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Abstract: Complexity class MA is aclass of yes/no problems for which the answer “yes\' has a short certificate that can be efficiently checked by a
classical randomized algorithm. We prove that MA has a natural complete

problem: stoquastic k-SAT. This is a quantum-mechanical analogue of the satisfiability problem such that k-bit clauses are replaced by k-qubit
projectors with non-negative matrix elements. Complexity class AM is a generalization of MA in which the certificate may include a short
conversation between Prover and Verifier. We prove that AM aso has a natural complete problem: stoquastic Local Hamiltonian with a quenched
disorder. The problem is to evaluate expectation value of the ground state energy of disordered local Hamiltonian with non-positive matrix elements.
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Introduction

Given a system of n > 1 interacting quantum spins (qubits) with a
Hamiltonian H. One needs to compute the ground state energy of H.

H is 2™ x 2™ matrix. It is practically impossible to compute the ground
state energy by the standard linear algebra methods.

Deterministic algorithms (Mean Field Theory, DMRG, Perturbation The-
ory Expansion): use simple, depending on poly(n) parameters, varia-
tional states to approximate the actual ground state.

Randomized algorithms (Green’s Function Monte Carlo): a random walk
on the set of 2™ basis vectors gives us information about the whole
Hilbert space by visiting only poly(n) basis vectors.

Goal: Identify a class of quantum systems that can be simulated using
randomized algorithms.
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Qutline:

e Stoquastic k-SAT problem

e Random walk algorithm for stoquastic k-SAT

e Stoquastic Hamiltonians and Interactive Proofs
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Classical 3-SAT

[ n = # bits,
Input: s M = # clauses,
| 3bhit clhuses €y,.--.Cye - {0, 2}" — {0, 1]

" L = ('1[:1';["2?* -*1If1)1
Example: < Ca(z) =z1V 23V (—23),
Cal(z) =1 unless 24 =0, z5=0, zg=1

1
0
dx € {D. 1}” > Calz) =1 fTorall a
(there exists assignment satisfying all clauses)

“

; | satisfies T Calzx)
Assignment x { violates } clause C, |ff{ Co(z)

ves-instance: {

Vec{@ 1}* dJa: Calx)=—=—0=0

no-instance: . :
(any assignment violates at least one clause)
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Quantum 3-SAT

[ n—F qubits,
M = # clauses,

T e > 1/poly(n) = precision parameter, _ _
| 3-qubit projectors (clauses) Mq,...,My; : (CHS" 5 (C3H)®n
M5, = Ma, N2 =M,, but in general Mq M3 % Mg Ma.

| ~oven | Satisfies | Mo |0) = | }
Assignment |6) € (C?) { violates [ clause lq iff (0IN4|0) < 1

310) € (CH®™ : My |0) = 1|0 forall e.

es-instance: : : : :
y { (There exists assignment satisfying all clauses)

V|0) € (CH®" Fa : (0M.]0) <1—¢

no-instance: : :
{ (Any assignment violates at least one clause)
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Comment 1: If all projectors N, are diagonal in the computational basis,
quantum 3-SAT reduces to classical 3-SAT.

Comment 2: Given an instance of quantum 3-SAT (n,M.e. M1,...,Myy)
one can define a 3-local Hamiltonian

Let Ey be the ground state energy of H. Then

yves-instance: Eg = —M,

no-instance: Eg > —M +e.
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Stoquastic 3-SAT

Definition 1. Stoquastic 3-SAT is a special case of quantum 3-SAT
such that all projectors I'l, have real non-negative matrix elements in
the computational basis:

(x|lMNa

y) >0 for all z,y € {0,1}".
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% . . :
Randomized algorithm for stoquastic 3-SAT

Keep in mind that stoquastic 3-SAT is NP-hard.
Let's set a realistic objective:

Problem 1: Given an instance of stoquastic 3-SAT (n,M,e,MMq,..., M), a
basis vector w € {0,1}", and an accuracy § > 0.

yes-instance: 31|0) : Mg @) =1|0)for all «a and |[(w|6)| > 4.

no-instance: V|0) da: (0|Ma.|f) <1 —e¢

Theorem 1: Problem 1 can be solved by a randomized algorithm with a
running time T = poly(n.e 1, log (6~ 1)).

