Title: Einstein geometry and conformal field theory
Date: Nov 28, 2006 11:00 AM

URL: http://pirsa.org/06110036

Abstract: TBA

Pirsa: 06110036 Page 1/36



Einstein geometry and conformai field
theory

James Sparks

Harvard Uniy ersity

Based on work with J Gauntlett, D. Martelli. S-T. Yau




AdS/CFT correspondence

Type B String theory an ¢ = 4, N = 1
AdSs = I with N units

= Sli=-
Cs flux

its a — perconfarmal field the
ory (SCFT)

Here (L, g;) is 3 ve-dimensional Sasaki-Einstein manifolq.

Definition: A Riema

annian manifold (L.g ) is
* Sasakian iff its metric cone (X; = R, L.g=dr?+

r=ge) Is Kihler

& S53sak -Einsteln irr the cone is alsg Ricci-fiat

-._‘x'—"',—_':'_ netric » N =4 Strn SY AJS
e (X, = conifold —= SIreays SLI(N Klebanow-Witten
theor




It is remarkable that until 2004, these were essentis Iy the
mples where both sides of the correspondence

only two ex
were known

explicitly
nfinitely

Theorem (Gauntlett, Martelli, JFS, Waldram): =
. 5< x 57, labelied by

many Sasaki-Einstein metrics } an
p.ge N, hcf(p q) =1, g
The metrics are comp etely explicit, cohomogeneity one
under the isometric action of a Lie group with Lie 2 gebra
aul2) x u(l) = ul1l)
voIf¥ 1] @[2p + (497 — 3¢%)*7)
-3 3_." Y . T ._],II-,- — 3'.'_.-'+ 2]

Dual SCFTs: (Benvenuti, Franco. Hanany, Martelli, JFS):
SLUT{N)-P quiver gauge theories (Moaoase theories), ; deter-
aQ Er and superpotential Iinteractions)

mings the quive




An important check on this duality Is e-maximisation (In-
triligator, Wecht)

N = 1 superconformal algebra contains s0(4,2) x

T
u(

=
n

(=
L

The R-symmetry satisfies
e Conserved

= Dy definition, superpatential has R-charge 2

The exact R-symmetry may be computed by locally max-
imising

over all R satisfying the above constraints




a{R.) at the critical paint is the a central charge:
T g — =

= . o, T
120 (am)2 \ "W — 3(Eulen))

Cardy

a Delieved to count massless degrees of freedom.

G < a for any RG flow

L)

AdS/CFT (Henningson-Skenderis)

i -:.||.._"'1't’]
A'=4 SYN vol[L, gr]
For Y74 theories, this agrees with the earlier formuia!
32 ;fl.'_ F
oNz =
: T U e E
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Questions

s Geom i Now do we determine 3 volume with-
Ut solving the Einstein equations?

(]

* a-Maximisation

mplies that these volumes are always
dlgebraic numbers Why?

Rest of talk

* The answers to Lhese

questions

e “Calabi-Yau's" ¥ that da not a

amit Ricci-fiat Kdhler
cone metrics < SQFTs that do not flow to dual IR
fixed Boints

In particular, the second

Nt disproves some claims made
by (Cachazo, Figl. Intriligator, Katz. Vafa) and (Gukov,
Vara, Witten)




Sasakian geometry

Definition: A Riemannian manifold (L.gr) is Sasakian ifr

S metriccone (Xg =R, x L.g—dr?+ —~qgr) is K3hler

In particular X3 is 2 complex manifold; metric

S

o ol
’I: — = -

o= / oz
r{ (| } x'x o

o= J oz,

5 @ holomorphic Killing vector field (Reeb vector field)

IS Is dual to the R-symmetry in the SCFT




In the SCFT, we had an optimisation problemn for the
R-symmetry, that determines the central charge at the
cntical point

W

Idea: try to do the same in the geametry.

For simplicity, I'll facus on taric geometry here, since then
I can draw 3d pictures

vVe always have at least a holomorphic /(1) = T! isome-
try for a Kdhler cone (Xo.g9). If £ is to move, that means
we have at least a T2




Let . i~ 4+ 2x (i= 1, .mn), be angular coordinates
—

We now hawve 2n real coordinates — enough to cover Xj.

In fact, Xj is always a T" fibration over a convex polyhe-

dralcone C~cCc R

— = —
Concretely, there are primitive vectars teEZ a=1___.. d,

such that




Above every point in the interior C;.. of the cone, there Is
acopyof T

At each bounding face of the cone, one of the circles in

T" collapses, leaving T" 1 = T"/5! fibred over the face

Circle subgroup S* < T" is specified by a charge vector
veEZ"

The normal vector i, = Z" to the ath bounding face spec-
ifies which S* colizpse

u

Examples:

]

