob measures C and P on his
ancillas in the subsequence S;,.
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Quantum Information

Quantum Key Distribution

@ On the modified protocol (assuming the ability to store
entangled states indefinitely), Alice and Bob share a large
number of copies of an entangled 4-particle state.

When thev wish to establish a random key of a certain
length, Alice measures R on an appropriate number of
particle pairs in her possession and announces the indices
of the subsequence So4.

Before Alice announces the indices of the subsequence So;.
neither Alice nor Bob have stored anv classical information.
So there is nothing for Eve to copy.
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Quantum Information

Quantum Key Distribution

@ One particle is associated with a Hilbert space spanned by
two eigenstates. |[dx) and |dz), of a choice observable or
‘quantum die” observable D.

@ The other particle is associated with a Hilbert space
spanned by two eigenstates. |p;) and |p|). of a pointer
observable P.
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Quantum Information

Quantum Key Distribution

@ To solve the key storage problem, the protocol is modified
in the following way: Instead of actually making the
random choice for each channel particle, measuring one of
the spin observables, and recording the outcome of the
measurement, Bob keeps the random choices and the spin
measurements ‘at the quantum level’ until after Alice
announces the indices of the subsequence So3 of her R
measurements.

@ To do this. Bob enlarges the Hilbert space by entangling
the quantum state of the channel particle via a unitary
transformation with the states of two ancilla particles that
he introduces.
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Quantum Information

Quantum Key Distribution

@ One particle is associated with a Hilbert space spanned by
two eigenstates. |[dx) and |dz), of a choice observable or
‘quantum die” observable D.

@ The other particle is associated with a Hilbert space
spanned by two eigenstates. |p;) and |p|). of a pointer
observable P.
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Quantum Information

Quantum Key Distribution

@ On the modified protocol (assuming the ability to store
entangled states indefinitely), Alice and Bob share a large
number of copiles of an entangled 4-particle state.

When they wish to establish a random key of a certain
length, Alice measures R on an appropriate number of
particle pairs in her possession and announces the indices
of the subsequence So4.

Before Alice announces the indices of the subsequence So;.
neither Alice nor Bob have stored anv classical information.
So there is nothing for Eve to copy.
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Quantum Information

Bit Commitment

The entanglement is implemented by a unitary transformation.
Define two unitary transformations, Ux and Uy. that
implement the X and Y measurements “at the quantum level” on

the tensor product of the Hilbert space of the channel particle,
Hc, and the Hilbert space of Bob's pointer ancilla, Hpg:

I . l-.f{ S __
ill,.f't_"pn-‘-B —p ‘3.1_}{_"[}1:[_;
Ux

x2)c|po)B — |X2)c|P2)B

and
\ I-'_‘l' \ \
\.’*‘1,.-(‘\17{1,}13 — T»'l,.i'ff'\IHFB
va)cllpo)r —= |va)c|p2)B
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Quantum Information

Bit Commitment

The entanglement is implemented by a unitary transtformation.
Define two unitary transformations, Ux and Uy. that
implement the X and Y measurements ‘at the quantum level on

the tensor product of the Hilbert space of the channel particle,
Hc, and the Hilbert space of Bob’s pointer ancilla. Hpy:

: . Ux :
Ix1)c|lpo)B — [x1)clp1)B

., [Ux 1
|1‘Lj}1_’“[)n_9’13 =% Kz;;_"p-_r 'B

and
\ Uy \ \
‘T*'L..-f.'“l}h,.‘f]} — ."'L,.i'f?“[“l}B
\_ Uy \ \
v2)c|lpo)B — |¥2)c|p2)B
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Quantum Information

Bit Commitment

@ The random choice is defined similarly by a unitary
transtormation V on the tensor product of the Hilbert

space of Bob’s die ancilla, Hp,, and the Hilbert space

'H{'_" EHBP.

Suppose |dx) and |dy) are two orthogonal states in Hp,
and that |dg) = lﬁ\{'lj{f - i\i'l\' :
- W

5]
W e
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Quantum Information

Bit Commitment

@ The random choice is defined similarly by a unitary
transtormation V on the tensor product of the Hilbert

space of Bob's die ancilla, Hp,, and the Hilbert space

He @ Hpp-

Suppose |dx) and |dy) are two orthogonal states in Hp,

and that |dg) = Lﬁ dx) + %\i'l'\" .
Vo= Vo=
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Quantum Information

Bit Commitment

Then (suppressing the obvious subscripts) V is defined by:

o 0 . vV e . ._
\‘1_\13 \*’- YPe) — \"IX}’ Ux |y, \Pnﬁ*
=

dy) @ [¢)|pe) |dy) @ Uy|Y)|po)

. -. V
"[1{]._} : ‘F_'}'“-]'”_; —0%
—|dx) ® Ux|¥) Ipo) + —=|dy) @ Uy|¢)|pe)
7 V2
where the tensor product svmbol has been introduced

selectively to indicate that Uy and U are defined on Hc
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Quantum Information

Bit Commitment

e If Bob were to actually choose the observable X or Y
randomly. and actually periform the measurement and
obtain a particular eigenvalue, Alice’s density operator for
the channel particle would be:

9 v« 19

X1 ) (x1|+ | (x2|¥) |7 |x2

5 x| |°

)

+=(| (1) | Iyva) (a4 | (y2|v)

1

2
assuming that Alice does not know what observable Bob
chose to measure, nor what outcome he obtained.