Comment: if a satisfying assignment |8) exists, it has overlap § > 2 7/2
with at least one basis vector w. Thus a description of w provides a
e osioded@ssical proof that a satisfying assignment exists. R




Non-negative projectors: some properties

(1) Intersection of non-negative projectors is a non-negative projector
M Nnfx={lY) : MyY)=I¥), MN2v)=|y)}

(2) A satisfying assignment can always be chosen as a non-negative
vector: M|#) = |#) implies M |6) = |6), where |6) = |(z|68)| |z).

(3) Any non-negative projector can be written as Nl = _ﬂj_l W) (Wil
where r = Rk(IM), and {|v¥ ;) } are pairwise orthogonal non-negative
states.
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% . . .
Randomized algorithm for stoquastic 3-SAT

Keep in mind that stoquastic 3-SAT is NP-hard.
Let’s set a realistic objective:

Problem 1: Given an instance of stoquastic 3-SAT (n,M.,e,Ny,...,Myy), a
basis vector w € {0,1}", and an accuracy § > 0.

yes-instance: 31|0) : Mg |@) =1|0)for all @ and |[(w|6)| > é.

no-instance: V|0) da: (0|Ma|0) <1 —e¢

Theorem 1: Problem 1 can be solved by a randomized algorithm with a
running time T = poly(n.e 1, log (6~ 1)).

Comment: if a satisfying assignment |8) exists, it has overlap § > 2—7/2
with at least one basis vector w. Thus a description of w provides a
e osioded@ssical proof that a satisfying assignment exists. -




Non-negative projectors: some properties

(1) Intersection of non-negative projectors is a non-negative projector
MyNfy={ly) : M1 |¢)=|¢), M V) }

P) =

(2) A satisfying assignment can always be chosen as a non-negative
vector: M|#) = |#) implies M |8) = |6), where |6) =Y |(z|6)] |z).

(3) Any non-negative projector can be written as Il = Ej:l 10 ) (Y5l
where r = Rk(IM), and {|¢ ;) } are pairwise orthogonal non-negative
states.
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Randomized algorithm for stoquastic 3-SAT

Let (n,M.e,NMq....,My;) be an instance of stoquastic 3-SAT. Define an
operator
1 M

Y

a—1

It has non-negative matrix elements G: y = (z|Gly).

S —
M

yes-instance : the largest eigenvalue of G is 1
no-instance : the largest eigenvalue of G is <1 —¢/M

Pirsa: 06110006 Page 13/53



A e A
- S

i oL\ bﬂ\l\‘i s




Randomized algorithm for stoquastic 3-SAT

Let |#) be a sat. assignment supported on a set of basis vectors S:
Na|6) =10)foralla, |0)= > 6:|z), 6:>0, SC{0,1}"
€S
Then
G |0) = |6).
One can define a random walk on S with transition probabilities

Oy
Pt'-—}g —— (H_j) (-T..z'.g-
-

Indeed, Pry >0, YycsPrsy =60;13,Gzy0y =1 for all z € S.
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Randomized algorithm for stoquastic 3-SAT

Let |#) be a sat. assignment supported on a set of basis vectors S:
Na|6) =160 foralla, |0)= > 6:|z), 6:>0, SC{0,1}"
€S
Then
G |0) = |6).

