Title: Introduction to Quantum Information and Computation from a Foundational Standpoint
Date: Nov 16, 2006 10:30 AM

URL.: http://pirsa.org/06110034

Abstract: Quantum Information and Entanglement Assisted Quantum Communication

Pirsa: 06110034 Page 1/172



Quantum Information and Computation

Jeffrey Bub

Department of Philosophy
University of Marvland
r"l.[lii
Perimeter Institute for Theoretical Physics
Waterloo. Canada

Pirsa: 06110034 Page 2/172




Classical Information and Shannon Entropy

@ A communication set-up involves a transmitter or source of
mformation. a (possibly noisy) channel. and a receiver.

@ The source produces messages in the form of sequences of
symbols from some alphabet. which Shannon represented
mathematically as sequences of values of independent.
identically distributed random variables.
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Classical Information and Shannon Entropy

@ The fundamental question considered by Shannon was how
to quantify the minimal physical resources required to store
messages produced by a source. so that they could be
communicated via a channel without loss and
reconstructed by a receiver.

@ Shannon’s source coding theorem (or noiseless channel
coding theorem) answers this question.
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Classical Information and Shannon Entropy
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e Consider a source that produces long sequences (messages)
composed of symbols from a finite alphabet a;.a..... Al
where the individual syvmbols are produced with
probabilities pi.po. ..., Pk-

@ A given sequence of symbols is represented as a sequence of
values of independent. identically distributed, discrete
random variables X;. X5..... A typical sequence of length
n. for large n, will contain close to p;n symbols a;, for
T 1.

@ So the probability of a suthiciently long typical sequence
(assuming independence) will be:

Pin_ _p2n Prh

p(x1,X2,. .., Xn) = P(X1)P(X2) ... P(Xn) = P1 P2~ -.-Py
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Classical Information and Shannon Entropy

e The probability ot a sufficiently long typical sequence
(assuming independence) is:
; ; _ - ! " i ~ P10_pon P It
ML X5, Xa) = P(x1)p(x2) ---B(=) =Py Py ---Py

@ Taking the logarithm of both sides (conventionally, In
information theory, to the base 2) yields:

log p(x1..... ) HZ pi log p; ;= —nH(X)
i

where H(X) := — > _. p; log p; is the Shannon entropy of the
source.

Pirsa: 06110034 Page 8/172




Classical Information and Shannon Entropy
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@ We can think about information in Shannon’s sense in

various ways. lake — log p;, a decreasing function of p;
with a minimum value of 0 when p; = 1 for some 1, as a
measure of the information associated with identifyving the
symbol a; produced by an information source. Then

H(X) = — > _. pi log p; is the average information gain, or
the expectation value of the information gain associated
with ascertaining the value of the random variable X.

Alternatively, we can think of the entropy as a measure of
the amount of uncertainty about X before we ascertain its
value.
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Classical Information and Shannon Entropy

@ Since
pies, ... )= S T e

for sufficiently long typical sequences. and the probability
of all the typical n-length sequences is less than 1. it follows
that there are at most 2"H(X) typical sequences.

@ So each typical n-sequence could be encoded as a distinct
binary number of nH(X) binary digits or bits before being
sent through the channel to the receiver. where the original
sequence could then be reconstructed by inverting the 1-1
encoding map. (Ihe reconstruction would fail, with low
probability, only for the rare atypical sequences. each of
which could be encoded as. say. a string of 0’s.)
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Classical Information and Shannon Entropy

e The probability ot a sufficiently long typical sequence
(assuming independence) is:

Py X Xn) = P(xX1)p(x2) ... p(xn) = F’liu“

¥ ] - 11
3 nane ){;L

e Taking the logarithm of both sides (conventionally, in
information theory, to the base 2) yields:

log p(x1..... X ) = HZ pi log p; := —nH(X)
i

where H(X) := — > . p; log p; is the Shannon entropy of the

sSource.
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Classical Information and Shannon Entropy
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Classical Information and Shannon Entropy
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e Consider a source that produces long sequences (messages)
composed of symbols from a finite alphabet a;.a-. ..., Al
where the individual symbols are produced with
probabilities pi.po..... Pk-

@ A given sequence of symbols is represented as a sequence of
values of independent. identically distributed, discrete
random variables X;. X5..... A typical sequence of length
n. for large n, will contain close to p;n symbols a;, for
i—1.. ... 1.

@ So the probability of a sufficiently long typical sequence

(assuming independence) will be:

pi1n_ p2n

p(x1.Xa,. ... Xn) = P(X1)P(x2) ... p(xa) = PPy . PR
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Classical Information and Shannon Entropy

e The probability ot a sufficiently long typical sequence
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pin_ pon Py It
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Classical Information and Shannon Entropy
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Classical Information and Shannon Entropy

@ Since
p{xi1,..-, ) = ) S e

for sufficiently long typical sequences. and the probability
of all the typical n-length sequences is less than 1. it follows
that there are at most 2*H(%) typical sequences.