@ But this is precisely the same density operator generated
bv tracing over Bob's ancilla particles in the state

P S Y T WS \

—5ldx) @ Ux|¥)|pe) + Z5l|dy) ® Uy|¥)|pe).
v 4 P
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Quantum Information

Bit Commitment

Then (suppressing the obvious subscripts) V is defined by:

\ \\P- 3 - E | A
Ypo) —  |dx) ® Ux|e)|po)
vV ) _ .
- ‘11\-;: d T \l'uf_‘-|[.1n}

2)Po)

T
[tl{;} : ‘r_"}‘['}uﬁ -

1 | : , 1 _ | __
—=|dx) ® Ux|¢)|po) + —=ldy) ® Uy|¥)|po)

V2

where the tensor product syvmbol has been introduced
selectively to indicate that Uy and U are defined on Hc
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Quantum Information

Bit Commitment

@ The random choice is defined similarly by a unitary
transtormation V on the tensor product of the Hilbert

space of Bob’s die ancilla, Hp,, and the Hilbert space

H{ : EHBP .

Suppose |dx) and |dy) are two orthogonal states in Hp,
and that |dg) = i_]\{lx - %\rly' :
Vo= W o4
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Quantum Information

Bit Commitment

It follows that:

Ux

(X1

v)c|Po)B

. . Uy
¥)clpo)e —% (vil

Pirsa: 06110042
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s
i

(1 II'-
4 ."I

X1)c|P1)B + (X2|¥)|x2)c|p2)B

vi)c|p1)B + (v2|¥)|y2)c|p2)B
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Quantum Information

Bit Commitment

@ The random choice is defined similarly by a unitary
transtormation V on the tensor product of the Hilbert

space of Bob's die ancilla, Hp,, and the Hilbert space

He @ Hpp-

Suppose |dx) and |dy) are two orthogonal states in Hp
and that |dg) = i_]\(lx - %‘i’i‘f? .
Vo= WA
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Quantum Information

Bit Commitment

Then (suppressing the obvious subscripts) V is defined by:

V e : :
_— ‘['l}{} [ },;|a’,' ‘pn_}

dx) ® [¢)[po)

V

dy) @ [¢)|po) [dy) @ Uy|¢)|po)

so that
. : v ¥V
|dg) @ |[¢)|pe) —
1 | _ | 1 _ e
—=1dx) @ Ux|¥)|po) + —5ldy) © Uy|v¥)|pe) (6)
v &

V2

where the tensor product symbol has been mtroduced
selectively to indicate that Uy and U, are defined on Hc @ Hp,.
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Quantum Information

Bit Commitment

It follows that:

{7

[)elpo) — (x1]¥)|x1)c|p1)B + (x2|¢)|x2)c|p2)B

Uy

Y)clpe)B — (¥1|¥)|v1)c|p1)B + (¥2|¥)|y2)c|pP2)B

/
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Bit Commitment

@ The random choice is defined similarly by a unitary
transtormation V on the tensor product of the Hilbert

space of Bob’s die ancilla, Hp,, and the Hilbert space

He @ Hpp-

Suppose |dx) and |dy) are two orthogonal states in Hp,
and that |dg) = —=|dx) + —=|dy).
o= W L
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Then (suppressing the obvious subscripts) V is defined by:

V & : :
— |dx) @ Ux|¥)|po)

[dx) @ [¢)|pe)

V

dy) @ |¢)|po) ldy) ® Uy|Y)|po)

so that

1 |
Ux|¢)|po) + —=ldy) @ Uy|¥)|po)
\I.l'
where the tensor product symbol has been introduced
selectively to indicate that Uy and U, are defined on Hc
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Bit Commitment

@ In a bit commitment protocol, one party, Alice, supplies an
encrypted bit to a second party. Bob.

‘T'he mformation available in the encrypted bit should be

msufficient for Bob to ascertain the value of the bit, but

sufficient. together with further information supplied by

Alice at a subsequent stage when she is supposed to reveal

the value of the bit. for Bob to be convinced that the

protocol does not allow Alice to cheat by encrypting the bit
i a way that leaves her free to reveal either 0 or 1 at will.
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Quantum Key Distribution

@ On the modified protocol (assuming the ability to store
entangled states indefinitely), Alice and Bob share a large
number of copies of an entangled 4-particle state.