One can define a random walk on S with transition probabilities

60
Px —y — (f) (-Txa'.gv
=

Indeed, Pry >0, YycsPrsy =60;13,Gzy0y, =1 for all z € S.
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Lemma: Suppose Il is a non-negative projector and I1|8) = |#) for some
10) = > 2esbx|x), 82 > 0. Then
(1) (z|M|z) > 0 for all z € S.
(2) If (z|M]y) > 0 for some z,y € S, then

Hﬁ’_
0,

It allows us to compute the transition probabilities Pr—;, efficiently:

-

[yl ) :
[(HWal®) & i Gy >0

| (=, (plx)
Ppy = (_H) Gy = | \ .-

@, if Gpy=0

where a(y) is chosen such that (YIMalz) > 0.
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Randomized algorithm for stoquastic 3-SAT

Let |#) be a sat. assignment supported on a set of basis vectors S:

Na|6) =10 foralla, |0)= > 6:|z), 6:>0, SC{0,1}"
rES

Then
G

9) = |6).

One can define a random walk on S with transition probabilities

Oy
P,t:—';-,r_; == (6_J) (-Thc'.g-

XL

Indeed, Pryy >0, Y csProyy =071, Geyby=1forallz€S.
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Lemma: Suppose I1 is a non-negative projector and I1|8) = |#) for some
10) = > rcsbx|x), 82 > 0. Then
(1) (z|M|z) >0 for all z € S.
(2) If (z|M]y) > 0 for some z,y € S, then

e

Z

H”
T

It allows us to compute the transition probabilities Pr—;, efficiently:

(y|n,, ) Y
Y

| (x|l )
P = (9_> Gry =1 \ Z (|2,

iﬁ

@, f Cry==0

where a(y) is chosen such that (YIMa(ylz) > 0.
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Non-negative projectors: some properties

(1) Intersection of non-negative projectors is a non-negative projector
M NNx={ly) : M |¥)=|¥), N2|¥) =]y}

(2) A satisfying assignment can always be chosen as a non-negative
vector: M|@) = |@) implies M |8) = |B), where |0) = z|0)| |x).

2z I

(3) Any non-negative projector can be written as N = j—l ) (¥l
where r = Rk(IM), and {|v¢ ;) } are pairwise orthogonal non-negative
states.
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Randomized algorithm for stoquastic 3-SAT

Let |#) be a sat. assignment supported on a set of basis vectors S:

MNa|0) =10) foralla, |0)= > 6:|z), 6:>0, SC{0,1}"
rEeS
Then
G |6) = |6).

One can define a random walk on S with transition probabilities

— H.;’I Y
JPJ‘ =¥y — 8— CT\;- Y-
£

Indeed, Pry >0, XycsPrsy =60;13,Gzy0y =1 for all z € S.
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Lemma: Suppose I1 is a non-negative projector and I1|8) = |#) for some
10) = > 2es0x|x), 8z > 0. Then
(1) {(z|M|z) >0 for all z € S

T

(2) If {(z|N|y) > 0 for some z,y € S, then

Oy _

0.

It allows us to compute the transition probabilities Pr—;, efficiently:

’

6 | @A)
P_‘L‘_._}y — (_H) Gi-‘.y — { \ e f.t(_{,r)| .

G T Cig >0

@, if Gry=0

where a(y) is chosen such that (YIMy(ylz) > 0.
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Randomized algorithm for stoquastic 3-SAT

[N, ly) ~ :
\/ @Ma )l Gzy, W Gzy>0

O F Gep—0 |

If a sat. assignment |#) does not exist, this definition can produce
unnormalized transition probabilities P.—,. Before making each step of
the random walk one has to verify that ZHPI_W —|

It can be done efficiently because G is a sparse matrix.
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Randomized algorithm for stoquastic 3-SAT

'::H!nrx[_u}m.ﬁ’
9 .': (x i T}
Pyyy = (_y) Gey =4 \ ElHa (y)!