@ So each typical n-sequence could be encoded as a distinct
binary number of nH(X) binary digits or bits before being
sent through the channel to the receiver. where the original
sequence could then be reconstructed by inverting the 1-1
encoding map. (The reconstruction would fail, with low
probability, only for the rare atypical sequences. each of
which could be encoded as. say. a string of 0's.)
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Classical Information and Shannon Entropy

@ Notice that if the probabilities p; are all equal (p; = 1/Kk for
all 1), then H(X) = log k. and if some p; =1 (and so p; =0
for i +# j), then H(X) = 0 (taking
Olog0 = limy_.g xlog x = 0).

e It can easilv be shown that:

0 < H(X) < logk
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Classical Information and Shannon Entropy
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@ Notice that if the probabilities p; are all equal (p; = 1/k for
all i), then H(X) = logk. and if some p; = 1 (and so p; =0
for i # j), then H(X) = 0 (taking
Olog0 = limy_.g xXlog x = 0).

e It can easilv be shown that:

0 < H(X) < logk

Pirsa: 06110034 Page 21/172




Classical Information and Shannon Entropy

e If we encoded each of the k distinet symbols as a distinct
binary number. i.e.. as a distinct string of 0’s and 1's. we
would need binary numbers composed of log k bits to
represent each symbol (2925 = k).

@ So Shannon's analysis shows that messages produced by a
stochastic source can be compressed. in the sense that (as
n — oc and the probability of an atypical n-length
sequence tends to zero) n-length sequences can be encoded
without loss of information using nH(X) bits rather than
the nlog k bits required if we encoded each of the k symbols
a; as a distinct string of O's and 1's: this is a compression.
since nH(X) < nlog k except for equiprobable distributions.
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Classical Information and Shannon Entropy

Pirsa: 06110034

@ Shannon's source coding theorem (noiseless channel coding
theorem) shows that the compression rate of H(X) bits per
symbol produced by a source of independent and
1dentically distributed random variables is optimal.

@ The source produces n-length sequences of symbols
X1, X2, ...,X, With probability
pix1,x2,..., Xn) = p(X1)p(x2) ... p(Xn), where each symbol
1s chosen from an alphabet X'. If there are k symbols in A,
these n-sequences can be represented as sequences of nlogk
bits.
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Classical Information and Shannon Entropy
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Classical Information and Shannon Entropy
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Classical Information and Shannon Entropy

@ Suppose there is a “block coding” compression scheme that
encodes each “block’ or n-length sequence (for sufficiently
large n) as a shorter sequence of nR bits. where
0 < R < logk. Suppose also that the receiver has a
decompression scheme for decoding sequences of nR bits
nto sequences of n syvmbols.

@ Onmne speaks of a compression/decompression scheme of rate

R.
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Classical Information and Shannon Entropy

The source coding theorem states that

Pirsa: 06110034

if the Shannon entropy of a source is H(X), then there
exists a reliable compression/decompression scheme of
rate R if and only if R > H(X), where a scheme is said
to be reliable if it reproduces the original sequence
with a probability that tends to 1 as n — oc.
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Classical Information and Shannon Entropy
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@ For reliable communication. we want the compression and

decompression of a sequence of symbols to yield the
original sequence, but in general there will be a certain
probability, q(x;..... X, ). of decoding a given sequence of
nR encoded bits received by the receiver as the original
n-sequence produced by the source.

The average fidelity of a compression/decompression
scheme for n-length blocks is defined as:

Fn = Z p(?‘:l ----- Xu)q(:{l ----- Ku)

all n-sequences

If all the probabilities q(x;.....xy) are 1. F,, = 1: otherwise

o< L
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Classical Information and Shannon Entropy

@ As a simple example of compression, consider an
information source that produces sequences of symbols
from a 4-svmbol alphabet a;.as. a3, a; with probabilities
1/2.1/4, 1/8. 1/8. Each symbol can be represented by a
distinct 2-digit binary number:

aip : 00
a» : 01
as 10
a - 1}

e Without compression we need two bits per symbol of
storage space to store the output of the source.
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Classical Information and Shannon Entropy

e The Shannon entropy of the source is
EKX):“_%hW%——LhEL——%hgl——ihwl——;

1 1 3 8 8 o8 4°

@ Shannon's source coding theorem tells us that there 18 a
compression scheme that uses an average of 7/4 bits per
symbol rather than two bits per symbol. and that such a
compression scheme is optimal.

@ The optimal scheme is provided by the following encoding:

ag : U

ar» . 10
az . 110
ag : 111

for which the average length of a compressed sequence 1s:
5-1+3-2+£-3+ %3 =1 bits per symbol.
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Classical Information and Shannon Entropy
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@ The significance of Shannon’s source coding theorem lies is
showing that there 1s an optimal or most efficient way of
compressing messages produced by a source (assuming a
certain i1dealization) in such a way that thev can be reliably
reconstructed bv a receiver.

@ The Shannon entropy H(X) is a measure of the minimal
physical resources. in terms of the average number of bits
per svinbol. that are necessary and sufificient to reliably
store the output of a source of messages.

@ In this sense. it is a measure of the amount of information
per symbol produced by an information source.
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Conditional Entropy

@ An information channel maps inputs consisting of values of
a random variable X onto outputs consisting of values of a
random variable Y. and the map will generallv not be 1-1 if
the channel i1s noisy.

x) of obtaining

@ Consider the conditional probabiliti
an output value y for a given mput value x. for all x.v.

@ From the probabilities p(x) we can calculate p(v) as:

Zp%\ (x)

and we can also calculate p(x|v) by Bayes’ rule from the
probabilities p(v|x) and p(x), for all x.yv. and hence the
Shannon vutmpr of the conditional distribution p(x|y), for
all x and a fixed y, denoted by H(X|Y = v).
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Conditional Entropy

@ The quantity

HX|Y) = ¥ p(v)H(X]Y = y)

1s known as the conditional entropy.

e It is the expected value of H(X|Y = yv) for all y.

o If we think of H(X), the entropy of the distribution
{p(x) : x € XA'}. as a measure of the uncertainty of the
X-value, then H(X|Y = v) is a measure of the uncertainty
of the X-value, given the Y-value y, and H(X|Y) is a
measure of the average uncertainty of the X-value. given a

Y -value.