When they wish to establish a random key of a certain
length, Alice measures R on an appropriate number of
particle pairs in her possession and announces the indices
of the subsequence So4.

Before Alice announces the indices of the subsequence Soj.
neither Alice nor Bob have stored anv classical information.
So there is nothing for Eve to copy.
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Quantum Key Distribution

@ One particle is associated with a Hilbert space spanned by
two eigenstates. |[dx) and |dz), of a choice observable or
‘quantum die’ observable D.

@ The other particle is associated with a Hilbert space
spanned by two eigenstates, |p;) and |p|). of a pointer
observable P.
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Quantum Key Distribution

@ On the modified protocol (assuming the ability to store
entangled states indefinitely), Alice and Bob share a large
number of copies of an entangled 4-particle state.

When they wish to establish a random key of a certain
length, Alice measures R on an appropriate number of
particle pairs in her possession and announces the indices
of the subsequence So4.

Before Alice announces the indices of the subsequence So3.
neither Alice nor Bob have stored anv classical information.
So there is nothing for Eve to copy.
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Quantum Key Distribution

@ Affter Alice announces the indices of the subsequence So3,
Bob measures the observables D and P on his ancillas with
these indices and announces the eigenvalue |py) or |p|) as
the outcome of his X or Z measurement. depending on the
eigenvalue of D.

[f Alice and Bob decide that there has been no
eavesdropping by Eve. Bob measures C and P on his
ancillas in the subsequence Sy,.
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Quantum Key Distribution

@ It is easy to see that the ABL-rule applies in this case. just
as it applies in the case where Bob actually makes the
random choice and actually records definite outcomes of his
X or Z measurements before Alice measures R.

In fact, if the two cases were not equivalent for Alice—if
Alice could tell from her R-measurements whether Bob had
actually made the random choice and actually performed
the spin measurements. or had merely implemented these
actions "at the quantum level—the difference could be
exploited to signal superluminally.
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Bit Commitment

@ In a bit commitment protocol, one party, Alice, supplies an
encrypted bit to a second party. Bob.
The information available in the encrypted bit should be
msufficient for Bob to ascertain the value of the bit, but
sufficient. together with turther information supplied by
Alice at a subsequent stage when she is supposed to reveal
the value of the bit. for Bob to be convinced that the

protocol does not allow Alice to cheat by encrypting the bit
in a way that leaves her free to reveal either 0 or 1 at will.
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Bit Commitment

@ Alice can send (encrypted) information to Bob that
guarantees the truth of an exclusive classical disjunction
(equivalent to her commitment to a 0 or a 1) only 1if the
information is biased towards one of the alternative
disjuncts (because a classical exclusive disjunction 1s true if
and only 1f one of the disjuncts 1s true and the other false).
No principle of classical mechanics precludes Bob from
extracting this information. so the security of a classical bit
commitment protocol can only be a matter of
computational complexity.
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Bit Commitment

@ The question is whether there exists a quantum analogue of
this procedure that i1s unconditionally secure: provably
secure as a matter of physical law (according to quantum

theory) against cheating by either Alice or Bob.

Note that Bob can cheat if he can obtain some information
about Alice’s commitment before she reveals it (which
would give him an advantage in repetitions of the protocol
with Alice).

Alice can cheat if she can delay actually making a
commitment until the final stage when she is required to
reveal her commitment. or if she can change her
commitment at the final stage with a very low probability
of detection.
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Bit Commitment

@ The question is whether there exists a quantum analogue of
this procedure that i1s unconditionally secure: provably
secure as a matter of physical law (according to quantum
theory) against cheating by either Alice or Bob.

Note that Bob can cheat if he can obtain some information
about Alice’'s commitment before she reveals it (which
would give him an advantage in repetitions of the protocol
with Alice).

Alice can cheat 1if she can delay actually making a
commitment until the final stage when she is required to
reveal her commitment. or if she can change her
commitment at the final stage with a very low probability
of detection.
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Bit Commitment

@ Bennett and Brassard originally proposed a quantum bit
commitment protocol in 1934. The basic idea was to
associate the 0 and 1 commitments with two different
mixtures represented by the same density operator.

As thev showed in the same paper. Alice can cheat by
adopting an "EPR attack’ or cheating strategy: she
prepares entangled pairs ot qubits, keeps one of each pair
(the ancilla) and sends the second qubit (the channel
particle) to Bob.

@ In this way she can fake sending one of two equivalent
mixtures to Bob and reveal either bit at will at the opening
stage by effectively steering Bob's particle into the desired
mixture by an appropriate measurement. Bob cannot
detect this cheating strategy.
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Quantum Information

Bit Commitment

@ The crucial insight underlying the proof of the quantum bit
commitment theorem is that any step in a quantum bit
commitment protocol that requires Alice or Bob to make a
definite choice (whether to perform one of a number of
alternative measurements, or whether to implement one of
a number of alternative unitary transformations) can
always be replaced by an EPR cheating strategy in the
generalized sense. assuming that Alice and Bob are both
equipped with quantum computers.

