Title: Einstein geometry and conformal field theory Date: Nov 28, 2006 11:00 AM URL: http://pirsa.org/06110036 Abstract: TBA Pirsa: 06110036 # Einstein geometry and conformal field theory James Sparks Harvard University Based on work with J. Gauntlett, D. Martelli, S.-T. Yau ## AdS/CFT correspondence: Type IIB string theory on $AdS_5 \times L$ with N units of \iff d=4, N=1, superconformal field theory G_5 flux Here (L,g_L) is a five-dimensional Sasaki-Einstein manifold. Definition: A Riemannian manifold (L,g_L) is - Sasakian iff its metric cone $(X_0=\mathbb{R}_+\times L,g=\mathrm{d} r^2+1)$ is Kähler - · Sasaki-Einstein iff the cone is also Ricci-flat ### Examples: - $(X=\mathbb{C}^3,g=\text{flat metric}) \Longleftrightarrow \mathcal{N}=4$ SU(N) SYM - $(X,g) = \text{conifold} \iff SU(N) \times SU(N)$ Klebanov-Witten theory It is remarkable that until 2004, these were essentially the only two examples where both sides of the correspondence were known explicitly. Theorem (Gauntlett, Martelli, JFS, Waldram): \exists infinitely many Sasaki-Einstein metrics $Y^{p,q}$ on $S^2 \times S^3$, labelled by $p,q \in \mathbb{N}$, $\mathrm{hcf}(p,q) = 1, \ q < p$. The metrics are completely explicit, cohomogeneity one under the isometric action of a Lie group with Lie algebra $\mathfrak{su}(2) \times \mathfrak{u}(1) \times \mathfrak{u}(1)$. $$\frac{\text{vol}[Y^{p,q}]}{\pi^3} = \frac{q^2[2p + (4p^2 - 3q^2)^{1/2}]}{3p^2[3q^2 - 2p^2 + p(4p^2 - 3q^2)^{1/2}]}$$ Dual SCFTs: (Benvenuti, Franco, Hanany, Martelli, JFS): $SU(N)^{2p}$ quiver gauge theories (Moose theories), q determines the quiver and superpotential (interactions). An important check on this duality is a-maximisation (Intriligator, Wecht). The $\mathcal{N}=1$ superconformal algebra contains $\mathfrak{so}(4,2)\times\mathfrak{u}(1)_R$. The R-symmetry satisfies: - conserved - by definition, superpotential has R-charge 2 The exact R-symmetry may be computed by locally maximising $$a(R) = \frac{3}{32} \left(3 \operatorname{tr} R^3 - \operatorname{tr} R \right)$$ over all R satisfying the above constraints. $a(R_{\star})$ at the critical point is the a central charge: $$< T_{\mu}^{\mu}> = \frac{1}{120 \ (4\pi)^2} \left(c ({\rm Weyl})^2 - \frac{a}{4} ({\rm Euler}) \right)$$ Cardy: a believed to count massless degrees of freedom. aiR < auv for any RG flow. AdS/CFT (Henningson-Skenderis): $$\frac{a}{a_{\mathcal{N}=4~\mathrm{SYM}}} = \frac{\mathrm{vol}[S^5]}{\mathrm{vol}[L,g_L]}$$ For $Y^{p,q}$ theories, this agrees with the earlier formula! $$\frac{32a(R_1, R_2)}{9N^2} = 2p + (p-q)(R_1-1)^3 + (p+q)(R_2-1)^3 - \frac{p}{4}(R_1 + R_2)^3 + \frac{q}{4}(R_1 - R_2)^3$$ #### Questions: - Geometrically, how do we determine a volume without solving the Einstein equations? - a-maximisation implies that these volumes are always algebraic numbers. Why? #### Rest of talk: - The answers to these questions - "Calabi-Yau's" X that do not admit Ricci-flat Kähler