Pirsa: 06110034 Page 39/172




Conditional Entropy

e The quantity

HX|Y) =) p(»)HEX|Y =)

1s known as the conditional entropy.

e It is the expected value of H(X|Y =v) for all y.

e If we think of H(X), the entropy of the distribution
{p(x) : x € A'}. as a measure of the uncertainty of the
X-value, then H(X|Y = v) is a measure of the uncertainty
of the X-value, given the Y-value y, and H(X|Y) is a
measure of the average uncertainty of the X-value. given a

Y -value.

Pirsa: 06110034 Page 40/172







Conditional Entropy

@ The quantity

HX|Y) =Y p(»)HEX|Y =)

1s known as the conditional entropy.

e It is the expected value of H(X|Y = yv) for all y.

o If we think of H(X), the entropy of the distribution
{p(x) : x € X'}. as a measure of the uncertainty of the
X-value, then H(X|Y = v) is a measure of the uncertainty
of the X-value, given the Y-value y. and H(X|Y) is a
measure of the average uncertainty of the X-value. given a

Y -value.

Pirsa: 06110034 Page 42/172




Conditional Entropy

e Putting it differently, the number of input sequences ot
length n that are consistent with a given output sequence
(as n — oc) is 2°HXY) j e H(X|Y) is the number of bits
per symbol of additional information needed. on average.
to 1dentify an input X-sequence from a given Y -sequence.

e This follows because there are 2"H(X-Y) typical sequences of

pairs (x.v), where the joint entropy H(X,Y) is calculated
from the joint probability p(x,v).
@ So there are
onH(X.Y)

_ on(H(X.Y)—H(Y)) _ onH(X|Y)
ouH(Y) — °© = -

typical X-sequences assoclated with a given Y-sequence.
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Conditional Entropy

e The equality

H(X.Y) — H(Y) = H(X

Y)
follows tfrom the ‘chain rule” equality
H(X.Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) = H(Y.X)

which 1s easily derived from the logarithmic definitions of
the quantities.

o Note that H(X|Y) £ H(Y

X}
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Mutual Information

@ The mutual information H(X:Y )(sometimes [(X:Y))
measures the average amount of information gained about
X by ascertaining a Y-value, i.e., the amount of
information one random variable contains about another,
or the reduction in uncertainty of one random variable
obtained by measuring another.

@ Mutual information can be defined in terms of the concept
of relative entropy, which i1s a measure of something like
the distance between two probability distributions
(although 1t 1s not a true metric. since it is not symmetric
and does not satisty the triangle inequality).
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Mutual Information

@ The relative entropy between distributions p(x) and q(x) is

defined as: )
p(x
D(p || a) Z p(x)log s

@ The mutual information can now be defined as:

H(X:Y) D(p(x.y) | p(x)p(y))

_ WX, V) log P(K‘Y)
- ZZI (x,v) log p(x)p(v)
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Mutual Information

@ The relative entropy between distributions p(x) and q(x) is
defined as:

D(p[la) =3 p(x)log

x= A {-1(:{)

@ The mutual information can now be defined as:

H(X:Y) D(p(x.y) || p(x)p(y))

_ i PCEY)
= 22 pley)log o
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Mutual Information

o It follows that
H(X:Y)=H(X)+ H(Y) — H(X.Y)

1.e., the mutual information ot two random variables is a
measure of how much information thev have in common:
the sum of the mmformation content of the two random
variables, as measured by the Shannon entropy (in which
joint information is counted twice), minus their joint
information.

e Note that H(X:X) = H(X). as we would expect.
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Mutual Information

e Since H(X.Y) = H(X) + H(Y|X). it follows that
H(X:Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

1.e., the mutual information of two random variables
represents the average information gain about one random
variable obtained by measuring the other: the difference
between the initial uncertainty of one of the random
variables, and the average residual uncertainty of that
random variable after ascertaining the value of the other
random variable.
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Channel Capacity

@ For a noisy channel, if X represents the input to the channel
and Y represents the output of the channel. H(X:Y)
represents the average amount of information gained about
the input X by ascertaining the value of the output Y.

@ The capacity of a channel. C. is defined as the supremum
of H(X:Y) over all input distributions.
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Channel Capacity

@ Shannon’s noisy channel coding theorem shows, perhaps
surprisingly. that up to C bits of information can be sent
through a noisy channel with arbitrary low error rate.
That is, there exists an optimal coding for an information
source with entropy H < C such that n-length sequences
produced by the source can be transmitted faithfully over
the channel: the error rate tends to zero as n — oco. The
probability of error tends to 1 if we attempt to transmit
more than C bits through the channel.

@ So we can improve the channel capacity by replacing the
cable with a faster one, or we can 1mprove the information
processing (the data compression).
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Entangled States

@ For any state |W) of QE, there exist orthonormal bases
i) € HYQ, ) € HE such that W) can be expressed in a

G

biorthogonal correlated form as:
!

where the coefficients | /p; are real and non-negative, and
Z B — 1.

@ 1 his representation is referred to as the Schmidt
decomposition. The Schmidt decomposition is unique if
and only if the p; are all distinct.
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Entangled States

e Comnsider a quantum system ) which is part of a compound
system QE. Pure states of QE are represented as rays or
, , . A +O) )
unit vectors in a tensor product Hilbert space H®Q @ HE.