G‘r_y« If Giy } O

0, if Gry=0

If a sat. assignment |#) does not exist, this definition can produce
unnormalized transition probabilities P.—,,. Before making each step of
the random walk one has to verify that ZHPI%H =

It can be done efficiently because G is a sparse matrix.
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Randomized algorithm for stoquastic 3-SAT

[yl / -
| Y| x[_u)|y1 Gr.y- if G;L‘.y e )

6 | (x|l )
PI_%'H — (_‘g> G;L‘.y — \ T f.};(g)|~1.

Q, if Cry=0 |

Consider the probability for the random walk to make L steps:

1 for yes-instances,

Pr(RW makes L steps) = . .
- Ps) { ~ Y (G¥) oz,  for no-instances

Since for no-instances the largest eigenvalue of G is at most 1 — ¢/M,
Pr(RW makes L steps) decreases exponentially with L. The prefactor
depends only on n and 4.
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Randomized algorithm for stoquastic 3-SAT

Step 1: Suppose current state of RW is T ;-
Step 2: Find a set N(;L-J-) — - Glj_y > @}
Step 3: For every y € N(z;) choose any ay such that (y|lMq,|z;) > 0.

Verify (z;|Malz;) > 0 for all a.

<y|nﬂu|y> :
\ <l‘j|n\’—1’y|£_j>

Step 4: For every y € N(z;) compute number P,y = Gz, y

Step 5: Verify Eyeﬁr(;ﬁ) Pri»y = 1.
Step 6: Generate z;;1 € N(z;) according to Pr ;—y.

Prjoej

Step 7: Compute and store a number Tj41 = Gt .
5L j41

If 74+ 1 < L, goto Step 1.

L
Step 8: Verify [] r; <1/6.

—1k

sraosioeR LEP 9: Decide that the answer is ‘yes’. S




Lemma: Suppose I1 is a non-negative projector and I1|8) = |#) for some
10) = > e bx|x), 82 > 0. Then
(1) (z|M|z) > 0 for all z € S.

o

(2) If (z|M]y) > 0 for some z,y € S, then

Oz

It allows us to compute the transition probabilities Pr—;, efficiently:

M

[ {y|N / i
' .- Y rx(.u)m'__ Gr.y« if G;L-.y >0
y

“-:;L'iﬂ“ L)

iﬁ

G F Cpy==0

where a(y) is chosen such that (y|M,,lz) > 0.
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Randomized algorithm for stoquastic 3-SAT

Step 1: Suppose current state of RW is ;-
Step 2: Find a set N(:[:J-) =% Gi.j_y >0}
Step 3: For every y € N(z;) choose any ay such that (y|lMq,|z;) > 0.

Verify (z;|Malz;) > 0 for all a.

<y|ﬂﬂy|y}
%oty :
’ \ (I‘j|nﬂy|‘rj>

Step 4: For every y € N(IJ-) compute number Py, sy = G

Step 5: Verify Eyeﬁr(ﬁj) Pr,»y=1.
Step 6: Generate z;,1 € N(x;) according to P ;—y.

-P.I‘j—é-l-'_j_.j_]_

Step 7: Compute and store a number Tigp1 = G, :
i1
If 741 < L, goto Step 1.

L
Step 8: Verify [] r;j < 1/6.
=1

sra osioem LEP 9: Decide that the answer is ‘yes’. S







Randomized algorithm for stoquastic 3-SAT

Step 1: Suppose current state of RW is T ;-
Step 2: Find a set N(;[:J-) —o o GIJ_H > 0}.
Step 3: For every y € N(z;) choose any ay such that (y|lMa,|z;) > 0.

Verify (z;|Malz;) > 0 for all a.

<y|ﬂﬂu|y>
\' <l‘j|nﬂy|£j>.

Step 4: For every y € N(z;) compute number Pz, sy = Gz, y

Step 5: Verify Zyemﬂ) Prsy = 1.
Step 6: Generate z;;1 € N(z;) according to Pr;—y-

Prjoei

Step 7: Compute and store a number Tj41 = G :
T j+1

If 741 < L, goto Step 1.

