Title: Accessible adult stem cells from mammalian skin – from basic biology to therapeutic utility

Date: Nov 22, 2006 02:00 PM

URL: http://pirsa.org/06110016

Abstract: We have previously isolated and characterized a multipotent precursor cell (termed SKPs for SKin-derived Precursors) from both rodent and human skin, and have shown that these stem cells share many characteristics with a multipotent stem cell that is found in the embryo termed a neural crest stem cell. Here I will discuss our current work with regard to the basic biology of these stem cells, with a focus on the \hat{A} "what, where and why \hat{A} ", and on their therapeutic potential with specific regard to the nervous system.

Pirsa: 06110016 Page 1/52

NEURAL STEM CELLS

Pirsa: 06110016 Page 2/52

NEURAL STEM CELLS

Page 4/52

ES cells versus adult stem cells

What are the advantages of embryonic stem cells?

- ES cells can differentiate into all of the cells of the body, while adult stem cells are largely tissue biased
- adult stem cells, in general (the exceptions being neural stem cells and SKPs) divide poorly

What are the advantages of adult stem cells?

- · paucity of ethical issues, depending upon source
- potential for autologous transplantation

Pirsa: 06110016

Pirsa: 06110016 Page 6/52

ES cells versus adult stem cells

What are the advantages of embryonic stem cells?

- ES cells can differentiate into all of the cells of the body, while adult stem cells are largely tissue biased
- adult stem cells, in general (the exceptions being neural stem cells and SKPs) divide poorly

What are the advantages of adult stem cells?

- · paucity of ethical issues, depending upon source
- potential for autologous transplantation

Pirsa: 06110016

Neural Stem Cells: What are they?

irsa: 06110016 Page 8/52

Adult neural stem cells are also present in the adult brain (from Sam Weiss)

Pirsa: 06110016

New neurons for learning and memory, maternal behavior and maybe even repair

Pirea: 06110016

Stem Cells and Therapy

Transplantation

or

Recruitment

Page 11/52 Page 11/52

What kinds of conditions could we treat?

Parkinsons disease

Demyelinating diseases

Spinal cord injury

Pirsa: 06110016 Page 12/52

So what are the issues?

- Supply the current source of adult neural and ES cells are human embryos, raising concerns about ethics and about quantity
- Problems with heterologous transplantation
- Little knowledge of how to control the cell fate decisions made by stem cells

Pirsa: 06110016

The Search for an Accessible Stem Cell

skin

Pirsa: 06110016 Page 14/52

So what are the issues?

- Supply the current source of adult neural and ES cells are human embryos, raising concerns about ethics and about quantity
- Problems with heterologous transplantation
- Little knowledge of how to control the cell fate decisions made by stem cells

Pirsa: 06110016 Page 15/5<u>2</u>

The Search for an Accessible Stem Cell

skin

Pirsa: 06110016 Page 16/52

SKin-derived Precursors (SKPs) "look" like neural stem cells

Piggs : 06110016

SKPs clonally generate both neural and mesodermal progeny

Jean Toma

Pirsa: 06110016 Page 18/52

SKPs can be routinely isolated from human foreskin, and they too are multipotent

Osteoblasts

Jean Toma, Jeff Biernaskie

Pires: 06110016

SKPs

chondrocytes

osteoblasts

smooth muscle

adipocytes

·SKPS: WHAT, WHERE AND WHY?

·CAN SKPS BE USED THERAPEUTICALLY?

Pires: 06110016

THE NEURAL CREST

Neural crest derivatives include:

- · peripheral nervous system
- smooth muscle/myofibroblasts
- · adrenal cells
- melanocytes, Schwann cells, Merkel cells in skin
- bone and cartilage of the head
- · dermis in the head, fibroblasts in the nerve
- adipocytes in head and parasympathetic ganglia

Page 22/52

SKPs express transcription factors that are expressed in embryonic neural crest precursors

Mouse SKPs

Human SKPs

Ian McKenzie, Jean Toma

SKPs transplantation into the developing chick neural crest

Adrienne Junek Vic Rafuse

One niche for SKPs is follicle dermal papillae

Page 25/50

SKP markers are expressed in follicle dermal papillae and vice versa throughout development