@ A general pure state of QE is a state of the form:

W) = Z cij|gi)|ej)

where |q;) € H"™ is a complete set of orthonormal states (a
- . 4 {_ — 4 . - - 4 4
basis) in H“ and = HE is a basis in H".
o If the coefficients ¢;; are such that |W) cannot be expressed
as a product state |Q)|E), then |W) is called an entangled

state.
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Entangled States

e Comnsider a quantum system () which is part of a compound
system QE. Pure states of QE are represented as rays or
: : : TRy
unit vectors in a tensor product Hilbert space H™ HE.

@ A general pure state of QE is a state of the form:

V) = Z Cij|4i)

where |q;) € H"“ is a complete set of orthonormal states (a
- \ - P i:_ —— { . - . ’ 4
basis) in H™ and |e;) HE is a basis in HE.

t""l ]

e If the coefficients c¢;; are such that |V) cannot be expressed
as a product state |Q)|E), then |WV) is called an entangled

state.
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Entangled States

e For any state |W) of QE, there exist orthonormal bases
o o el = A : : .
i) € H?, |j) € HE such that |W) can be expressed in a
biorthogonal correlated tform as:

W) = V/pili) i)
1

where the coefficients ,/p; are real and non-negative. and
Y=L

@ This representation is referred to as the Schmidt
decomposition. The Schmidt decomposition is unique if
and only if the p; are all distinct.
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Entangled States

@ An example is the biorthogonal EPR state:

W) = (|0Y]1) — [1)]0))/V2

say, the singlet state of two spin-1/2 particles (the Schmidt
form with positive coefficients is obtained by asborbing the
relative phases in the definition of the basis vectors).

e In the singlet state. |0) and |1) can be taken as
representing the two eigenstates of spin in the z-direction,
but since the state is symmetric, |V) retains the same form
for spin in any direction.
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Entangled States

Notice that the four states:

1

1) = —(|0)[1) —[1)]0))
V2

_ 1

2) = —(|0)[1) + |1)|0))
V2

_ 1 ‘

I3) = —(]|0)|0) — |1)|1))
V2
|

4) = —(]0)|0) +|1)|1))
V2

form an orthonormal basis. called the Bell basis.

2-dimensional Hilbert space.
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Entangled States

Any Bell state can be transformed mto anv other Bell state
or Z, where X.Y.Z

by a local unitarv transformation. X.Y,
are the Paull spin matrices:
0 1
. = ] 1IN =
== 01 + 11, ( 1 0 )

X =0

/‘-—"-ﬂ\\

_ 2 —i

. ' 0
Z=o0,=10)(0] — [1)(1] = ( 'll — )

—1|0) (1] +1i|1) (0| =

@ For example:
T 3 1 1 | o ‘
XRI-4) = XI-—(|0)(1|—|1)|0) = ——=(|0)(0|—|1)|1) = —|3)

V2 V2
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Entangled States

[f QE is a closed system in an entangled pure state represented

W} = Z VPill) 1)

1

by

in the Schmidt decomposition, the expected value of any
1/Q
Q-observable A on H™* can be computed as:

(A) = Tr(|W)(V|A2I)
= IL‘{;E.(Tl‘E(‘LU: <:_L|f .-'—\))

= Trq()  pili)(ilA)

= Trq(pA)

where Trg() = E{L{"li! - |qi). for any orthonormal basis in H®<. is
. P . .
the partial trace over H“, and Trg() is the partial trace over
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Entangled States

e p=3 gl € H Q is the reduced density operator of the
open system (), a positive operator with unit trace.

@ Since the density operator p vields the statistics of all
Q-observables via (A) = Trq(pA). p 1s taken as
representing the quantum state of the system Q.

e If QE is an entangled pure state. then the open svstem () is
in a mixed state p. i.e.. p # p*; for pure states, p is a
projection operator onto a ray and p = p~.
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Entangled States

e A mixed state represented by a density operator
p =Y _ pil]i)(i] can be regarded as a mixture of pure states
1) prepared with prior probabilities p;, but this

representation is not unique—not even if the states

combined in the mixture are orthogonal.
@ For example. the equal-weight mixture of orthonormal

states |0), |1) in a 2-dimensional Hilbert space H, has

precisely the same statistical properties, and hence the
same density operator p = 1/2. as the equal weight mixture
of any pair of orthonormal states, e.g.. the states

I 3\ 1)\ l 1) \ . O Y . T uiu, 4 1% 1 g
—5(10) +[1)). 75(10) — [1)). or the equal-weight mixture of
nonorthogonal states |0). 5|0) + %=|1). 2|0) — %2[1) 120°
degrees apart. or the uniform continuous distribution over

9
Vo

all possible states in Ho.
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Entangled States

™
@ More generally. for any basis of orthonormal states
le;) € HE. the entangled state |W) can be expressed as:

W) = claidle) =Y /Wl le;)
1] i

Cij
&l Tl
L W)

where the normalized states |r;) = \q;) are relative

states to the \Ei_ (VW = Z_i “‘"-" )

e Note that the states |rj) are not in general orthogonal.
Since the |e;) are orthogonal, we can express the density
operator representing the state of QQ as:

p=2_ wilri) (i
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Entangled States

@ More generally. for any basis of orthonormal states
je5) € HE . the entangled state (W) can be expressed as:

W) = Z cilgi)|e) = Z VWilr;)|es)

L] J

*“ij
\‘.f ".'-,'J

where the normalized states |r;) = > . |q;) are relative

_ SR 2
states to the |e;) ( Vi o E_i i)

e Note that the states |rj) are not in general orthogonal.
Since the

ej) are orthogonal. we can express the density
operator representing the state of QQ as:

p=D_ wilri)(ri
1
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Entangled States

In effect. a measurement of an E-observable with eigenstates |e;)
i) |€i)

will leave the composite system QE in one of the states
with probability w;. and a measurement of an E-observable with
eigenstates |i) (the orthogonal states of the Schmidt
decomposition) will leave the system QE in one of the states

1)|1) with probability p;.