cone metrics ⇔ SQFTs that do not flow to dual IR fixed points In particular, the second point disproves some claims made by (Cachazo, Fiol, Intriligator, Katz, Vafa) and (Gukov, Vafa, Witten). #### Sasakian geometry Definition: A Riemannian manifold (L,g_L) is Sasakian iff its metric cone $(X_0=\mathbb{R}_+\times L,g=\mathrm{d} r^2+r^2g_L)$ is Kähler In particular X_0 is a complex manifold; metric $$g = \frac{\partial^2 r^2}{\partial z_i \partial \bar{z}_j} \mathrm{d}z_i \mathrm{d}\bar{z}_j$$ 3 complex structure tensor J with $$J\left(\frac{\partial}{\partial z_{i}}\right) = i\frac{\partial}{\partial z_{i}}$$ $$J\left(\frac{\partial}{\partial \overline{z}_{i}}\right) = -i\frac{\partial}{\partial \overline{z}_{i}}$$ Then a calculation shows that $$\xi = J\left(r\frac{\partial}{\partial r}\right)$$ is a holomorphic Killing vector field (Reeb vector field). This is dual to the R-symmetry in the SCFT. In the SCFT, we had an optimisation problem for the R-symmetry, that determines the central charge at the critical point. Idea: try to do the same in the geometry. For simplicity, I'll focus on toric geometry here, since then I can draw 3d pictures. We always have at least a holomorphic $U(1)=\mathbb{T}^1$ isometry for a Kähler cone (X_0,g) . If ξ is to move, that means we have at least a \mathbb{T}^2 . Let's assume we have \mathbb{T}^n , where $n = \dim_{\mathbb{C}} X_0$. Let ϕ_i , $\phi_i \sim \phi_i + 2\pi$ $(i=1,\ldots,n)$, be angular coordinates on \mathbb{T}^n . Define $$y^i = \frac{1}{2}g\left(\xi, \frac{\partial}{\partial \phi_i}\right)$$ We now have 2n real coordinates — enough to cover X_0 . In fact, X_0 is always a \mathbb{T}^n fibration over a convex polyhedral cone $\mathcal{C}^* \subset \mathbb{R}^n$: Concretely, there are primitive vectors $\vec{v}_a \in \mathbb{Z}^n$, $a=1,\ldots,d$, such that $$C^* = \{ \vec{y} \in \mathbb{R}^n \mid \vec{y} \cdot \vec{v}_a \ge 0, a = 1, \dots, d \}$$ Above every point in the interior $\mathcal{C}^*_{\text{int}}$ of the cone, there is a copy of $\mathbb{T}^n.$ At each bounding face of the cone, one of the circles in \mathbb{T}^n collapses, leaving $\mathbb{T}^{n-1}=\mathbb{T}^n/S^1$ fibred over the face. Circle subgroup $S^1\subset \mathbb{T}^n$ is specified by a charge vector $\vec{v}\in\mathbb{Z}^n.$ The normal vector $\vec{v_a} \in \mathbb{Z}^n$ to the ath bounding face specifies which S^1 collapses. #### Examples: - Think of $\mathbb{C}=\mathbb{R}^2$ in polar coordinates. This is S^1 fibred over $\mathbb{R}_+,$ with S^1 collapsing at the origin - Similarly, Cⁿ is Tⁿ fibred over C* = (R₊)ⁿ = positive orthant: $$g_{\text{flat}} = \sum_{i=1}^{n} \mathrm{d}\rho_i^2 + \rho_i^2 \mathrm{d}\phi_i^2$$ where $y^i = \frac{1}{2}\rho_i^2 \ge 0$. We may write $$\xi = \sum_{i=1}^{n} b_i \frac{\partial}{\partial \phi_i}$$ where one can show that $$\vec{b} \in \mathcal{C} = \{ \vec{b} \in \mathbb{R}^n \mid \vec{b} \cdot \vec{y} \geq 0, \forall \vec{y} \in \mathcal{C}^* \}$$ Dual cone to \mathcal{C}^* , a convex rational polyhedral cone by Farkas' Theorem. Remember that $y^i=\frac{1}{2}g(\xi,\partial/\partial\phi_i).