That 1s. a classical disjunction over definite
possibilities—this operation or that operation—can always
be replaced by a quantum entanglement and a subsequent
measurement (perhaps at a more convenient time for the
cheater) in which one of the possibilities becomes definite.
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Bit Commitment

@ The crucial insight underlying the proof of the quantum bit
commitment theorem is that any step in a quantum bit
commitment protocol that requires Alice or Bob to make a
definite choice (whether to perform one of a number of
alternative measurements, or whether to implement one of
a number of alternative unitary transformations) can
always be replaced by an EPR cheating strategy in the
generalized sense. assuming that Alice and Bob are both
equipped with quantum computers.

That is, a classical disjunction over definite
possibilities—this operation or that operation—can always
be replaced by a quantum entanglement and a subsequent
measurement (perhaps at a more convenlent time for the
cheater) in which one of the possibilities becomes definite.
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Bit Commitment

e Similarly. a measurement can be ‘held at the quantum
level” without detection: instead of performing the
measurement and obtaining a definite outcome as one of a
number of possible outcomes. a suitable unitary
transformation can be performed on an enlarged Hilbert
space, in which the system is entangled with a “pointer’
ancilla in an appropriate way. and the procedure of
obtaining a definite outcome can be delayed.

@ The keyv point is the possibility of keeping the series of

transactions between Alice and Bob at the quantum level
bv enlarging the Hilbert space. until the final exchange of

classical information when Alice reveals her commitment.
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Bit Commitment

@ Any quantum bit commitment scheme will involve a series
of transactions between Alice and Bob, where a certain
number, n, of quantum systems—the ‘channel
particles—are passed between them and subjected to
various quantum operations (unitary transformations.
measurements. etc.), possibly chosen randomly.

These operations can always be replaced, without
detection, by entangling a channel particle with one or
more ancilla particles that function as ‘pointer” particles for
measurements or “die’ particles for random choices.

@ In effect. this is the (generalized) EPR cheating strategy.
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Bit Commitment

To illustrate: Suppose, at a certain stage of a quantum bit
commitment protocol. that Bob is required to make a
random cholce between measuring one of two observables.
X or Y. on each channel particle he receives from Alice.
For simplicity. assume that X and Y each have two
eigenvalues, x;. Xo and vy, va.
After recording the outcome of the measurement. Bob is
required to return the channel particle to Alice.

@ When Alice receives the i'th channel particle she sends Bob
the next channel particle in the sequence.
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Bit Commitment

e Instead of following the protocol. Bob can construct a
device that entangles the input state |¢")c- of a channel
particle with the initial states, |dg)p and |pg)B. of two
ancilla particles that he introduces. the first of which
functions as a ‘quantum die’ for the random choice and the
second as a "‘quantum pointer’ for the measurement.

[t is assumed that Bob’s ability to construct such a

device—in effect, a special purpose quantum computer—is

restricted only by the laws of quantum mechanics.
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Bit Commitment

The entanglement is implemented by a unitary transformation.
Define two unitary transformations, Ux and Uy. that
implement the X and Y measurements ‘at the quantum level on
the tensor product of the Hilbert space of the channel particle,
Hc, and the Hilbert space of Bob’s pointer ancilla. Hpg:
e \ I.K g & |

|3‘~1,H;_"{JW'B == ‘llfi_"[—}l-‘ﬂ

Ux

X2)c|P2)B

X2)C|Po)B

and
\ \ Uy \ \
\3'1_.'(_"\1“’(1}]3 — ."'1,-?'{“[’[}’]3
lv2)c||po)B . v2)c|P2)B
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It follows that:

(7

[W)elpo) — (x1])|x1)elp1)B + (X2|¢)|x2)c|p2)B

[Y)elpo)s — (V1|¥)|v1)clp1)B + (v2[¥) |y2)c|p2)B
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Bit Commitment

@ The random choice is defined similarly by a unitary
transtormation V on the tensor product of the Hilbert

space of Bob’s die ancilla, Hp,, and the Hilbert space

H-: : FHBP -

@ Suppose |dx) and |dy) are two orthogonal states in Hp

and that |dg) = -1 |dx) + %\t'l\*_ .
Vo= W oA
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Bit Commitment

Then (suppressing the obvious subscripts) V is defined by:

\ b : :
—  |dx) @ Ux|v)[po)

[dx) @ [)|pe)

V

|Ll‘_{:' . f-‘.-fpt_}} “-l‘i’:- ' [.T\l-ir_'-“_)“:}

so that
: Vv
‘(1“:;' : |f_':a'“-}”_; —_—

1 e o = ; 1 _ -
—_)‘{l_\"_ﬁ - I_ X|,{ ‘["}” —— —‘{lwl \l |.a ‘I‘].” ! {6)
V < VvV &

where the tensor product symbol has been introduced
selectively to indicate that Uy and U, are defined on Hc @ Hp,.
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Bit Commitment

e If Bob were to actually choog® the observable X or Y
randomly. and actually perform the measurement and
obtain a particular eigenvalue, Alice’'s density operator for
the channel particle would be:

S xa1|¥) |7 [x)(xa|+ | (x2|¥)

Vi) {yi|+
assuming that Alice does not know what observable Bob
chose to measure. nor what outcome he obtained.