L
Step 8: Verify [] r; <1/6.

=k

sraosioem LEP 9: Decide that the answer is ‘yes’. -




Randomized algorithm for stoquastic 3-SAT

([
| (WM () lY) :
e e G|

6 | N ]E)
P;r_:—%y — (_y) GLQ = 3 \ () |

0, if Goy=0 |

Consider the probability for the random walk to make L steps:

1 for yes-instances,

Pr(RW makes L steps) = { " E,;-L((;L)-fﬁnff_ for no-instances

Since for no-instances the largest eigenvalue of G is at most 1 — ¢/M,
Pr(RW makes L steps) decreases exponentially with L. The prefactor
depends only on n and 4.
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Randomized algorithm for stoquastic 3-SAT

ﬂ |III ':. 1 ..-'

Cou ¥ Con>0 |

0, if Gey=0 |

Consider the probability for the random walk to make L steps:

1 for yes-instances,

Pr(RW makes L steps) = :
r( ps) { o er((;L)IGHL.L for no-instances

Since for no-instances the largest eigenvalue of G is at most 1 — ¢/M,
Pr(RW makes L steps) decreases exponentially with L. The prefactor
depends only on n and 4.
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Randomized algorithm for stoquastic 3-SAT

Step 1: Suppose current state of RW is ;-
Step 2: Find a set N(z:_;-) — = [ Gi-_j_y > 0}.
Step 3: For every y € N(z;) choose any ay such that (y|lMq,|z;) > 0.

Verify (z;|Malz;) > 0 for all a.

<y|ﬂﬂy|y>
PR :
’ \ (1"j|r]"—‘!y|‘r_j>

Step 4: For every y € N(IJ-) compute number Py, sy = G

Step 5: Verify Eyeh’(rﬁ Pr»y = 1.
Step 6: Generate z;;; € N(z;) according to Py . y.

-P.L‘j—i-r_j_.;_]_

Step 7: Compute and store a number Tj41 = G :

If 741 < L, goto Step 1.

L
Step 8: Verify [] r; <1/6.

—a

sraosioem LEP 9: Decide that the answer is ‘yes’. S




Problem 1: Given an instance of stoquastic 3-SAT (n,M,e, M4,...,Myy), a
basis vector w € {0,1}", and an accuracy § > 0.

1

yes-instance: 310) : lMNuyl|f)=|0) for all @ and [|(w|6)]| > é.
no-instance: V|0) Ja: (|Ma.|f) <1 —ce

Suppose the number of steps L in the random walk is chosen such that
<l

M® — 3

which can be done with L = poly(n,e1,log (6-1)). Then the algorithm
above solves Problem 1 with error probability 1/3.

€

2."'1)!2 5-‘-1 (1 LA

See quant-ph /0611021 for details.
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Complexity class MA (Merlin-Arthur games)

MA is a class of decision problems for which ‘yes’-instances have a proof
that can be efficiently verified by a classical randomized algorithm. Here
a proof is a bit string that is given to the verifier (Arthur) capable of
doing poly-time probabilistic computation by the prover (Merlin) with
unlimited computational power.

Completeness: for yes-instances Merlin can find a proof that
convinces Arthur

Soundness: for no-instances Arthur will reject any proof w.h.p.

A decision problem is called MA-complete iff it belongs to MA and any
other problem in MA can be reduced to it.
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Theorem 1. Stoquastic k-SAT belongs to MA for any k= O(1).

Indeed, in order to prove that a satisfying assignment |0) exists Merlin
can send Arthur a basis vector w such that (8lw) > 2—"7/2.

Theorem 2. Stoquastic k-SAT is MA-complete for any kK > 6.