Pirsa: 06110034 Page 69/172




Entangled States

Since (Q and E could be widely separated trom each other in
space. no measurement at E could affect the statistics of any
Q-observable; or else measurements at E would allow
superluminal signaling between QQ and E. It follows that the
mixed state p can be realized as a mixture of orthogonal states
i) (the eigenstates of p) with weights pi, or as a mixture of
non-orthogonal relative states |r;) with weights w; in infinitely
many ways. depending on the choice of basis in HE:

p=2 pilil =) w
1

]

rj) (L)

and all these different mixtures with the same density operator
p must be physically indistinguishable.
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Entangled States

e

e Note that any mixed state density operator p € H< can be
‘purified’ by adding a suitable ancilla system E, in the
sense that p is the partial trace of a pure state
W) € HQ @ HE over HE.

@ A purification of a mixed state is, clearly., not unique, but
depends on the choice of |V) in HE.

Pirsa: 06110034 Page 71/172




Entangled States

Pirsa: 06110034

@ The Hughston-Jozsa-Wootters theorem shows that for any

mixture of pure states |r;) with weights w;. where
M o

rj)(rj|, there is a purification of p and a suitable
measurement on the system E that will leave () 1n the
mixture p.

So an observer at E can remotely prepare (Q in any mixture
that corresponds to the density operator p (and of course
all these different mixtures are physically
indistinguishable).
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Entangled States

e The Hughston-Jozsa-Wootters theorem shows that for any
mixture of pure states |r;) with weights w;. where

N ».

measurement on the syvstem E that will leave (Q 1n the

ri)(rj|, there is a purification of p and a suitable

mixture p.

@ So an observer at E can remotely prepare () in any mixture
that corresponds to the density operator p (and of course
all these different mixtures are physically
indistinguishable).
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Entangled States

e The Hughston-Jozsa-Wootters theorem shows that for any
mixture of pure states |r;) with weights w;. where
W

ri)(rj|, there is a purification of p and a suitable

measurement on the system E that will leave Q 1n the

mixture p.

@ So an observer at E can remotely prepare () in any mixture
that corresponds to the density operator p (and of course
all these different mixtures are physically
indistinguishable).
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Measurement

@ A standard von Neumann “ves-no measurement 1s
associated with a projection operator; so a standard
observable 1s represented in the spectral representation as a
sum of projection operators. with coefficients representing
the eigenvalues of the observable.

@ Such a measurement is the quantum analogue of the
measurement of a property of a system in classical physics.
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Measurement

@ Classically. we think of a property of a system as being
associated with a subset in the state space (phase space) of
the system, and determining whether the system has the
property amounts to determining whether the state of the
system lies in the corresponding subset.

e In quantum mechanics, the counterpart of a subset in
phase space is a closed linear subspace in Hilbert space.
Just as the different possible values of an observable
(dvnamical quantity) of a classical system correspond fo
the subsets In a mutually exclusive and collectively
exhaustive set of subsets covering the classical state space.
so the different values of a quantum observable correspond
to the subspaces in a mutually exclusive (i.e., orthogonal)
and collectively exhaustive set of subspaces spanning the
quantum state space.
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Measurement

@ Classically. we think of a property of a system as being
associated with a subset in the state space (phase space) of
the system, and determining whether the system has the
property amounts to determining whether the state of the
system lies in the corresponding subset.

e In quantum mechanics, the counterpart of a subset in
phase space is a closed linear subspace in Hilbert space.
Just as the different possible values of an observable
(dvnamical quantity) of a classical system correspond to
the subsets In a mutually exclusive and collectivelv
exhaustive set of subsets covering the classical state space.
so the different values of a quantum observable correspond
to the subspaces in a mutually exclusive (1.e.. orthogonal)
and collectively exhaustive set of subspaces spanning the
quantum state space.
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Measurement

e It is useful to consider a more general class of
measuremnents.

@ A quantum measurement can be characterized. completely
generally, as a certain sort of interaction between two
quantum systems, Q (the measured system) and M (the
measuring system).

@ We suppose that Q is initially in a state |¢’) and that M is
mnitially in some standard state

0), where |m) is an
orthonormal basis of "pointer’ eigenstates in HM.
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Measurement

The interaction is defined by a unitary transformation U on the
Hilbert space H® @ H™ that yields the transition:

[4)10) — ¥ M [¢)|m)
m

where {M,,} 1s a set of linear operators (the Kraus operators)
defined on H™ satisfying the completeness condition:

Z M M, =1

Iy

(The symbol 7 denotes the adjoint or Hermitian conjugate.)
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Measurement

The completeness condition guarantees that this evolution is
unitary. because it guarantees that U preserves inner products,
1.e.