But this is precisely the same density operator generated
by tracing over Bob’s ancilla particles in the state
:ﬁ:‘;‘flkf Ux|¥) |po) + :—_:;"[1'1, Uy |v)|po).
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Bit Commitment

In other words. the density operator for the channel particle is
the same for Alice. whether Bob randomly chooses which
observable to measure and actually performs the measurement.
or whether he implements an EPR cheating strategy with his

two ancillas that produces the transition:
|dg) @ |[¢)|po) —
1 1

1dx) ® Ux[¥)|po) + —=|dy) ® Uy|v)|po)
V < V<

on the enlarged Hilbert space.
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Bit Commitment

e If Bob is required to eventually report what measurement
he performed and what outcome he obtained. he can at
that stage measure the die ancilla for the eigenstate |dx) or
|dy ), and then measure the pointer ancilla for the
eigenstate |py) or |pa2).

e In effect. if we consider the ensemble of possible outcomes
for the two measurements. Bob will have converted the
‘improper’ mixture generated by tracing over his ancillas to
a ‘proper mixture.

But the difference between a proper and improper mixture

1s undetectable by Alice since she has no access to Bob's

ancillas, and 1t 1s only by measuring the composite system

consisting of the channel particle together with Bob's

ancillas that Alice could ascertain that the channel particle
rsmosoz 18 entangled with the ancillas. Page 1061149
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Bit Commitment

@ In fact. if it were possible to distinguish between a proper
and improper mixture. it would be possible to signal
superluminally: Alice could know instantaneously whether
or not Bob performed a measurement on his ancillas by
monitoring the channel particles in her possession.

Note that it makes no difference whether Bob or Alice
measures first, since the measurements are of observables in
different Hilbert spaces. which therefore commute.
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Bit Commitment

@ An EPR cheating strategy is also possible if Bob is
required to perform a measurement on channel particle
1+ 1. conditional on the outcome of a prior measurement
on channel particle 1. or conditional on a prior choice of
some operation from among a set of alternative operations.
It Bob is in possession of all the channel particles at the
same time. he can perform an entanglement with ancillas
on the entire sequence. considered as a single composite
systeinl.

It Bob only has access to one channel particle at a time
(which he is required to return to Alice aiter performing a
measurement before she sends him the next channel
particle), he can always entangle channel particle 1+ 1 with
the ancillas he used to entangle channel particle 1.
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Bit Commitment

Suppose Bob is presented with two channel particles in
sequence. He is supposed to decide randomly whether to
measure X or Y on the first particle. perform the measurement,
and return the particle to Alice. After Alice receives the first
particle, she sends Bob the second particle.
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Bit Commitment

e If Bob measured X on the first particle and obtained the
outcome X;. he is supposed to measure X on the second
particle; if he obtained the outcome x5, he is supposed to
measure Y on the second particle.

@ If he measured Y on the first particle and obtained the
outcome v, he is supposed to apply the unitary
transformation U, to the second particle; if he obtained the
outcome v». he is supposed to apply the unitary
transformation Us.

e After performing the required operation. he is supposed to
return the second particle to Alice.
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Bit Commitment

It would seem at first sight that Bob has to actually perform a
measurement on the first channel particle and obtain a
particular outcome before he can applyv the protocol to the
second particle, given that he only has access to one channel

particle at a time. so an EPR cheating strategy is excluded.
But this is not so.
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Bob’s strategy is the following: He applies the EPR strategy
discussed above for two alternative measurements to the first
channel particle. For the second channel particle, he applies the

following unitary transformation on the tensor product of the
Hilbert spaces of his ancillas and the channel particle, where

the state of the second channel particle is denoted by |©), and
the state of the pointer ancilla for the second channel particle is
denoted by |qq) (a second die particle is not required):
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[__q _‘

[dx)|p2)|@)d0) — |dx)

[

dy)|p1)|@)|ao) — |dy)

I ‘(?l

dy) [p2)|6)]a0) —< |dy)
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The Bit Commitment Theorem

Since an EPR cheating strategy can always be applied without
detection, the proof of the quantum bit commitment theorem
assumes that at the end of the commitment stage the composite
system consisting of Alice’s ancillas, the n channel particles.
and Bob's ancillas will be represented by some composite

entangled state |0) or |1). depending on whether Alice intends
to reveal 0 or 1 on a Hilbert space ‘Ha @@ Hp. where Ha 1s the
Hilbert space of the particles in Alice’s possession at that stage

(Alice’s ancillas and the channel particles retained by Alice, if
any ), and Hp is the Hilbert space of the particles in Bob's
possession at that stage (Bob’s ancillas and the channel
particles retained by Bob. if any).
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The Bit Commitment Theorem

@ The density operators Wp(0) and Wg(1). characterizing
the information available to Bob for the two alternative
commitments, are obtained by tracing the states |0) and |1)
over HJ_,L

e If these density operators are the same. then Bob will be
unable to distinguish the O-state from the l-state without
further information from Alice.

