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Holographic correspondence:
5D theory with gravity in Asymptotically AdSs spacetime (times
some compact factor)

)
4D field theory without gravity as a fundamental ingredient.

Excitations near the boundary of AdSs < high energy modes in
the FT.

Radial Evolution away from the boundary < RG flow to the IR

-

Spectrum of 4D field theory particles = spectrum of normalizable

states 1 the 5D geometry. witten. "97
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Can we add 4D gravity to the mixture?
In RSII we do have 4D gravity:

bulk 1s a slice of AdS-

AdS5 1s cut-off before reachmg the boundary
< dual 4D Field Theory has a UV cut-oif

= there exists one normalizable 4D massless spin-2
However:

the graviton wave-function is peaked at the UV cut-ofif
< graviton i1s a fundamental degree of freedom coupled to the
4D FT at the cut-oﬁ
(this
would be emergent, rather than fundamental, in the dual FT).
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Consider asymptotically AdSs spacetime,

ds’ ~ (ky)~* u’g Tu’z

It supports various fluctuations of the fields living in 5D, e.g. 5D
metric h 45(x, v), bulk scalar fields ®;(x, v) ...
Modes of these 5D fields such that:

they have a fixed 4D mass: (4 ®(z, y) = m?>®(z, )

are normalizable w.r.t. to the radial direction vy, 1.€. they have a

correspond to 4D fields with mass m? in the dual FT.
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Take a mode ®(x, y) that solves the corresponding bulk wave
equation.
Close to the boundary it has an expansion:

D(z,y) ~ y2—d_(z) + ™t d (z)+... A_< A,

Typically ®_-modes are not y-normalizable, and correspond to
external sources in the 4D dual FT, while @ -modes are
normalizable (around y = 0) and correspond to IR modifications of
the theory.

For tensor spin-2,
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a(y)

\ ds® = — % +d:rf£) U<y< oo

| ' S,
Senlb®)= [ty [ ata(00®)" -

In AdS: h; 1s not normalizable = not a state m the 4D FT,
rather an external source added to the UV theory.




a(y)

2
ds® —

K

Sﬁ:-irl[h(o"] fh o /d4;1= (f)hm!)

In RSII it becomes normalizable = the source gets a kinetic
term and becomes dynamical. it is promoted to a fundamental
d.o.f of the UV theory.

: (dyg — d;z.‘ﬁ) O<y<
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A normalizable £, () would correspond to a low-energy
excitation (“glueball™) rather than a fundamental one.

(dy® + di‘i) O<y<oc




a(y)

ds® =

ﬂ (dy? + d;ri) O<y<o

k

- 2
S'k-m[h{'m] = 1 & /di;r (@h.(m)

. 4 P
A normalizable h,,;; (x) would correspond to a low-energy
excitation (“glueball™) rather than a fundamental one. C
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First attempt:

pure gravity in a slice of AdSs with both UV and IR

add a bulk Pauli-Fierz mass for the metric fluctuations

add boundary “massess” to change boundary conditions

JAB = 5 (1AB + " AB)

L¥

Slhag| = Mg / d*zdy/—g (R — 2A) + ) .}1‘--}»[3:'?}_}3_}}'__18_

S i r;i’:l"r[_':'if_'.;’.}j:r:/?._i_;_-] % :.L.’J[jf;?p:f'.’j_i;;}
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a _, 5 : : -
B+ 3—h L —4 k’a’h =0. R — +4 «; akh)|,
a

| y=0,11 y=0,y1




Field Equations + b.c. for TT part of £,

f a . . = -
h'+3—h' +04h —4Xk°a“h =0, h'|

ff y’ —1]. y 1

Choose

akh|

y=0,11



Field Equations + b.c. for TT part of £,

a 5 : :
K +3 h L,k 4 ka’h =0, MA| e — 14
r'r L

A

Choose

1 ;
g — —¥1 = —) (1 + V1 + ,\)

- . F

= Solution with [1,/ = 0 and profile peakec

, ﬂ hyu(x) __ _
Nup T, y) = —— = ]
F ) a(y) davg J




Field Equations + b.c. for TT part of £,

A+ K+hhh—4AFa?h=0 K] . — 4
(1 g_!_J‘yl
Choose

1 —
ap = —a1 = (1 + v1+ ,\)

—

= Solution with [1,/ = 0 and profile peaked arour
h = {r J_+ -.:
- [ Y — i i T = i i .; ()
Y \EY) = o y)4as Apy ()

akh EUZO. Y1

huy(x) 1s the massless 4D graviton. In the dual picture it 1s not a

fundamental d.o.fbut a |
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Features:

IR massless gravitons

no extra massless vectors or scalars (but see below!)