$ Contracting with b_i gives $$\vec{b} \cdot \vec{y} = \frac{1}{2}g(\xi, \xi) = \frac{1}{2}r^2$$ so that the link $L=\{r=1\}$ is \mathbb{T}^n fibred over the intersection of \mathcal{C}^* with the hyperplane We also must impose that X_0 is "Calabi-Yau": $c_1(X_0) = 0$. It turns out this is equivalent to the existence of a basis for \mathbb{T}^n in which $$\vec{v}_a = (1, \vec{w}_a)$$ for some $\vec{w_a} \in \mathbb{Z}^{n-1}$. This also means \exists a nowhere zero holomorphic (n,0)-form Ω . Extremal problem: Einstein metrics g_L on L are critical points of $$S[L,g_L] = \int_L \left[s(g_L) + 2(n-1)(3-2n) \right] \mathrm{d}\mu$$ $s(g_L) = \text{Ricci scalar of } g_L.$ Amazing fact: for Sasakian metrics, the Einstein-Hilbert action depends only on the Reeb vector field $\xi = b_i \partial/\partial \phi_i$. Reason: remember the metric is $$g = \frac{\partial^2 r^2}{\partial z_i \partial \bar{z}_j} \mathrm{d}z_i \mathrm{d}\bar{z}_j$$ Changing $r^2 \rightarrow r^2 \exp(\varphi)$ changes the metric. If $\mathcal{L}_{r\partial/\partial r}\varphi=0=\mathcal{L}_{\xi}\varphi$, then $r\partial/\partial r$ and ξ invariant. $S[L,g_L]$ is invariant under the above change of metric, by explicit calculation. Extremal problem: Einstein metrics g_L on L are critical points of $$S[L, g_L] = \int_L [s(g_L) + 2(n-1)(3-2n)] d\mu$$ $s(g_L) = \text{Ricci scalar of } g_L.$ Amazing fact: for Sasakian metrics, the Einstein-Hilbert action depends only on the Reeb vector field $\xi = b_i \partial/\partial \phi_i$. Reason: remember the metric is $$g = \frac{\partial^2 r^2}{\partial z_i \partial \bar{z}_j} \mathrm{d}z_i \mathrm{d}\bar{z}_j$$ Changing $r^2 \rightarrow r^2 \exp(\varphi)$ changes the metric. If $\mathcal{L}_{r\partial/\partial r}\varphi=0=\mathcal{L}_{\xi}\varphi$, then $r\partial/\partial r$ and ξ invariant. $S[L,g_L]$ is invariant under the above change of metric, by explicit calculation. Ric = 2(n-1)92 Extremal problem: Einstein metrics g_L on L are critical points of $$S[L,g_L] = \int_L [s(g_L) + 2(n-1)(3-2n)] d\mu$$ $s(g_L) = \text{Ricci scalar of } g_L.$ Amazing fact: for Sasakian metrics, the Einstein-Hilbert action depends only on the Reeb vector field $\xi = b_i \partial/\partial \phi_i$. Reason: remember the metric is $$g = \frac{\partial^2 r^2}{\partial z_i \partial \bar{z}_j} dz_i d\bar{z}_j$$ Changing $r^2 \rightarrow r^2 \exp(\varphi)$ changes the metric. If $\mathcal{L}_{r\partial/\partial r}\varphi=0=\mathcal{L}_{\xi}\varphi$, then $r\partial/\partial r$ and ξ invariant. $S[L,g_L]$ is invariant under the above change of metric, by explicit calculation. A computation gives $$S[L, g_L] = 8n(n-1)(2\pi)^n[b_1 - (n-1)]\text{vol}[\mathcal{P}(\vec{b})]$$ where ${\rm vol}[\mathcal{P}(\vec{b})]$ is the Euclidean volume of the finite polytope formed by \mathcal{C}^* and $H_{\vec{b}}.