@ In this case, the protocol is said to be ‘concealing.’
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The Bit Commitment Theorem

e What the proof establishes. by an application of the
biorthogonal decomposition theorem, is that if
Wg(0) = Wg(1) then there exists a unitary transformation
in Ha that will transform |0) to |1).
That 1s, 1if the protocol 1s “concealing then it cannot be
‘binding” on Alice: she can always follow the protocol (with
appropriate substitutions of an EPR strategyv) to establish
the state |0).
At the final stage when she is required to reveal her
commitment. she can choose to reveal the alternative
commitment. depending on circumstances, by applying a

suitable unitary transtormation m her own Hilbert space to
transform |0) to |1) without Bob being able to detect this
move.
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Proof of the Bit Commitment Theorem

[n the Schmidt decomposition, the states |0) and |1) can be

expressed as:

0) >~ V/bilas)|by)
1

1) Z V o ..:t; 'l_}_; )
]

I\ _ _ - -
; )} are two orthonormal sets of states in H .
} are two orthonormal sets in Hp.

where {|a;) }. {|a;

and {|b;) }, Hb’;
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Proof of the Bit Commitment Theorem

@ The density operators Wg(0) and Wg(1) are defined by:

Wg(0) = Tral0)(0] = ) pifbs)(by
1

Wa(1) =Tea[1)(1] = 3 pijbi) (b

@ Bob can't cheat if and only if Wg(0) = Wg(1).
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The Bit Commitment Theorem

@ Byv the spectral theorem, the decompositions:

‘vi"]j,(l-]) — Z pi‘hi:' -: hll

1
Wg(1) > pj|bs) (]
j

are unique for the nondegenerate case. where the p; are all
distinct and the p; are all distinct.
@ The condition Wg(0) = Wg(1) implies that for all k:

PE — [}:

b;) = |b)

0) = Z Vv Pilai) |bi)
I

and so
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The Bit Commitment Theorem

It follows that there exists a unitary transformation U € Ha
such that

and hence
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The Bit Commitment Theorem

The degenerate case can be handled In a similar way. Suppose
that py = p2 = p} = p5 = p- Then |by), |bs) and |b}), |b) span
the same subspace H in ‘Hp. and hence (assuming the
coefficients are distinct for k > 2):

0) vP(lap)|b1) + |az)|ba)) + Z Pk |ak) |bx)

k

VP(|a})|bl) + |as) I'}E}) Lo Z VPrlar) |bx)
k>2
/B[ [by) + [a2)

where |af). |al) are orthonormal states spanning H. Since
{|a]).|a3). |az)....} is an orthonormal set in H 4. there exists a
unitary transformation in ‘Ha that transtorms

st lag ) k=1,2.3, ...} to{ |:1f£ ;L’_f . ;_lfj ),...}, and so [0) to_|1)eerane




Quantum Information

An INluminating Example
@ Suppose Alice is required to send Bob a channel particle C
in an equal weight mixture of the qubit states:

lco) = |0

!

e

1 \,EB
—5 0) + TH_

V3

3 I

—— [|| —

if she commits to 0. and an equal weight mixture ot the
qubit states:

] L1 L
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Quantum Information

An Illuminating Example

@ Suppose Alice is required to send Bob a channel particle C
in an equal weight mixture of the qubit states:

Eii X
1C0 /) —

if she commits to 0. and an equal weight mixture ot the
qubit states:

L1 L
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An Illuminating Example

@ Suppose Alice is required to send Bob a channel particle C
in an equal weight mixture of the qubit states:

= |0)

f

1. 3
310 + 511

1 5 V3 "
—3l0 — 51

if she commits to 0. and an equal weight mixture ot the
qubit states:

1)

1
o) ——
:2 | / i
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An INluminating Example

@ Suppose Alice tries to implement an EPR cheating strategy
by preparing the entangled state of a svstem AC:
1

10) = —(|ao) |co) + |a2)|e2) + |ag)|ca))
..M.._-'l-}
:r." g

where {|ag), |as).
3-dimensional Hilbert space H- of a suitable ancilla system
A
[f Alice could transform the state |0) to the state:

]

\ 3

)} is an orthonormal basis in the

= (laq, |[_"| )+ |ag)|eg) + ‘H;‘; )|cs) )
where {|a;).|a3). |as)} is another orthonormal basis in H™.
bv a local unitary transformation in H**. she could delay
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An Iluminating Example

@ Suppose Alice is required to send Bob a channel particle C
in an equal weight mixture of the qubit states:

|
& —

if she commits to 0. and an equal weight mixture ot the
qubit states:

L1 LY
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An Illuminating Example

@ Suppose Alice tries to implement an EPR cheating strategy
by preparing the entangled state of a svstem AC:

|{]:'Z: = — (‘-'.Ur:_' |L‘.1 ) + (a9 ) ‘[I‘-_r ) + |ag) lug)
W
where {|ag). |as), |ay)} is an orthonormal basis in the
3-dimensional Hilbert space H™ of a suitable ancilla system
A.