{ f'_'J‘ 'U ‘ [T J [T ‘ f ‘“ = Z 1 11} (D ‘ B []:I”_B,J:T-“:‘ ‘ L J, ‘ 111*r )
. m/

— Z L, D,Ijul\lm‘ Wy

Iy

— O

from which 1t follows that U, defined as above for any product
state |¢)|0) (for any |¢') € HY) can be extended to a unitary
operator on the Hilbert space HQ @ HM.
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Measurement

Any set of linear operators {M,, | defined on the Hilbert space
of the system () satistyving the completeness condition defines a
measurement in this general sense. with the index m labeling
the possible outcomes of the measurement. and any such set is
referred to as a set of measurement operators.
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Measurement

Any set of linear operators {M,, | defined on the Hilbert space
of the system () satistying the completeness condition defines a
measurement in this general sense, with the index m labeling
the possible outcomes of the measurement. and any such set is
referred to as a set of measurement operators.
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Measurement

If we now perform a standard projective measurement on M to
determine the value m of the pointer observable, defined by the
projection operator

Pn =Ig ® jm)(m|

then the probability of obtaining the outcome m is:

p(m) = {(0|(x|UP,U|)|0)
— Z (m’| (v \M (Ig @ |m) (m|)My|¢)|m”
m’ m’’
— Z (M, (m'|m) (m|m" )My~ | )
m’m’’

| ME M, |0)

Pirsa: 06110034 Page 112/172










Measurement

If we now pertform a standard projective measurement on M to
determine the value m of the pointer observable. defined by the
projection operator

Pn = Ig ® jm)(m|

then the probability of obtaining the outcome m is:

p(m) = {0|{ \I P..Ul|v)|0
— Z [ (|M! (I @ |m) (m|) My |¢)|m”
m’ m’’
- Z (M, (m'|m) (m|m" )My~ |¢)
m'm’’

M My, [0
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Measurement

If we now perform a standard projective measurement on M to
determine the value m of the pointer observable, defined by the
projection operator

Pmn = Iq ® |m)(m|

then the probability of obtaining the outcome m is:

p(m) = {(0|{(z] U'P,,Ul: 3 10)
- Z (m'|(¢:|M" ,(Iq © |m) (m|) My |v:)|m”)
Sy
= Z (¢ l\[fﬂ, (m/|m) (m|m" )M )
e
— -_f_*\BI:Hl\L“ Ur)
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Measurement

Any set of linear operators {M,, | defined on the Hilbert space
of the system () satistyving the completeness condition defines a
measurement in this general sense, with the index m labeling
the possible outcomes of the measurement. and any such set is
referred to as a set of measurement operators.
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Measurement

The completeness condition guarantees that this evolution is
unitary. because it guarantees that U preserves inner products,

l.e.
. ' xl 1 / / 0 \ /
(@|{0|U"'U|¢)|0) = E (m|{eo|M;, My |¢)|m’)
. my/
= E O I\Iful\lm\ 15)
I
— (@] i,‘.

from which it follows that U, defined as above for any product
state [¢/)|0) (for any |¢') € H“) can be extended to a unitary
operator on the Hilbert space H? @ HM.
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Measurement

The interaction is defined by a unitaryv transformation U on the
- , { . [ . =
Hilbert space H“ H™ that vields the transition:

‘?.":Zf-‘il: [— Z h[m‘t‘-‘lll‘-
I

where {M,,} is a set of linear operators (the Kraus operators)
defined on H“ satisfying the completeness condition:

Z_ M M, =1

Iy

(The symbol 7 denotes the adjoint or Hermitian conjugate.)
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Measurement

Any set of linear operators {M,, |} defined on the Hilbert space
of the system () satistving the completeness condition defines a
measurement in this general sense, with the index m labeling
the possible outcomes of the measurement. and any such set is
referred to as a set of measurement operators.
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Measurement

If we now perform a standard projective measurement on M to
determine the value m of the pointer observable, defined by the
projection operator

Pn = Ig ® m)(m|

then the probability of obtaining the outcome m is:

p(m) = (O|(x|UP,U)|0
— Z (m'|(¢:|M" ,(Iq @ |m) (m|)Myyr|e) |m”)
oy
— Z (¢ I\IL, (m|m) (m|m" )M, )
oy
= (|M] Mp|)
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Measurement

@ More generally. if the initial state of QQ is a mixed state p,
then
p(m) = Tro(MmupM),)

¥

@ The final state of QM after the projective measurement on
M yvielding the outcome m is:

P mI;‘ & f |“ — :\[111 ‘ v ‘ lll:’
VIUIUTPURD o M Mo )
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Measurement

So the final state of M is |m) and the final state of Q) is:
hlm‘*’-'} _
v' & -‘Tl-\'[lllh I-lll |"-

and. more generally, 1f the initial state of () 1s a mixed state p.
then the final state of Q) is:

q.-\'[”j!}h[l;]i
TL‘Q ( h.{m;**\-[xi-n)
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Measurement

@ More generally. if the initial state of Q is a mixed state p,
then
p(m) = Tro(MupM),)

Irl

@ The final state of QM after the projective measurement on
M yvielding the outcome m is:

PnU[)|0) Mpyl|y)|m)

VEIUIPUW) -/ MEMa|2)
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Measurement

If we now perform a standard projective measurement on M to
determine the value m of the pointer observable. defined by the
projection operator

Pn = Ig ® jm)(m|

then the probability of obtaining the outcome m is:

p(m) = (O|(x|UP,LU[£)|0
= Z (m'|(¢:|M" ,(Iq ® |m) (m|) My |e) |m”)
o
- Z (¢ I\IL, (m/|m) (m|m" )M, )
By
— _.*_‘\BI:_”I\L“ )
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Measurement