However...

general covariance explicitly broken by mass terms

unclear how to include nonlinearities (+ usual problems of
massive gravity)

scalar sector: one mode has vanishing kinetic term at quadratic

level

in generally covariant theory it 1s a gauge mode = expected
to decouple to all orders

here it could become strongly interacting at nonlinear level
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Try to remedy some of those drawbacks keepmg the good feautures.
Instead of putting mass terms on pure AdS, modify the background
occometry turming on a bulk scalar field

S = M / \,,—_Q(R—fj_q_@fj:l@—Ir{i)].).

L

take as background solutions:

7.8

o) L f I \
ds® = a“(y)na pdxda ®(y, ") = Po(y)

Take solution asymptotically AdSs i the UV (y — 0):

1 :
aly) ~ A_: Py Yy) ~ const; V(®ol Yy)) ~ 2A
Y
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Rewrite ds* = dr* + e~ I 5

‘iﬁ{ r) = 2B(r), V(®g(r)) = 2B(r) — — B*(r)




Rewrite ds? = dr2 4+ e 4f

fl’;-j{'ri =1:{ta

T (v ¢ Lr.u. ( LIJ/ - "t
-
Vi(dg(r)) = 2B(r _?)Bzrl

such that &5 £ 0 we can invert r = r(®)
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Rewrite ds* = dr* + e~ N a2 dx”, 5=
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given an arbitrary B(r) such that ®; # 0 we can invert r = r(®)




Rewrite ds? = dr? + e 4£ N, AT dx” B =
.;lll'_u

fljﬁ{r — 'BBi r), V(dg(r)) = _)B{f"l — - )

given an arbitrary B(r) such that ®; # 0 we can invert r = r(®g)

- 9/8 )j W2 W(H) —
_I(_,.f;:?@}_ _3w2 B —

— we can parametrize models by the scale factor B(y) a

as long as E ,1.e. B'exp(2B(y)/3) is monotonically 7.




Look for normalizable fluctuations around this background. Classify
perturbations according to 4D |




Look for normalizable fluctuations around this background. Classify
perturbations according to 4D [orentz group

ds® = a’(y) [(1 +2¢) dy” + 24, dydz* + (M + hy) do*dz”]

(10+4+1) components




Look for normalizable fluctuations around this background. Classify
perturbations according to 4D [orentz group

r

ds* = a*(y) (1 +29¢) dy® + 24, dydz" + ( N + ) dztdz” | |

® = Pg(y) +

under linearized diffeomorphisms (dy = £7, dz# = ¢

7
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Look for normalizable fluctuations around this background. Classify
perturbations according to 4D Lorentz group

i — {I)O{j}_'-}:' 8

ds? = a’(y) [(1 + 26) dy? + 24, dydx* + ( N + ) dzHdz” | |

under linearized diffeomorphisms (dy = £, dx" = &

.
- - _ (I =
A — AN S ey . _ge
f-’h,u.f‘..' = —Ou&y 'r—-’irf"w,p Ef.?,u_-‘.f —Q
(1

-/ 3

r“:lthL —f;JL — 3} E
a’

-, 5 @ .5 - ! ¢5
0p = —&° — —& dx = —Pp&°.

(100+4+1)+1=16 components

-5 (gauge) - 5 (G, 4 constraints)




Decompose fluctuations in 4D m

Ly, x) = m? f| i, T).




Decompose fluctuations in 4D m

L1 f(y, ) = ”;.Ef;_ 3, x).
To classify fluctuations in terms of irreducible representations of
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m? ==l
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Decompose fluctuations in 4D modes with given mass:

L1 f(y, ) = nz"z'f{ 9, x).