= Think of C = R? in polar coordinates. This is 5!
fibred over R, with S* collapsing at the arigin

e Similarly, C™ is T" fibred
orthant

e (R.)™ = positive

(w)
L
i
-
-~
Il

(N
[ ¥]
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q + oy w Vo

mat = » dp

Tlal=la= - &

Wil Iy — o1, 3 ¥




We may write

- S 5
E= » h—
e

' [ B

Winere one can show that

= o
i

M
0w
c.
1
|
o

Dual cone to C*,

4 convex rational polyhedral cone by
Farkas' Theorem

Remember that y' = lg(¢,8/84,).
gives 3

- 1 I
b =5:,"E-3:, =§"‘“

SO that the link [ = {r = 1}

’ s T" fibred over the inter-
section of C -

with the ' hyperplane

B | b=




We also must impaoa

SE that X; is "Calabi-yay" - c1{Xg) =
O

It turns out thi

5 Is equivalent to
-r.:ll" -_-r: Jﬁ 'l"ll'r:l":h

- LO The existence of 2 basis

- F

=3 1 .'_"__}
for some iy E "
This also means 3 ;3 Nowhere zero holomorphic (n, 0)-form
52




Extremal problem: Einstein metrics g on L are critical
points of

S[L.gr]l = [ [s(gr) +2(n— 1)(3 — 2n)] dp
s(gr) = Ricci scalar of g;

Amazing fact: for Sasakian metrics, the Einstein-Hilbert
action depends only on the Reeb vector field £ = b,8/8¢;.

Reason: remember the metric is

erer=

g = ———dz;ds;

O=0=;

Changing = — r=exp(,s) changes the metric.

L,gr] is invariant under the above change of metric, by

|
xplicit calculation

m Lr




Extremal problem: Einstein metrics g on L are critical
points of

S[L.g:] = , [s€gz) + 2(n — 1)(3 — 2n)] du

Amagzing fact: for Sasakian metrics, the Einstein-Hilbert

a Ei
action depends only on the Reeb vector field £ = bd/odd,.

Reason: remember the metric is

orer=- —
== ——
i — Ty
8 by
Changing r* — r2exp(y) changes the metric
If £.5/0.2 =0= Lo, then rd/8r and £ invariant
S[L,g¢] Is invariant under the above change of metric, by

explicit calculation







Extremal problem: Einstein metrics gr on L are critical
paints of

s(gz) = Ricci scalar of g;

Amazing fact: for Sasakian Metrics, the Einstein-Hilbert
dction depends only on the Reeb vector field E=53/85;.

Reason: remember the metric is

-~
osre

O
1T

— =
d=:0=

—

Changing r* — r?exp(=) changes the metric.

If C ¥ = 0= L¢p, then rd/dr and £ invariant
S[L.gz] is invariant under the above change of metric, by

exXplicit calculation




A computation gives

SIL, 9c] = 8n(n — 1)(27)"[by — (n — 1)]vol[P(5)]
where vol[P(5)] is the Euclidean volume of the finite poly-

tope formed by C* and H.

The first component b1 is singled out by the Calabi-Yau
condition &, = (1, Wa )
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A computation gives

SIL, 9¢] = 8n(n — 1)(2=) [by — (n — 1)]vol[P(B)]

where uc:j?{b‘j] 'S the Euclidean valume of the finite poly-

tope formed by C* and H-.

The first component b1 IS singled out Oy the Calabi-vau
condition 7, = (1.u7)




Existence and uniqueness af an extremum:

b = n defines a polytope ™
N in C (space of b), rather
than C-

Set V(b)) = vol[P(8)]. Then

dl 1 "

== = — ; y'de

b 2ib6l Sar
=V 2in+1) f
—_—— = Yyydo
db, Ob b H

This shows that V(b) is strictly convex on C.

It is bounded below, and diverges to +oc on 3C [Why?:
Because £ — 0 somewhere aon Xy as £ approaches the
boundary of C]

So there exists 3 unigue minimum on N

One can write a real Monge-Ampeére equation an C*, equiv-
dlent to the Ricci-flat Kdhler condition (Martelli, JF5,
Yau). Recently solved, by Futaki, Ono. Wangqg.




Example: complex dimension n = 3-

Order the normals vy, 1o, .. . . vy, Yi+1 = v3 around the poly-
hedral cone

Using GCSE maths

- 1 : (7, Vs Tap
V(b)) = - T —_ I_I_ = _ 1_} =
R Sl - 5 TEETES Ty [ Uy Upicy )

volume of a 3d polytope, where (.-.-) denotes a 3 x 3

The toric data for the Y»4 singularities is 1 = [1,0,0],

2=[1.1.0. m=[1 p.pl, ta = (1, p—q—1,p—q] (Martelli,

JFS)

One finds the Einstein-Hilbert action

25
(2=
i 2Tolal s = £ - g2 — o= ]
=S Ty i I= 1
T VWAL - b e -
» == 150006 T ’ S T

Extremising gives 5. with volume

h

(27)°V (5.) = -

voI[YP9] —




Much of what I described generzalises (Martelll, JFS. Yau).
However, one needs to take a different approach to cal-
culate the volume.

Localisation
VWWrite
T * 1 [ _h'-.rl-l
1-‘Di‘r...l_.!;‘ = —_-———j F = " —
. n 1 ix n!
where
r:":."'-
2850,
is the K3hler form

e

Then H = ~=/2 is the Hamiltonian function for & di =

This looks like a classical partition function, with phase
space (X,u).