$ The first component b_1 is singled out by the Calabi-Yau condition $\vec{v_a}=(1,\vec{w_a})$. $$b_i \frac{\partial}{\partial b_i} S = 0 \to b_1 = n$$ Same as saying $\mathcal{L}_\xi \Omega = in\Omega$, or $\Omega \wedge \bar{\Omega} \sim r^{2n}$. Ric = 2(n-1)92 8 - 2 (b) 8 9. Ric = 2(n-1)92 Ric = 2(n-1)92 rsa: 06110036 A computation gives $$S[L, g_L] = 8n(n-1)(2\pi)^n[b_1 - (n-1)]\text{vol}[\mathcal{P}(\vec{b})]$$ where ${\rm vol}[\mathcal{P}(\vec{b})]$ is the Euclidean volume of the finite polytope formed by \mathcal{C}^* and $H_{\vec{b}}.$ The first component b_1 is singled out by the Calabi-Yau condition $\vec{v}_a = (1, \vec{w_a})$. $$b_i \frac{\partial}{\partial b_i} S = 0 \to b_1 = n$$ Same as saying $\mathcal{L}_\xi \Omega = in\Omega$, or $\Omega \wedge \bar{\Omega} \sim r^{2n}$. #### Existence and uniqueness of an extremum: $b_1 = n$ defines a polytope N in C (space of b), rather than C^* . Set $V(\vec{b}) = \text{vol}[\mathcal{P}(\vec{b})]$. Then $$\begin{array}{rcl} \frac{\partial V}{\partial b_i} & = & \frac{1}{2|\vec{b}|} \int_{H_i} y^i \mathrm{d}\sigma \\ \\ \frac{\partial^2 V}{\partial b_i \partial b_j} & = & \frac{2(n+1)}{|\vec{b}|} \int_{H_i} y^i y^j \mathrm{d}\sigma \end{array}$$ This shows that $V(\vec{b})$ is strictly convex on C. It is bounded below, and diverges to $+\infty$ on $\partial \mathcal{C}$ [Why?: Because $\xi \to 0$ somewhere on X_0 as ξ approaches the boundary of \mathcal{C}] So there exists a unique minimum on N. One can write a real Monge-Ampère equation on \mathcal{C}^* , equivalent to the Ricci-flat Kähler condition (Martelli, JFS, Yau). Recently solved, by Futaki, Ono, Wang. Example: complex dimension n = 3: Order the normals $v_1, v_2, \ldots, v_d, v_{d+1} \equiv v_1$ around the polyhedral cone. Using GCSE maths: $$V(\vec{b}) = \frac{1}{48b_1} \sum_{a=1}^{d} \frac{(\vec{v}_{a-1}, \vec{v}_a, \vec{v}_{a+1})}{(\vec{b}, \vec{v}_{a-1}, \vec{v}_a)(\vec{b}, \vec{v}_a, \vec{v}_{a+1})}$$ volume of a 3d polytope, where (\cdot,\cdot,\cdot) denotes a 3 \times 3 determinant. The toric data for the $Y^{p,q}$ singularities is $\vec{v}_1=[1,0,0]$, $\vec{v}_2=[1,1,0]$, $\vec{v}_3=[1,p,p]$, $\vec{v}_4=[1,p-q-1,p-q]$ (Martelli, JFS). One finds the Einstein-Hilbert action $$\frac{2S(\vec{b})}{3(2\pi)^3} = \frac{(b_1 - 2)p[p(p-q)b_1 + q(p-q)b_2 + q(2-p+q)b_3]}{b_3[pb_1 - pb_2 + (p-1)b_3]((p-q)b_2 + (1-p+q)b_3)(pb_1 + qb_2 - (q+1)b_3]}$$ Extremising gives \vec{b}_* with volume $$\operatorname{vol}[Y^{p,q}] = 6(2\pi)^3 V(\vec{b}_*) = \frac{q^2[2p + (4p^2 - 3q^2)^{1/2}]}{3p^2[3q^2 - 2p^2 + p(4p^2 - 3q^2)^{1/2}]}^{\pi^3}$$ Much of what I described generalises (Martelli, JFS, Yau). However, one needs to take a different approach to calculate the volume. #### Localisation Write $$VOI[L, g_L] = \frac{1}{2^{n-1}(n-1)!} \int_X e^{-r^2/2} \frac{\omega^n}{n!