Karl Fernandes Ian McKenzie Pleasantine Mills

Whisker follicle papillae contain SKP-like cells

Microdissection of Whisker Dermal Papillae

Pirsa: 06110016 Page 27/52

Transplanted SKPs integrate into the wounded dermis Jeff Biernaskie

Transplanted SKPs integrate into the follicle dermal papilla and sheath

Jeff Biernaskie

Page 29/52

Transplanted SKPs integrate into the wounded dermis Jeff Biernaskie

Transplanted SKPs integrate into the follicle dermal papilla and sheath

Jeff Biernaskie

Page 31/52

SKPs generate a dermal papilla and "tell" epidermal cells to make hair follicles

Pires: 06110016

Rat SKPs "tell" mouse epidermal cells to make rat hair

Pirsa: 06110016 Page 33/52

SKPs generate a dermal papilla and "tell" epidermal cells to make hair follicles

Page 34/52

SKPs: What, where and why?

What? An embryonic neural crest precursor that persists into adulthood in the dermis and other neural crest targets

Where?

In a hair follicle "niche"

Why?

Wound-healing

Regulation of morphogenesis in an adult tissue; hair growth and adult cell genesis

SKPs generate a dermal papilla and "tell" epidermal cells to make hair follicles

Pires: 06110016

Transplanted SKPs integrate into the follicle dermal papilla and sheath

Jeff Biernaskie

Page 37/52

SKPs generate a dermal papilla and "tell" epidermal cells to make hair follicles

Page 38/52

Rat SKPs "tell" mouse epidermal cells to make rat hair

Page 20/52

Transplanted SKPs integrate into the wounded dermis Jeff Biernaskie

Pirea: 06110016

·SKPS: WHAT, WHERE AND WHY?

·CAN SKPS BE USED THERAPEUTICALLY?

Pirsa: 06110016

Page 42/5/

Transplanted SKP-derived Schwann cells remyelinate the injured nerve

SKP-derived Schwann cells myelinate regenerating axons

Piggs : 06110016

Schwann cells are a candidate for spinal cord injury repair

1) Bridge the lesion site, modify the scar to promote axonal regeneration

Remyelination of both spared and regenerating axons
 Recruit endogenous myelinating glia to injury

After McDonald, Sci.Am.

Page 45/50

Transplanted SKP-derived Schwann cells myelinate new growing axons in the injured spinal cord

SKP-SCs

Control

SKP-derived Schwann cells enhance functional recovery

Pirsa: 06110016 Page 47/52

STEM CELLS AND BASIC BIOLOGY

- Do all adult tissues contain an adult stem cell? What are the biological roles of such cells? Are they a remnant from animals that can regenerate?
- How "plastic" are adult stem cells?
- · Is there an "adult" ES cell?

The Future of Stem Cell Therapy

Transplantation

or

Recruitment

Pigs 49/52

Cell therapy is not the only clinical use for stem cells

- Discovery research with, for example, geneticallycompromised patient populations
- Screening for novel, potentially individualized therapeutics
- · Cancer stem cells

THE SKPS TEAM

Collaborators

Victor Rafuse, Dalhousie

Adrienne Junek

C.C. Hui, U. of T.

Pleasantine Mills

Darius Bagli, U. of T.

Rajiv Midha, U. of C.

Wolfram Tetzlaff, U.B.C.

Joe Sparling

Ben Alman, U. of T.

The Lab

Jean Toma

Ian McKenzie

Jeff Biernaskie

Hiroyuki Okano

Jean-Francois Lavoie

Joint with David Kaplan

Karl Fernandes

Kristen Smith

Loen Hansford

THE SKPS TEAM

Collaborators

Victor Rafuse, Dalhousie

Adrienne Junek

C.C. Hui, U. of T.

Pleasantine Mills

Darius Bagli, U. of T.

Rajiv Midha, U. of C.

Wolfram Tetzlaff, U.B.C.

Joe Sparling

Ben Alman, U. of T.

The Lab

Jean Toma

Ian McKenzie

Jeff Biernaskie

Hiroyuki Okano

Jean-Francois Lavoie

Joint with David Kaplan

Karl Fernandes

Kristen Smith

Loen Hansford