Title: Self-Testing of Quantum Circuits
Date: Nov 15, 2006 02:00 PM
URL: http://pirsa.org/06110011

Abstract: | will explain how a quantum circuit together with measurement apparatuses and EPR sources can be fully verified without any reference
to some other trusted set of quantum devices. Our main assumption is that the physical system we are working with consists of several identifiable
sub-systems, on which we can apply some given gates locally.

To achieve our goal we define the notions of simulation and equivalence. The concept of simulation refers to producing the correct probabilities
when measuring physical systems. The notion of equivalence is used to enable the efficient testing of the composition of quantum operations.
Unlike ssimulation, which refers to measured quantities (i.e., probabilities of outcomes), equivalence relates mathematical objects like states,
subspaces or gates.

Using these two concepts, we prove that if a system satisfies some simulation conditions, then it is equivalent to the oneit is supposed to implement.
In addition, with our formalism, we can show that these statements are robust, and the degree of robustness can be made explicit. Finally, we design
atest for any quantum circuit whose complexity is linear in the number of gates and qubits, and polynomial in the required precision.

Joint work with Frederic Magniez, Dominic Mayers and Harold Ollivier.
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Smolin. = Experimental Quantum Cryptography.” J. Cryptol.
5 No. 1. 3-28 (1992).
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We need to make our assumpftions and
testing procedures explicit.

We also don't want to rely on some other
untrusted apparatus (e.qg. in order to ‘just”
do tomography).
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3) Trusted classical apparatus

However. the results are not “robust”. The results hold
exactly if the statistics are satisfied exactly.

Any realistic application will need to be robust.

(Assuming robustness) This might be the only way,
= g8INg only these assumptions, to verifiably securety
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Why else do we want to
test?

Suppose we are paying a lot of money to
perform a large quantum computation, whose

answer is not efficiently classically checkable.
Why should you trust this result?

Or, suppose we have proved one of the

Clay Institute $1M Millennium problem by a

proof that needs fo be run on a quantum
computer.
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If the statistics are
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The state space input to
H could be totally
different now.
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example

Verify the initial qubit sources.
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Some technical points

OQur procedure is only good for verifying
gates and states with real coefficients.

NB We are not assuming that our gates or
states only have real coefficients.

We are merely saying that we do not have a
procedure in the case of non-real
coefficients.
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Some technical points

OQur procedure is only good for verifying
gates and states with real coefficients.

This is not for lack of trying. There is a
fundamental reason for this:

1 complex bit can be simulated by 2 real
bits (see e.g. Rudolph and Grover quant-
ph/0210187). But the two systems are not
‘equivalent” according to our notion of
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‘The main assumptions of Mayers and Yao are
1) Locality (i.e. measurements at A commute with those at B)
2) Repeatability of experiments

3) Trusted classical apparatus

However. the results are not “robust”. The results hold
exactly if the statistics are satisfied exactly.

Any realistic application will need to be robust.

(Assuming robustness) This might be the only way,
= g8INg only these assumptions, to verifiably securety
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