@ More generally. if the initial state of QQ is a mixed state p,
then
p(m) = Tro(MupM),)

1Tl

@ The final state of QM after the projective measurement on
M vielding the outcome m is:

P,U|)|0) My |¢)|m)

\/ {' W ‘[T .;‘P[T | W :, \I,-“fl (W i 3.\.[];.1] J=1-ll\'-[ll'l ‘ vy
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Measurement

@ Note that this general notion of measurement covers the
case of standard projective measurements. In this case
{Mun} = {Pm}. where {P,, | is the set of projection
operators defined by the spectral measure of a standard
quantum observable represented by a selt-adjoint operator.

e It also covers the measurement of ‘generalized observables
associated with positive operator valued measures

(POVNMs).
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Measurement

e Let
E-'Hl IR D"[Iub[ltl

then the set {E,, } defines a set of positive operators

(“effects’) such that
Z Em =1

@ A POVM can be regarded as a generalization of a
projection valued measure (PVM), in the sense that
> E,, =1 defines a ‘resolution of the identity’ without
requiring the PVM orthogonality condition:

Pum = Omm’ PIH

@ Note that for a POVM:

p(m) = (V| Enl|Y)
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Measurement

e Given a set of positive operators {E,, } such that
> En = I, measurement operators M, can be defined via

J\ Im = \/Em

where U is a unitary operator. from which it follows that

S MONC.— Y B —]

iul

@ As a special case, we can take U =1 and M;;, = v En.

o Conversely, given a set of measurement operators { My, }.
there exist unitary operators U,, such that M,, = U, VE...
where {E,, } is a POVM.
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Measurement

@ Except for the standard case of projective measurements.
one might wonder why it might be useful to single out such
unitary transtformartions, and whyv in the general case such
a process should be called a measurement of Q).

@ The following example is illuminating.
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Measurement

@ Suppose we know that a system with a 2-dimensional
Hilbert space is in one of two nonorthogonal states:

ey = |0
. 1 | .
&) = —=(10) + (1)
V2

e It is impossible to reliably distinguish these states by a
quantum measurement, even in the above generalized
sense. Here ‘reliably’” means that the state 1s identified
correctly with zero probability of error.
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Measurement

@ Suppose we know that a system with a 2-dimensional
Hilbert space is in one of two nonorthogonal states:

. 1 . .
v2) = —=(10) + 1))

S

e It is impossible to reliably distinguish these states by a
quantum measurement, even in the above generalized
sense. Here reliably’ means that the state i1s identified
correctly with zero probability of error.
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Measurement

@ 'lo see this, suppose there 1s such a measurement, defined
by two measurement operators M. M- satistyving the
completeness condition.

e Then we require
p(1) = (1 MM, |¢) =1

to represent reliability if the state i1s |¢’y); and

e

p(2) = 'i'r.*:_.!M;D\[g'wj; — 1

to represent reliability if the state is |¢9).
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Measurement

But by the completeness condition we also have
{ 'l?l\[;l\[-_a\'l < :j_'l\f\-[i]\[t - }[EMQH‘} = {1 =1

from which 1t follows that

<
—_—
h’l
— ]
."“.
e
P‘
AI
'—."l
—
et
=t
—
-
b
-
[
"-'I
e
i il
—
-
—
I/
L
3
—
=
P =
—
]
P
|
=i
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Measurement

It is possible to perform a measurement in the generalized
sense, with three possible outcomes. that will allow us to
correctly 1dentify the state some of the time, 1.e.. for two of the
possible outcomes. while nothing about the identity of the state
can be inferred from the third outcome.
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Measurement

@ Suppose we know that a system with a 2-dimensional
Hilbert space is in one of two nonorthogonal states:

¥y = H]‘

_ B _
"‘v

Ivi

e It is impossible to reliably distinguish these states by a
quantum measurement, even in the above generalized
sense. Here ‘reliably’ means that the state 1s identified
correctly with zero probability of error.
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Measurement

@ Suppose we know that a system with a 2-dimensional
Hilbert space is in one of two nonorthogonal states:

U = | 0

Ua) = é(lﬂ? + (1))
V2
e It is impossible to reliably distinguish these states by a
quantum measurement, even in the above generalized
sense. Here ‘reliably’ means that the state 1s identified
correctly with zero probability of error.
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Measurement

It is possible to perform a measurement in the generalized
sense, with three possible outcomes, that will allow us to
correctly 1dentify the state some of the time, l.e., for two of the
possible outcomes, while nothing about the identity of the state
can be inferred from the third outcome.
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Measurement

Here's how: The three operators

v2  (|0) —[1))({0] — (1])

El - l -|— Vﬁ 2
/5
E;, = —Y° _|1)(1
142

E.’.‘? = I—EL _E'_’

are all positive operators and kE; + Es + E3 = 1, so thev define a
POVM.
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Measurement

In fact, Eq. Es. E3 are each multiples of projection operators

onto the states

(. 1 o ‘ 1 2 )
b)) = |iq)
_ (1+ v/2)|0) + |1)
D3 ) e .- — =
\,-/2{23{1 + v2)
with coefficients “"E__ ‘”E____ v respectively.
142" 14-v2" 142 '
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Measurement

The measurement involves a system M with three orthogonal
pointer states [1).|2),|3). The appropriate unitary interaction U

results in the transition. for an input state |v):