}$$ where $$\omega = \frac{i}{2} \frac{\partial^2 r^2}{\partial z_i \partial \overline{z}_j} \mathrm{d}z_i \wedge \mathrm{d}\overline{z}_j$$ is the Kähler form. Then $H=r^2/2$ is the Hamiltonian function for ξ : $\mathrm{d} H=-\xi \omega$. This looks like a classical partition function, with phase space (X,ω) . It is, for a BPS D3-brane wrapping the $S^3 \subset AdS_5$ (Martelli, JFS). Duistermaat-Heckman formula says this localises where $\xi=0$. But $\|\xi\|^2=r^2,$ so this is the singular point of the Calabi-Yau cone X -- must (partially) resolve the singularity. upshot: rational function of ξ , with rational coefficients. Unique critical point $\to \xi = \sum_{i=1}^s b_i \partial/\partial \phi_i$ with \vec{b} an algebraic vector. #### Technical slide: Let $\pi:W\to X$ be a \mathbb{T}^* -equivariant partial resolution of X, exceptional set E. $W \setminus E \cong X_0$ equivariant biholomorphism. Note fixed point set is entirely in E. Then $$\frac{\operatorname{vol}[L,g_{\mathbb{L}}]}{\operatorname{vol}[S^{2n-1}]} = \sum_{\{F\}} \frac{1}{d_F} \int_F \prod_{m=1}^R \frac{1}{\langle \xi, u_m \rangle^{n_n}} \left[\sum_{a \geq 0} \frac{c_a(\mathcal{E}_m)}{\langle \xi, u_m \rangle^a} \right]^{-1}$$ - $E\supset \{F\}=$ set of connected components of the fixed point set of generic $\xi\in {\bf t}_*$ - For fixed F, normal bundle $\mathcal E$ in W splits $\mathcal E = \bigoplus_{m=1}^R \mathcal E_m$ where rank $\mathcal E_m = n_m$ and $\sum_{m=1}^R n_m = \mathrm{rank}(\mathcal E)$ - Splitting determined by linearised \mathbb{T}^* action on \mathcal{E} : weights, $u_1,\ldots,u_R\in\mathbb{Q}^*\subset \mathsf{t}^*_*.$ - ullet $c_a(\mathcal{E}_m)$ are the Chern classes of \mathcal{E}_m . - When W has orbifold singularities, normal fibre to a generic point on F is not a complex vector space, but rather an orbifold C^k/Γ. Then E is more generally an orbibundle. d_F = |Γ| is the order of Γ. For our toric pictures, this different formula works as follows. Chop the polyhedral cone \mathcal{C}^* with enough rational hyperplanes so that every vertex of the resulting non-compact polytope P satisfies: - ullet precisely n edges meet at the vertex - if $\vec{u}_i^A \in \mathbb{Z}^n$ denotes the n outward-pointing primitive edges at vertex A, then these span \mathbb{Z}^n over \mathbb{Z} This can always be done. Then (cf. the topological string) $$\frac{\operatorname{vol}[L,g_L]}{\operatorname{vol}[S^{2n-1}]} = \sum_{A \in P} \prod_{i=1}^n \frac{1}{\vec{b} \cdot \vec{u}_i^A}$$ Obstructions: (Gauntlett, Martelli, JFS, Yau) Let (X,Ω) be a compact Calabi-Yau manifold, $\Omega=$ nowhere zero holomorphic (n,0)-form. Remember, this means that X is complex, admits a Kähler metric, and has $c_1(X)=0$. Yau's theorem: such an X always admits a unique Ricciflat Kähler metric in a given Kähler class $[\omega] \in H^{1,1}(X,\mathbb{R})$. For non-compact manifolds, this theorem can fail. For cones, this is related to the IR behaviour of geometrically engineered $\mathcal{N}=1$ QFTs