Title: IR Free or Interacting? A Proposed Diagnostic Date: Oct 14, 2006 09:45 AM URL: http://pirsa.org/06100051 Abstract:

John's physics papers

- Susy gauge theories: 9605232, 9611197, 9802092
- branes, strings, and connections with gauge theories: 9704043, 9705068, 9709228, 9711001, 9803140, 9809067, 0012068, 0101115, 0208191
- Giant gravitons and stringy quantum Hall fluid: 0010105, 0107178
- Brane inflation: 0301138

RG flows to the IR; where do they end?

 Some asymptotically free theories flow to IR free theories. E.g. QCD with just a few light flavors, flows to IR free pions.

 Others RG flow to interacting RG fixed points, e.g. QCD with many massless flavors (just barely asymptotically free).
E.g. Banks-Zaks.

RG flows to the IR; where do they end?

 Some asymptotically free theories flow to IR free theories. E.g. QCD with just a few light flavors, flows to IR free pions.

 Others RG flow to interacting RG fixed points, e.g. QCD with many massless flavors (just barely asymptotically free).
E.g. Banks-Zaks.

Make this precise? = A longstanding goal.

Pirsa: 06100051

One tool: 't Hooft anomaly matching

If there are unbroken chiral symmetries, 't Hooft anomaly matching constrains the IR spectrum.

A non-trivial matching, with an IR free spectrum, can be viewed as some evidence that the IR free scenario is correct.

Example: N=1 susy SU(2) with Q in 4

(KI, N. Seiberg, S. Shenker, '94)

Scenario 1: IR free, with spectrum $X = Q^4$, satisfies very non-trivial 't Hooft matching. If correct, get dynamical susy breaking (by "confinement"), upon adding $W_{tree} = \lambda X$.

Scenario 2: Interacting SCFT at origin. Anomaly matching is a fluke. No DSB. $W_{tree} = \lambda X$ is irrelevant.

Which is correct? Still not known!

Known examples of highly non-trivial, but still misleading, anomaly matching (KI, John Brodie, P. Cho '98)

SO(N) with matter S in two-index symmetric tensor. Form $O_n = \text{Tr}(S^n)$, n = 1..N. These saturate the Tr R and Tr R³'t Hooft anomalies. Highly non-trivial, for all N! (Also a Z_{2N+4} discrete anomaly matching satisfied.)

Suggests the theory is IR free. But, we show that it must instead be an interacting CFT.

Example: N=1 susy SU(2) with Q in 4

(KI, N. Seiberg, S. Shenker, '94)

Scenario 1: IR free, with spectrum $X = Q^4$, satisfies very non-trivial 't Hooft matching. If correct, get dynamical susy breaking (by "confinement"), upon adding $W_{tree} = \lambda X$.

Scenario 2: Interacting SCFT at origin. Anomaly matching is a fluke. No DSB. $W_{tree} = \lambda X$ is irrelevant.

Which is correct? Still not known!

Known examples of highly non-trivial, but still misleading, anomaly matching (KI, John Brodie, P. Cho '98)

SO(N) with matter S in two-index symmetric tensor. Form $O_n = Tr(S^n)$, n = 1..N. These saturate the Tr R and Tr R³'t Hooft anomalies. Highly non-trivial, for all N! (Also a Z_{2N+4} discrete anomaly matching satisfied.)

Suggests the theory is IR free. But, we show that it must instead be an interacting CFT.

Phase structure of these theories

(KI, J. Brodie, P. Cho '98)

Another IR diagnostic: a-function

$$a_{Cardy} \sim \int_{S^4} \langle T^{\mu}_{\mu} \rangle$$

Cardy's conjecture: $a_{IR} < a_{UV}$ $a_{IR} \ge 0$

Conjectured 4d analog of 2d Zamolodchikov's thm.

If true, could rule out incorrect IR scenarios. Many non-trivial checks of the conjecture in susy theories.

Phase structure of these theories

(KI, J. Brodie, P. Cho '98)

Another IR diagnostic: a-function

$$a_{Cardy} \sim \int_{S^4} \langle T^{\mu}_{\mu} \rangle$$

Cardy's conjecture: $a_{IR} < a_{UV}$ $a_{IR} \ge 0$

Conjectured 4d analog of 2d Zamolodchikov's thm.