It is, for 2 BPS D3-brane wrapping the 53 ¢ AdSs (Martelli,
JFS).




Dmstermza?Heckman formula says this localises where

£=0.

- -

But |£]|2 = 2, so this i the singular point of the Calabi-
Yau cone X

— must (partially) resolve the singularity.

upshot: rational function of . with rational coefficients.

Unique critical point — £= 3! _.53/8s with § an alge-
braic vector




Technical slide:

Let = : W — X be a T'-equivariant partial resolution of
X, exceptional set E.

W\ E = X; equivariant binolomorphism.

Note fixed point set is entirely in E. Then

vol[L. g;] —.-Tqi /t_ H :. - IVZ "11-{*‘-'-_-'".1-'1 :

vol[S2n—1] — —

= 2 {F} = set of connected components of the fixed
point set of generic EEL,

For fixed F, normal bundle £ in W splits £ — eE_ &,

where rank £, =n,, and Y®_ . — an k(E

L]

[ ]

Splitting determinec cy linearised T* action on E&:
welghtﬁ_ B, -..,Bp & =t

.{
|
o

® (&n) are the Chern classes of £...

When W has orbifoid sin 1quiarities, normal fibre to
generic point on F is not a complex »,E-*":‘r Space, bu
rather an orbifold C*/I". Then £ is more generally 3
orbibundle. de = |IM] is the o = :

I

=

fl

=
[a]
m
(o]
=
-




For our toric pictures, this different formula works as fol-
Iows.

Chop the polyhedral cone C* with enough rational hyper-
planes so that every vertex of the resulting non-compact
polytope P satisfies:

s precisely n edges meet at the vertex

e if &' € Z" denotes the n outward-pointing primitive
edges at vertex A, then these span Z= over Z

4-sided cone C° in dimen-
———— Sion n =3 cut with a single
hyperplane. A =1.2.3 4.

This can always be done.

Then (cf. the topological string)

vol[L. g;] . 1
e R — T- —
vol[§2=-1] — U b-if




Obstructions: (Gauntlett, Martelli, JFS, Yau)

Let (X, $2) be a compact Calabi-Yau manifold, 2 = nowhere
Zzero holomorphic (n, 0)-form

Remember, this means that X is complex. admits a2 Kahler
metric, and has ~(X) = 0.

Yau's theorem: such an X always admits a unigue Ricci-
filat Kahler metric in a given K3hler class [w] € HYY( X, R).

For non-compact manifolds, this theorem can fail.

For cones, this is related to the IR behaviour of geomet-
rically engineered \"=1 QFTs at the singularity




Let (L,g;) be an Einstein manifold with

Ric(gr) = (2Zn — 2)g;

Then

Bishop's Theorem: vol[L, g;] < vol[S2—1]

Lichnerowicz’s Theorem: The smallest positive eigen-
value E; of A; = scalar Laplacian is bounded from below
by E; > 2n—1, with equality iff (L. gz) is the round sphere.

Recall &Ap = —VEV,




Lichnerowicz: Let f be 2 holomorphic function on Xg =
= -

-
H, x L, and an eigenfunction of L,:
e 8f/8z, =0
o L.f —iAf, with A>0

Then

= |

|

~
*

with [ a function on L and

A f=Ej

with E = A(A+ (2n — 2)).

Thus Lichnerowicz requires A > 1.

Idea: both vol[L, g;] and holomorphic spectrum {A} are
nolomorphic invariants of X, for fixed £

If ‘-'\'.'JE“.. f“__! - ~_.._-;,:-[-_..;:-.

< 1, then contradiction

(%]
-
L
e




]

Physics: very simp

Lichnerowicz

Suppose f is an eigenfunction of 4A; with eigenvalue E =

AA+4)

There is an associated massive Kaluza-Klein state in AdSs.

ator @ in the dual SCFT

It has conformal dimension A(O) = A

Unitarity bound: A(QO) > 1.

So Lichnerowicz bound = unitarity bound.




Bishop

By giving vevs and integrating out massive fields — N —
4 SYM

Moves N D-branes to a smooth point of X

By earlier remarks, a should decrease under this process.

So

which is Bishop

So Bishop = a-theorem and intuitions about D-branes




Nice set of examples: ADE singularities

Define polynomials
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Then set

s with

laim: for = 2 these are Calabi-Yau singularitie
Solated singularity at =; = — = rr—i]




Ay 3-folds: For k£ = 2p even, (Cachazo, Fiol. Intriligator,
Katz, Vafa) constructed a family of N = 1 SQFTs on
D3-branes at the A2, 3-fold singularities.

Their vacuum moduli spaces are precisely the A., 3-fold
singularities.

a-maximisation gives a3 central charge that satisfies

a Ly u‘ﬂl[.ﬁ'if

I =4 SYRA V'DI[L'IE

assuming that the Sasaki-Einstein metric exists

But it doesn’t exist: all k > 3 violate Lichnerowicz's the
out by a difTerent argument

orem. & = 3 recently ruled
(Canti)