See quant-ph /0611021 for details.
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% . . . :
Minimum eigenvalue problem for local Hamiltonians

(LH-MIN)

| »=3FF qubits

M

Input: 4 k-local Hamiltonian H = ) H, on n qubits,
a=1

| lower /upper thresholds Ayes < Ano

Constraints: |Ha|| < poly(n), Ano — Ayes > 1/poly(n).

ves-instance:

310) : (6|H|8) < Ayes,
(the smallest eigenvalue of H is < Ayes)

no-instance:

v16) 0|H|0) > Ano,
(the smallest eigenvalue of H is > Ano)

E .'L'E".'!-'—!-H.!-'TL{HCE

E no—Iinstance
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T heorem: LH-MIN is QMA-complete for £ > 2
[Kitaev 99, Kempe, Kitaev, Regev 04]

QMA (Quantum Merlin-Arthur games) is a class of decision problems
for which yes-instances have a proof that can be efficiently verified by
a quantum algorithm. Here a proof is a quantum state that is given to
the verifier (Arthur) capable of doing poly-time quantum computation
by the prover (Merlin) with unlimited computational power.

Completeness: for yes-instances Merlin can find a proof that
convinces Arthur w.h.p.

Soundness: for no-instances Arthur will reject any proof w.h.p.

Is there any special class of local Hamiltonians for which LH-MIN is
MA-complete?
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Stoquastic Hamiltonians

Def: Let H =), H, be a k-local Hamiltonian acting on n qubits.
H is called stoquastic iff
z|Hy|y) < 0O for all basis vector z % y, and for all a.

(1) Stoquastic Hamiltonians have no "phase frustrations”, i.e.,
ground state can be chosen as a real non-negative vector.

(2) Any classical (diagonal) Hamiltonian is stoquastic.
(3) Gibbs operator e=? # has non-negative matrix elements

(4) A property of being stoquastic can be efficiently verified.
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Stoquastic Hamiltonians: examples
(1) Ising model with transverse field
(2) Heisenberg ferromagnetic model
(3) Heisenberg anti-ferromagnetic model on a bipartite graph
(4) Hamiltonians for adiabatic evolution algorithm [Farhi et all. 00]
Beyond qubits:

(5) Interacting bosons (Hubbard model, *He, Bose-Einstein
condensates)

(6) Jaynes-Cummings model and spin-boson model

Typically Hamiltonian is not stoquastic only if fermionic degrees of free-
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Theorem 3. Complexity of stoquastic LH-MIN does not depend on k
as long as k > 2.

Theorem 4. Stoquastic LH-MIN is hard for MA.

Theorem 5. Stoquastic LH-MIN belongs to the complexity class AM
(Arthur-Merlin games)

See quant-ph /0606140 for the proof

AM is a class of decision problems for which yes-instances have a proof
that can be efficiently verified by a classical randomized algorithm. Here
a proof may include a conversation between Arthur and Merlin with a
constant number of communication rounds. Arthur can generate his
questions using randomness. By definition, MA C AM.

arsa: osodeOFOllAry: Stoquastic LH-MIN is not QMA-complete unless QMA .. ..AM




Stoquastic Hamiltonians: examples
(1) Ising model with transverse field
(2) Heisenberg ferromagnetic model
(3) Heisenberg anti-ferromagnetic model on a bipartite graph
(4) Hamiltonians for adiabatic evolution algorithm [Farhi et all. 00]
Beyond qubits:

(5) Interacting bosons (Hubbard model, *He, Bose-Einstein
condensates)

(6) Jaynes-Cummings model and spin-boson model

Typically Hamiltonian is not stoquastic only if fermionic degrees of free-
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Theorem 3. Complexity of stoquastic LH-MIN does not depend on k
as long as k > 2.

Theorem 4. Stoquastic LH-MIN is hard for MA.