If true, could rule out incorrect IR scenarios. Many non-trivial checks of the conjecture in susy theories.

I make another conjecture:

"Given two plausible IR scenarios, the correct one is that with larger a_{IR} ."

Motivation: $\Delta a \equiv a_{UV} - a_{IR} \sim \text{RG}$ flow length should be minimized.

A stronger conjecture: operators can only become IR free if that leads to a larger value for a_{IR} .

The conjectures work in every known example of susy gauge theories that I have checked.

Susy theories and a-maximization

$$a_{Cardy} = \frac{3}{32}(3\text{Tr}R^3 - \text{Tr}R)$$
 Anselmi, Freedman,
Grisaru, Johansen '97

The correct R-symmetry is that which maximizes this function. Intriligator and Wecht '03

Almost proves Cardy's conjecture (for susy thys), but possibility of various IR free ops (more gen'ly, accidental symms) prevents a complete proof.

Unitarity: $\Delta(X) \ge 1$, with equality iff it's free. Chiral X: $\Delta(X) = 3R(X)/2$ so $R(X) \ge 2/3$

Effect of IR free chiral operator X on a

Anselmi, Erlich, Freedman, Johansen; Kutasov, Parnachev, Sahakyan

$$a(R) = \frac{3}{32}(3(R-1)^3 - (R-1))$$

213

In case shown here, this increases *a*. Fits with a-maximization intuition - maximizing over a bigger space of possible R symms.

Chiral operators above the unitarity bound can also become IR free

IR free operator X with large $R^{(0)}$? a(R) $R^{(0)}(X)$ $R^{(0)}(X)$ R(X)R(X)

If so, accidental symmetry reduces a. Possible?

My conjecture: No. Only X with $R^{(0)}(X) < 5/3$ can become IR free. The weaker conjecture is that the full theory is IR free only if total value for *Pirse: 06* 70051 satisfies $a_{IR}^{free} > a_{IR}^{interacting}$ *Page 1946*

Effect of IR free chiral operator X on a

Anselmi, Erlich, Freedman, Johansen; Kutasov, Parnachev, Sahakyan

$$a(R) = \frac{3}{32}(3(R-1)^3 - (R-1))$$

2/3

Replace
$$R(X)$$
:
 $R^{(0)}(X) \rightarrow 2/3$

R(X)

In case shown here, this increases *a*. Fits with a-maximization intuition - maximizing over a bigger space of possible R symms.

Chiral operators above the unitarity bound can also become IR free

IR free operator X with large $R^{(0)}$? a(R) $R^{(0)}(X)$ $R^{(0)}(X)$ R(X)R(X)

If so, accidental symmetry reduces a. Possible?

My conjecture: No. Only X with $R^{(0)}(X) < 5/3$ can become IR free. The weaker conjecture is that the full theory is IR free only if total value for PITSA: 06 TODD51 Satisfies $a_{IR}^{free} > a_{IR}^{interacting}$ Page 22/46

Chiral operators above the unitarity bound can also become IR free

If so, accidental symmetry reduces a. Possible?

My conjecture: No. Only X with $R^{(0)}(X) < 5/3$ can become IR free. The weaker conjecture is that the full theory is IR free only if total value for PITSE: 06 70051 Satisfies $a_{IR}^{free} > a_{IR}^{interacting}$ Page 2446

Example SQCD

$$\begin{split} \mathsf{U}(1)_{\mathsf{R}} \text{ determined to be: } & R(Q) = (N_f - N_c)/N_f \\ R^{(0)}(M) &= 2(N_f - N_c)/N_f & \qquad \\ & \mathsf{Unitarity: } \mathsf{M=IR free} \\ & \mathsf{if} \quad N_f \leq 3N_c/2 \\ R^{(0)}(B) &= N_c(N_f - N_c)/N_f & \qquad \\ & \mathsf{Is } \mathsf{B IR free or} \\ & & \mathsf{interacting?} \end{split}$$

 $N_f = N_c + 1$ Seiberg: "both M and B are free."