[f Alice could transform the state |0) to the state:

._ | ._
1} =—_(|as) €] +
V3
where {|a;).|as).|as)} is another orthonormal basis in H.

"

bv a local unitary transformation in H**. she could delay
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An Illuminating Example

e If. at that stage. she decides to commit to 0, she measures
the observable with eigenstates {|ag). |as).|ay) }. If she
decides to commit to 1, she performs the local unitary
transformation taking the state |0) to the state |1) and
measures the observable with eigenstates {|a;).|a3). |as) }.

B I
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An Illuminating Example

@ Now. |0) can be expressed as:

'\'_.' g \ 3

1 ao) — |3y ,_
= = 1€1) T
V3 V3

e In this representation of |0), the factor states

las}—lag) |ag)—las) |ag)—lag) - . .
. 4) |30 —l 2) |24, .__,—l“' in H? are not orthogonal—in
"ov.'.- "ﬂ.-'

—_
o
o8

W
fact. they are coplanar:

ag) — |lag) = as) — |ag)) — (|ag) — |agp)

@ So it seems that there cannot be a suitable unitary
transformation that will map |0) to |1) and the EPR
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An INluminating Example

@ Now. |0) can be expressed as:

0 = — (l;m} €3) —165) | 1,10 —I€3)
V3 v 3

1 as) — |ay ,
= — Cy? +
\,“3 V 5

@ In this representation of |0), the factor states

laa) —Iae) |[ag)—tlas) |aa)—lag) - e .
2)—124) |ao, —l 2) Jas, %“' in H* are not orthogonal —in

Vo Ve V-

fact. they are coplanar:

—

ag) — |lag) = as) — |ay, ) — ('f;_l 1) — |ag)

@ So it seems that there cannot be a suitable unitary
transformation that will map |0) to |1) and the EPR
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An Illuminating Example

@ Suppose Alice tries to implement an EPR cheating strategy
by preparing the entangled state of a svstem AC:

v 1 | ._
10) = —(|ao) |co) + |a2)|c2) + |ag)|ca))

\‘3
.y

where {|ag). |as).
3-dimensional Hilbert space H* of a suitable ancilla system
A.

[f Alice could transform the state |0) to the state:

)} 1s an orthonormal basis in the

1= 3 5

a1 |{_"| ) —+— a2 ) ‘(f‘_-:. J—= ‘H; ) |{j*-* ) )

|
—=1
V3

where {|a;).|a3). |as)} is another orthonormal basis in H™.

by a local unitary transformation in H". she could delay
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@ Now. |0) can be expressed as:

_ 1 les) — |es)
\_,3 v 3

l do) — |34 :
= = 1IC1) T
V3 V3

@ In this representation ot |0), the factor states

lag)—|ay) |ap)—|asz)

—

g H-'rl:' - . ; 1
g _l 9 in H™ are not orthogonal —in

v 3 %

N P
fact. they are coplanar:
ag) — lag) = az) — |ag)) — (|ag) — |ag)

@ So 1t seems that there cannot be a suitable unitary
transformation that will map |0) to |1) and the EPR
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@ Of course, this is not the case. To see that there is such a
unitary transformation, note that |0) and |1) can be
expressed in the Schmidt decomposition as:

(2 ag) — |az) — |ag) leo) & lag) — |ayq) e )

\ - ! B A\ - Y
az) — |as) —2lay) + |las)

i ‘{-+”  53 =
V2
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o Clearly. there exists a unitary transformation U in H* such
that:
U .
0) % 1)

e It follows that:

_ U . |
fMlac) [acl [a.) o BN Eo Ry R
{/a0). |a2). |aq) t — {]ap). |a2), |ay) |

where {|af,). [a5).|a})} is a basis in H*, and so

—

' 4 T A0 AL
Il_;:. ( ;1”; Co) == Elj___}!f'-_'_a:_.‘- =k !H'L.-“:-{'l.-:)

1
/3

—.,_( ai)|c1) + |az)|c3) + |as)|C5, )
V3
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@ Of course, this is not the case. To see that there is such a
unitary transformation, note that |0) and [1) can be
expressed In the Schmidt decomposition as:

1 [2lap) —|a2) — |ag), ag) — |a4), |
/e ( ‘ ! = ‘{ﬁ'ul 3 - 3L ‘(L‘l ';-

lag) — |lag) | —2la) + lag)
‘L’H =5

Y, 6O
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@ Clearly. there exists a unitary transformation U in H> such
that:
¥ s
0) = |1)

o It follows that:

{|ap), |a2). |aq) } =, {|ag), |a3), |a})}

where {|aj,}. |a5).|a})} is a basis in H*, and so

| |
—(|ag)|co) + |as)|e2) + |ay)|eq))
V3

1 | | N
—(la1)|er) + |as)|e3) + |as)|es)
/3

Pirsa: 06110042 Page 141/149




Quantum Information
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@ So Alice could implement the EPR cheating strategy by

preparing the state |1) and measuring in the basis
I\ f

{lag). |a5). |a}) } for the O-commitment. or in the basis

{lay). |as), |as)} for the 1-commitment.

@ Equivalently, she could prepare the state |0) and measure
i two different bases. since the unitary transformation
that takes |1) to |0) also takes the basis {|ay), |ag).|as)} to

oy
the basis {|a}). [a}). |aZ)}, and so:

—(|ao)|co) + |az)|ea) + |ag)|es))
V-

1

'V".

"[]:"_::
( nT'}_C 1} ;_'lf-r;:} c3) + |tf—': lcs))
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@ Clearly. there exists a unitary transformation U in H* such
that:
u 4,
0) — [1)
e It follows that:

{|a0). |a2). |as) — {lap). |a3), |ay) }

where {|aj,). |a5).|a})} is a basis in H*, and so

1 ,.
A 0 T .
—_( ag)|Co) + |@5)|C2) + gsi-_Lﬁ;{'l,.")

V3

—..J ay)ler) + |az)|es) + |as)|es5))
V3

Pirsa: 06110042 Page 143/149




Quantum Information

An Illuminating Example

@ So Alice could implement the EPR cheating strategy by
preparing the state |1) and measuring in the basis

{lag). |a5). |a)) } for the O-commitment. or in the basis
{lay). |as), |as)} for the 1-commitment.

e Equivalently, she could prepare the state |0) and measure
in two different bases. since the unitary transformation
that takes |1) to |0) also takes the basis {|ay). |ag).|as)} to

the basis {|a}). |a}). |aZ)}, and so:

0) =(|ap)|co) + |az)|c2) + |ayg)|cq))
Vo«
i .0 P T ' T [ S a N P
'_( aq)|C1) + |ag)|C3) + |as) “-'3 .-’)

'V".-
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@ A calculation shows that:

K ]- \ fey \ ey \
ay ) = ( ag) + (1 + v3)laz) + (1 — v3)|a 4;)

ax ) ‘ ((l + v3)lag) + (1 — V3)|az) + |a4})
(l —_ 3) rl|]| E_’l-j:_ -+ (J. -+ \r'fg)‘i_i-__l:})

@ In effect. if Alice prepares the entangled state |0) and
measures the ancilla A in the {|ag). |a2), |ay) | basis. she
steers the channel pa.rt.itlu into a mixture of nonorthogonal
states {|cp). \ ). |cy) . 1f she measures in the

I

{|a7), |a3), |aE) } ijmn she steers the channel particle into a
mixture of nonorthogonal states {|cy).|c3).|c5)}.
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It follows that Alice can implement the EPR cheating strategy
without performing any unitary transformation—she simply
entangles the channel particle with a suitable ancilla particle
and performs one of two measurements at the opening stage.
depending on her commitment.
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This shows that the unitary transformation required by the
theorem 1s not in fact required. If a cheating strategv is possible
in which Alice, at the opening stage. either makes a
measurement on an entangled state for the O-commitment. or
transforms this entangled state to a different state by a local
unitary transformation in her Hilbert space and then makes a
measurement on the transtormed state for the 1-commitment.
then an equally good cheating strategy is avallable in which
Alice prepares one entangled state for both commitments. and
measures in two alternative bases at the opening stage.
depending on her commitment.
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Quantum Computation: Deutsch’s XOR algorithm

e B=1{0.1} a Boolean algebra

e Given a ‘black box’ or oracle that computes a function
f:B—B

we are required to determine whether the function is
‘constant’ (takes the same value for both inputs) or
“balanced’” (takes a different value for each input).

@ Classically. the only wayv to do this would be to consult the
oracle twice, for the input values 0 and 1. and compare the
outputs.
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This shows that the unitary transformation required by the
theorem 1s not in fact required. If a cheating strategv is possible
in which Alice, at the opening stage. either makes a
measurement on an entangled state for the O-commitment. or
transforms this entangled state to a different state by a local
unitary transformation in her Hilbert space and then makes a
measurement on the transformed state for the 1-commitment.
then an equally good cheating strategyv is available in which
Alice prepares one entangled state for both commitments. and
measures in two alternative bases at the opening stage.
depending on her commitment.
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