-
[4)|0) — ZMmlsr m)
I

where M, = vVEm.
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Measurement

o If the input state is |[¢';) = |0), we have the transition:

A o —
)]0y — VE;|0)|1) + VE3|0)|3
— rl‘r’_'Jl ) ]_: -I— i}if__l:j I. ‘3‘
(because vEs|t) = VE2|0) = 0), where «, 3 are real

numerical coefficients.

o If the input state is [¢2) = —=(|0) + |1)), we have the

vV 2
Iransition:

U 0) + |1) — [0} 4 |1}
— = (}_\‘2 -|— fg‘!‘}j-?)}

' / ‘ = |h-4-11) . ~

(because VE,|t2) = VE; 21X = 0).where v, are real
. NG,

Pirsa: 06110034 numerical coefficients.
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Measurement

In fact, Eq. Es. E3 are each multiples of projection operators

onto the states

) 1 b == ‘ e )
‘}” = MJF

(1+ v/2)|0) + |1)

P3) = ,_
Vv 2v2(1 + v2)
with coefficients =, Y=_ L _ respectively.
14v2" v w2 :
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Measurement

o If the input state is |[¢';1) = |0). we have the transition:
Wi U e Erak i — 9\
)0y —  VE;|0)|1) + VE3|0)|3)
— l‘l‘f_'Jl ) 1\ —+ j}lf_]:j ‘3
( because \,"'E-:fif.'l_} — x,-""'E2|”} — (). where a. 3 are real
numerical coefficients.
o If the input state is [¢n) = - (|0) + [1)), we have the
- - \.. =
transition:
: U = “',.-’ == 1) . — |U) + li .
[42)]0) VEy3——-12) + VE;— __..—| -13)
— | T} <f rﬂr )

; 3 o= L= J_ \ : ik
(because VE;|v»n) = VE; |—_3|| — ()),where ~., 0 are real

Pirsa: 06110034 numerical coefficients.
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Measurement

Here's how: The three operators

/2 (]0) — [1))((0| — (1
b _ VZ (0) - W)l - )
14 v/2 -
/3

Ex = Y2 (1
E.’.‘? = J - EL i Eﬂ

are all positive operators and ki + Es + E3 = 1, so they define a
POVM.
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Measurement

e If the input state is [¢';) = |0), we have the transition:

[ ‘fle ) ]_} '+- gif_]lil ‘:3:

|

(because VEs|vy) = vVE32|0) = 0), where a, 3 are real
numerical coefficients.
—L—( 0) + [1)), we have the

-

e If the input state is |¢»
transition:

__ U - 10) +|1) — [0) + |1) |,
[42)]0) V h2| — 2+ v _..—| -|3
V2 V2
— ~ :_|2:-|—r_‘?‘r;rj
... . o I | i |'|j' |J- - 2 ~ y ; § §
(because VE,|v2) = VE|;——* = 0).where v, 0 are real
| 5
numerical coefficients. Page 1571172
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Measurement

e If the input state is [¢;) = |0), we have the transition:
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e If the input state is |¢»

)|0) - VE;|0)|1) + VE;
alor)|1) + B|ods)|3)

0)|3)

|

(because vEs|t) = VE3|0) = 0), where a, 3 are real

numerical coefficients.
- —L—( 0) + |1)), we have the

V2
transition:
7 0) + (1) — 0} 4+ |1}
"‘ 2 “} VEJ = ‘ V hj1 I_._| ‘
—— Vv @9 |_):-!—rﬂ:;u )

/ T | A [O4-11) : =,
(because VE|u») = x,-fE1|—' = ().where ~. d are real

numerical coetficients. Ry




Measurement

Pirsa: 06110034

We see that a projective measurement ot the pointer of M
that yields the outcome m = 1 indicates, with certainty.
that the input state was |v) = |0).

In this case, the measurement leaves the system () in the
state

?1)-

A measurement outcome m = 2 indicates, with certainty.
that the input state was [U»n) = ﬁ(“]} + 1)), and in this
case the measurement leaves the ::i's‘rpm Q 1n the state |[p9).
f the outcome 1s m = 3, the mput state could have been
either |¢1) = |0) or |u9) = %(‘Uﬁ +[1)), and Q is left in the

state ‘r__ﬁ;j ‘ .
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We see that a projective measurement of the pointer of M

that yields the outcome m = 1 indicates, with certainty.

that the input state was |v) = |0).

In this case. the measurement leaves the system () in the

state ‘r','JLj'f-

A measurement outcome m = 2 indicates. with certainty.

that the input state was [U») = %(Hfl} + 1)), and in this

V5, _

case the measurement leaves the system () in the state |99).

f the outcome 1s m = 3, the mput state could have been

either [¢v1) = |0) or [u9) = —=(]|0) +|1)), and Q is left in the
Y, 73UY, .

state ‘f'__ﬁ 3 s
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Measurement

Pirsa: 06110034

We see that a projective measurement ot the pointer ot M
that yields the outcome m = 1 indicates, with certainty.
that the input state was |[¢1) = |0).

In this case. the measurement leaves the svstem Q) in the
state ‘f',‘qi'f-,

A measurement outcome m = 2 indicates. with certainty.
that the input state was [U»n) = #(Hﬁljﬁ: + 1)), and in this
case the measurement leaves the ﬁ;,'.‘e‘rpm Q 1n the state [p9).
f the outcome 1s m = 3, the mput state could have been
either |¢1) = |0) or |¥9) = L—(\U* + 1)), and Q is left in the

state |r'_'! 3 .
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