at the singularity. No. 10 (10 to 10 t Let (L,g_L) be an Einstein manifold with $$\operatorname{Ric}(g_L) = (2n-2)g_L$$ Then Bishop's Theorem: $\operatorname{vol}[L,g_L] \leq \operatorname{vol}[S^{2n-1}]$ **Lichnerowicz's Theorem**: The smallest positive eigenvalue E_1 of $\Delta_L =$ scalar Laplacian is bounded from below by $E_1 \geq 2n-1$, with equality iff (L,g_L) is the round sphere. Recall $\Delta_L = -\nabla^{\mu}\nabla_{\mu}$. **Lichnerowicz**: Let f be a holomorphic function on $X_0 = \mathbb{R}_+ \times L$, and an eigenfunction of \mathcal{L}_ξ : - $\partial f/\partial \bar{z}_i = 0$ - $\mathcal{L}_{\xi}f = i\lambda f$, with $\lambda > 0$ Then $$f = r^{\lambda} \overline{f}$$ with \bar{f} a function on L and $$\Delta_L \tilde{f} = E\tilde{f}$$ with $E = \lambda(\lambda + (2n - 2))$. Thus Lichnerowicz requires $\lambda \geq 1$. Idea: both $\mathrm{vol}[L,g_L]$ and holomorphic spectrum $\{\lambda\}$ are holomorphic invariants of X_0 , for fixed ξ . If $\operatorname{vol}[L,g_L] > \operatorname{vol}[S^{2n-1}]$, or $\exists \lambda < 1$, then contradiction. Physics: very simple Lichnerowicz Suppose f is an eigenfunction of Δ_L with eigenvalue $E = \lambda(\lambda + 4)$. There is an associated massive Kaluza-Klein state in AdS₅. By AdS/CFT, this is dual to a scalar chiral primary operator $\mathcal O$ in the dual SCFT. It has conformal dimension $\Delta(\mathcal{O}) = \lambda$. Unitarity bound: $\Delta(\mathcal{O}) \geq 1$. So Lichnerowicz bound = unitarity bound. #### Bishop By giving vevs and integrating out massive fields $\longrightarrow \mathcal{N} =$ 4 SYM. Moves N D-branes to a smooth point of X. By earlier remarks, a should decrease under this process. So $a_{\mathcal{N}=4}$ SYM $\leq a_{\mathsf{Sasaki-Einstein}}$ which is Bishop. So Bishop \Leftarrow a-theorem and intuitions about D-branes #### Nice set of examples: ADE singularities #### Define polynomials $$\begin{split} H &= z_1^k + z_2^2 + z_3^2 & A_{k-1} \\ H &= z_1^k + z_1 z_2^2 + z_3^2 & D_{k+1} \\ H &= z_1^3 + z_2^4 + z_3^2 & E_6 \\ H &= z_1^3 + z_1 z_2^3 + z_3^2 & E_7 \\ H &= z_1^3 + z_2^5 + z_3^2 & E_8 \end{split}$$ and $$F = H + \sum_{i=4}^{n+1} z_i^2$$ Then set $$X = \{F = 0\} \subset \mathbb{C}^{n+1}$$ Claim: for $n \ge 2$ these are Calabi-Yau singularities with isolated singularity at $z_1 = \ldots = z_{n+1} = 0$. A_k 3-folds: For k=2p even, (Cachazo, Fiol, Intriligator, Katz, Vafa) constructed a family of $\mathcal{N}=1$ SQFTs on D3-branes at the A_{2p} 3-fold singularities. Their vacuum moduli spaces are precisely the A_{2p} 3-fold singularities. a-maximisation gives a central charge that satisfies $$\frac{a}{a_{N=4 \text{ SYM}}} = \frac{\text{vol}[S^5]}{\text{vol}[L^k]}$$ assuming that the Sasaki-Einstein metric exists. But it doesn't exist: all k > 3 violate Lichnerowicz's theorem. k = 3 recently ruled out by a different argument (Conti). Moral: metrics don't always exist, and this reflects physics.