Theorem 5. Stoquastic LH-MIN belongs to the complexity class AM
(Arthur-Merlin games)

See quant-ph /0606140 for the proof

AM is a class of decision problems for which yes-instances have a proof
that can be efficiently verified by a classical randomized algorithm. Here
a proof may include a conversation between Arthur and Merlin with a
constant number of communication rounds. Arthur can generate his
questions using randomness. By definition, MA C AM.

arsa: oo OFOllAry: Stoquastic LH-MIN is not QMA-complete unless QMA . L ..AM




e
%

Example: Ising model in the transverse field

Let G = (V, E) be a graph with n vertices. Qubits live at vertices. Let
A be adjacency matrix of G. Consider stoquastic 2-local Hamiltonian

It Tl

1
H(h) = = Y A2z, D—-hE)Y X k>0

up=1 u=1
Let AM(h) be the smallest eigenvalue of H(h).
A(0) = —(the maximum weight of a cut of G).
Thus evaluating A(0) is NP-hard. Since
A(h) —A(0)| < ||H(h) — H(O)|| < nh,

Stoquastic LH-MIN for H(h) is NP-hard if nh < 1/3.

One can show that the ground state |6) of H(h) obeys 6, > 2—roly(n) for
all basis vectors . Thus Merlin's proof can not be just a basis vector
having large overlap with |68).
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Open problems:

Adiabatic q. computation with stoquastic Hamiltonians

Perturbation theory gadgets for quantum and stoquastic kE-SAT

problems

Identify "easy” 1D cases of stoquastic LHP

Connect to empirical Green’'s Function Monte Carlo method
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Randomized algorithm for stoquastic 3-SAT

Step 1: Suppose current state of RW is ;-
Step 2: Find a set N(x:J-) — e Gi_-j_y > 0}.
Step 3: For every y € N(z;) choose any ay such that (y|lMq,|z;) > 0.

Verify (z;|Malz;) > 0 for all a.

<y|| Iﬂg|y}
T -
’ H\ (“[J“ lc‘ty|‘rj>

Step 4: For every y € N(IJ-) compute number Py, sy = G

Step 5: Verify EyEﬁ'—(L‘j) Pr,»y=1.
Step 6: Generate z;,; € N(x;) according to Pri—y-

Prjsaipy

Step 7: Compute and store a number Tj41 = G :
‘Ej...t"_j_}_]_

If 74+ 1 < L, goto Step 1.

L
Step 8: Verify [] r; <1/6.
i=1

sra osioeR LEP 9: Decide that the answer is ‘yes’. S




Randomized algorithm for stoquastic 3-SAT

[ [N )
(y] ”(_t_,)m.: Gr.y- it G;t:._y' =]

B | (x|l xr)
P;L'—%-y — (_y) G;;_y — \ o fl(.u)|‘1- |

o iF Cy—0 |

Consider the probability for the random walk to make L steps:

1 for yes-instances,

PI'(RW makes L StEDS) = { " ZIL{[—;L)L}IL for no-instances

Since for no-instances the largest eigenvalue of G is at most 1 — ¢/M,
Pr(RW makes L steps) decreases exponentially with L. The prefactor
depends only on n and 4.
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Randomized algorithm for stoquastic 3-SAT

{ fg' I_Ir,u[_uﬂy.}
\I-' {;I.‘Irl“(y)|£__}

G F Gyt

0, iF Gry=0

If a sat. assignment |#) does not exist, this definition can produce
unnormalized transition probabilities P.—,. Before making each step of
the random walk one has to verify that Zny'—}y =

It can be done efficiently because G is a sparse matrix.
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Randomized algorithm for stoquastic 3-SAT

r f.g'l_lruliu}'y :
- By . \.‘II ’-:Iirlﬂ(yﬂi'_‘-\' Gi.'_y- |f Gly = O
PJ_.‘—'iy — —— Gj_:_y = 4 '

0, if Gry=0

If a sat. assignment |#) does not exist, this definition can produce
unnormalized transition probabilities P.—,. Before making each step of
the random walk one has to verify that Zypr—w — |

It can be done efficiently because G is a sparse matrix.
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