To classify fluctuations in terms of irreducible representations of
SO(1,3), we need to treat separately the two cases:
.‘) v
m* =1

)
s me— |

Thais 1s important for the scalar sector.
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Ay =0, hy =201 +20,V,, +
Constraints: ¢ = —2¢, V; =0.
Field equations:
f'f
; ey il P oy R




Constraints: ¢ = —24.

Field equations:

TT\1 & i T
“h;;‘/ J T 9— Ny,
a '



:1.-r — (). h;w — Niew + 20¢., | 1

L

Constraints: ¢ = 2¢¥», VI =0.
Field equations:

.lr

(h —+ 3— fjrf — ;:r?jf?:--,f,:__fr‘ — 0
[ ik

f'

a’ 2 : b
]} J i o= : : \ U
¢ (3 — ) +m¢(=0 (=9-—=, z=—+
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If m~ = 0. choose longitudinal “Coulomb” gauge:

‘_1.- — }?"'F/' — ‘2 J.rl.;}l_“_.; —|_

H H

i — Py, — &h, — A, —FA 0
Constraints: ¢ = —2v, a>A/, = 0

Field Equations:

- r"'{f A : .
h! +3—h!, =0

{I LLE




:1}:_;.. — h‘;'.if’/‘ — 2 ”#;ﬂ; —
hf = 0" }?.Léff' =da rii!.”_, — *:_l,u — fj?. :L‘ —{
Constraints: ¢ = —2¢, a A" 0
Field Equations:
- N
h L-“.; — j—]! wy — 0

a




— (). choose longitudinal “Coulomb” gauge:

_h—l.. = .}?..{/ — ‘_.-) J.r.f}l_”_.; —|_

2 M

Constraints: ¢ = —2v, a>A’, = 0
Field Equations:

@& ~, |
f’:: +3—h),, =0
LLE a LI

it — o }?;L;,r; — | e 0" 4"1;.: = & ‘;13

0

H|r'r-"'
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If m~ = 0. choose longitudinal “Coulomb” gauge:

A = A h.. =2

L : "L

}?:L = E)M h‘;‘.;,’/ = (—)E h-;f_x — "-_-_/”_L fl)u

Constraints: ¢ = —2v, a>A/, =0

Field Equations:

!

" ) r"'{ A s

h :: +3—h),, =0
fag !r.E L

Nuv T

— f){_—l — D

SI P=Y
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{ 1) -z - 3
f — ir( f,l’ h j—_ k];f(f:i,r': = E ”{..‘T!- Bly] — _T} li}f a /
— U = n;rﬁa__' — (B — E

4D Kinetic term for 4, from EH action:

7 4 —2B s q \ 2
- / dy / d*ze 2B (8,h)
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e = h(yhy) (z); ¥(y)=e"Wh(y) B(y) =

—U" + 1 — m =

4D Kinetic term for ~,,, from EH action:

/f”f/ _33:” n|ﬂ’ = |- /r'_'f—'—'__p;:f-_-‘jﬁhéfﬁjj




Define a Wave-Function

- — o , 3
hf: . = Bly] hJ‘,‘;‘n (); ¥iy)=€e" h(y) B(y) = == log a(y)

™ U = n;rja__-' — s
4D Kinetic term for h,,, from EH action:

i, J ’ E _1:}- f i) \ . . K ] A i & —!— 4 -\.--}
S ~ /r_"fy / dize 2B(8,h)? = r|© / d xz (0, h s 3

LEy

normalizability:




Schrédinger equation for the massless spin-2:
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Schrodinger equation for the massless spin-2:

—0" +V(y)¥ =0 = (B")" — E

two independent solutions:

Y
_f.__-!f:' r _.'_!".:. | T F ' . { 74 j :'-j F l'|
LD 2 J| }j  p— '-r: = l JI . lpi R | ':_F_‘_," ] e ;— B ) / I{E,"'r t?—B '19' |
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Schrddinger equation for the massless spin-2:

9 L V(¥ =0 — (B"Y* — E

two independent solutions:

| gl Wi | . ; :JI J J f
'*If:' : I' Yy | — € . - '*];IIR"" F,.f) — —B(y / {_{y_r f:':'EB' y')
JO

In an asymptotically AdSs spacetime, B(y) ~ % logy asy ~ O




Schrédinger equation for the massless spin-2:

U L V()T =0 — (B — E

two independent solutions:
UV () = e~ B TIR () — e~ B / dy 2BW)
0

In an asymptotically AdSs spacetime, B(y) ~ % logy asy ~ 0

|ir-_!l--- A —.I _,-) R i .' 2
= WUV (y) ~y2,  E(y) ~ 2



Schrédinger equation for the massless spin-2:

—0" +V(y)¥ =0 = (B")* — E

two independent solutions:
. . y S
UV oyl — e BW) lI’IH{ny — e Bl / dy’ 2B r)
0

In an asymptotically AdS5 spacetime, B(y) ~ % logyasy ~ 0O

Uv

. —3/2 IR o/2
—k Uy J}{)F\'U 3 : = : ',j' :

» . Iil'_ F g

lizable, ¥VV (y) is not.

(Notice: both are normalizable in RS, where y > 1/A)
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1h|
IR, - —B(vy) R 2B(y")
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the dual language, on the infrared dynamics of the model.
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We have one candidate Zero-Mode, normalizable around y = 0:

. Y I
IDIH(I.}] = t_:—B[_y_] / t'lf__,.ff E__"'B.y )
0

What happens at large y? er it 1s normalizable, or it 1s not! The
answer depends on what B (y) does away trom the boundarv Oor in
the dual language, on the infrared dynamics of the model.

Two distinct cases:

y range extends to +oo = ¥jp — oo as y — oq,

spacetime ends at y = yg (boundary or singularity)



We have one candidate Zero-Mode:

Y )
II‘,-L'H{'MJ _ E:—Bi_y} / *’-"[,"_'Jf E:EB:U )
0

example with a singularity:
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We have one candidate Zero-Mode:

T f \ ?y i F !
lpiﬁ){“ _ E:—B._yj / r:{yf E,:’B.y )
Jo
example with a singularity:
B(y) ~ —alog(yo — y) a(y) ~ (yo —y)“*/~ Y ~ Yo

a > 0 from positivity constraint
close to yg:

: o —2a+1
Vg~ (yo —vy)® (const + (yo — y) )

1 i
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if there 1s a boundary at y = yjy:

= W E(y) is obviously normalizable

need to impose boundary conditions that leave the zero-modein
the spectrum

there might be vetor and scalar zero modes as well (more about
those later)

IR is reached suddenly: boundary location is independent of
UV data.

Instead, singularity is a consequence of the dynamics: location yg
where space-time ends 1s where the Dg(y) — oo, ‘WhJCh 1S
determined by the dynamics (Einstein’s Equations) and by “initial
conditions” in the UV.
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Also with the singularity, we still need boundary conditic

— 9" + (B? — B") ¥ = m?¥

close to y ~ yp:

= r_“r‘j — €} :
B ~ —alog(yo — v), U 4 - T i ]
(Yo —Y)°

the two independent solutions behave asymptotically as

L% & f_-.i_

U ~ ci(yo —y)* + ca(yo —y)'

For 0 < a < 3/2 they are both normalizable, = spectral problem
not fully determined (a solution exists with any m.°).

= still need for b.c: fix ratio ¢; /¢2. For a special value rq of this ratio

zero mode exists in the spectrum.
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Concrete Example:
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(W]

L

B(y) = = logky —alog(1 —y/yo).

b |

Lo |

o (1 —vy/yo)3® 5 |
s I — — (dy” + nudx

(ky)?

0 < a<
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Concrete Example:

e

b |

; _ 4.

o (L—y/yo)3™ /., o -

”’:1 e — o ( (1 E}F == I;Il'u:_ij g‘.llr,_]_*
(BYy)~ S '

Normalizable zero-mode:

; \ x X f5) /
\ \Y) = Yol fff}}’{} ) y “F Y/yo)

0 < a <
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Concrete Example:

harhead

B(y) =

St

I

2 (1—vy/vo

logky — alog(1l —y/yo), 0

Lo

T

F

(ky)?

Normalizable zero-mode:

¥ (y) = yo(kyo)™*F(y/yo)

2 R
(dy* + nupdxtd
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e <

B
ol

)

A
IO
)




what boundary conditions at the singularity?




Concrete Example:

_ 3 _ —
Bly) = 31 ogky —alog(l —y/yo), O<a<3d/

(] 1=

5 (1 —y/yo)
(ky)?

Normalizable zero-mode:

-3 N O
(dy* + nupdx*dx")

o

; z}=
V(y) = yo(k :;m & of y/yo) F(z)= —— / dz’ 7 =
== g (1 — =z")%
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- . (1—2)* [? 2
V(y) = yolk ;_'.j+-j_.]'3-" 2 y/yo) F(z)= : .,._ﬂ,J / dz -
- 0 _




what boundary conditions at the singularity?

2 /¢ . —=1" 23
¥(y) = yol A"j_’.j{j}]s" 2B y/yo) F(z)=-—= ﬂ,J / dz - —
i 0 _ '.

Asymptotic behavior:

F(z) ~




what boundary conditions at the singularity?

¥ Pz 3

% Q /9 : { 1 — :] .’.Ifr
¥(y) = yo(kyo)**F(y/w) F(z) = —= / 42 T2
A 0 _ v

Asymptotic behavior:

F(z) ~




what boundary conditions at the singularity?

Y (—=z) 2
V(y) =yolkyo)” “F(y/yo) F(z)= 37 /ﬂ dz 11— )2’
Asymptotic behavior:
: zZ 5/2 > ~ U
F(z) ~ :
ci(ll—2z)"4+co(l —2z)7 % z~1

with:



what boundary conditions at the singularity?

3 /- . (1—2)* [° 23
1 i’.."] = Yo Atju)g EF[ Y / Yo ] F(z ] == = j) / I'_"[-:f {1 =
. 0 ! =

Asymptotic behavior:

with:

-
)
C1 ?l—fk])—ftj_—gujrw

= this 1s the boundary conditions we need to impose on the fluctua-

tions to keep zero-mode is in the spectrum
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perturbative treatment around rqg b.c.)
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Boundary conditions are tuned, but stable:

for ¢y /eo = 1y
= at most 4 d.o.f ( 1 massless spin-2, sometimes 1 massless
spin-1, NO scalars)

deform slightly: ¢1/co = rg + €

= lowest modes acquire masses m~ ~ ¢ (can be checked doing
perturbative treatment around rq b.c.)
= 6 d.o.f. ( 1 massive spin-2 , 1 scalar ()

-

) d.o.f. missing to lift m = 0 to m # 0. same argument for which

setting PF mass term = 0 in 4D i1s not considered tuning.
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Suppose SM fields live on a probe brane at y = ;. Zero-mode
action including brane s
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Suppose SM fields live on a probe brane at y = ;. Zero-mode

action including brane s
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Suppose SM fields live on a probe brane at
action including brane source

@ p)
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Suppose SM fields live on a probe brane af
action including brane source
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Unpleasant features:
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Unpleasant features:

singular IR behavior

need extra mput in the IR (boundary conditions): spectrum i1s
not purely Spemﬁed by U\« data.

Singularity mlght be resolved (e.g. in string theory), but need to
do it in a very specific way to give correct b.c.

This may be related with Witten-Weinberg theorem: “you cannot get
a composite massless spin-2 state from a Lorentz-covariant 4D field
theory.” This might indicate that the singularity should be resolved
in a Lorentz-non-invariant way.
Two other ways to evade this:
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look for light, massive spin-2 normalizable state.



Unpleasant features:

singular IR behavior

need extra input in the IR (boundary conditions): spectrum 1s
not purehr specified by UV data.

Smcrulanty mlght be resolved (e.g. in string theory), but need to
doitina- specific s to give correct b.c.
This may be related with Witten-Weinberg theorem: “you cannot get
a composite massless spin-2 state from a Lorentz-covariant 4D field
theory.” This might indicate that the singularity should be resolved
in a Lorentz-non-invariant way.
Two other ways to evade this:
look for light, massive spin-2 normalizable state.

look for light, long lived, spin-2 resonance.



We looked for IR-localized, massless 4D gravitons in warped
SD Asymptotically AdS spacet w1th a nontrn*lal scalar field
turned on.

These arise only if the 5th dimension terminates, and only if
suitable b.c. are imposed

We found cases with no other scalar or vector massless degrees
of freedom. This 1s an advantage over previous attempts.

Our analysis indicates how one can relax the requirement of an
exactly massless, strictly 4D state, to try to overcome the

problems with the singularity and/or the boundary conditions in
the IR.
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