Consistent with my conjectured diagnostic:

 $a_{IR}^{free} > a_{IR}^{interacting}$

 $R^{(0)}(B) < 5/3$

Chiral operators above the unitarity bound can also become IR free

Example SQCD

$$\begin{split} \mathsf{U}(1)_{\mathsf{R}} \text{ determined to be: } & R(Q) = (N_f - N_c)/N_f \\ R^{(0)}(M) &= 2(N_f - N_c)/N_f & \qquad \\ & \mathsf{Unitarity: } \mathsf{M=IR free} \\ & \mathsf{if} \quad N_f \leq 3N_c/2 \\ R^{(0)}(B) &= N_c(N_f - N_c)/N_f & \qquad \\ & \mathsf{Is } \mathsf{B IR free or} \\ & & \mathsf{interacting?} \end{split}$$

 $N_f = N_c + 1$ Seiberg: "both M and B are free."

Consistent with my conjectured diagnostic:

 $a_{IR}^{free} > a_{IR}^{interacting}$

 $R^{(0)}(B) < 5/3$

Chiral operators above the unitarity bound can also become IR free

If so, accidental symmetry reduces a. Possible?

My conjecture: No. Only X with $R^{(0)}(X) < 5/3$ can become IR free. The weaker conjecture is that the full theory is IR free only if total value for *Pirse: 06* 70051 satisfies $a_{IR}^{free} > a_{IR}^{interacting}$ *Page 29/6*

Example SQCD

$$\begin{split} \mathsf{U}(1)_{\mathsf{R}} \text{ determined to be: } & R(Q) = (N_f - N_c)/N_f \\ R^{(0)}(M) &= 2(N_f - N_c)/N_f & \qquad \\ & \mathsf{Unitarity: } \mathsf{M=IR free} \\ & \mathsf{if} \quad N_f \leq 3N_c/2 \\ R^{(0)}(B) &= N_c(N_f - N_c)/N_f & \qquad \\ & \mathsf{Is } \mathsf{B IR free or} \\ & & \mathsf{interacting?} \end{split}$$

 $N_f = N_c + 1$ Seiberg: "both M and B are free."

Consistent with my conjectured diagnostic:

 $a_{IR}^{free} > a_{IR}^{interacting}$

 $R^{(0)}(B) < 5/3$

Chiral operators above the unitarity bound can also become IR free

Example SQCD

$$\begin{split} \mathsf{U}(1)_{\mathsf{R}} \text{ determined to be: } & R(Q) = (N_f - N_c)/N_f \\ R^{(0)}(M) &= 2(N_f - N_c)/N_f & \qquad \\ & \mathsf{Unitarity: } \mathsf{M=IR free} \\ & \mathsf{if} \quad N_f \leq 3N_c/2 \\ R^{(0)}(B) &= N_c(N_f - N_c)/N_f & \qquad \\ & \mathsf{Is } \mathsf{B IR free or} \\ & & \mathsf{interacting?} \end{split}$$

 $N_f = N_c + 1$ Seiberg: "both M and B are free."

Consistent with my conjectured diagnostic:

 $a_{IR}^{free} > a_{IR}^{interacting}$

 $R^{(0)}(B) < 5/3$

SQCD, continued

 $N_f \leq 3N_c/2$

Seiberg: "IR free theory of M, and $SU(N_f - N_c)$ dual gauge fields and quarks q."

Compatible with my conjectured diagnostic. IR free scenario preferred over a hypothetical interacting one: $a_{IR}^{free} > a_{IR}^{interacting}$

Follows from $R^{(0)}(q) = N_c/N_f < 5/3$

If so, accidental symmetry reduces a. Possible?

My conjecture: No. Only X with $R^{(0)}(X) < 5/3$ can become IR free. The weaker conjecture is that the full theory is IR free only if total value for PHISE: 06 00051 Satisfies $a_{IR}^{free} > a_{IR}^{interacting}$ Page 3446 SQCD, continued

 $N_f \leq 3N_c/2$

Seiberg: "IR free theory of M, and $SU(N_f - N_c)$ dual gauge fields and quarks q."

Compatible with my conjectured diagnostic. IR free scenario preferred over a hypothetical interacting one: $a_{IR}^{free} > a_{IR}^{interacting}$

Follows from $R^{(0)}(q) = N_c/N_f < 5/3$

IR free operator X with large $R^{(0)}$? a(R) $R^{(0)}(X)$ $R^{(0)}(X)$ R(X)R(X)

If so, accidental symmetry reduces a. Possible?

My conjecture: No. Only X with $R^{(0)}(X) < 5/3$ can become IR free. The weaker conjecture is that the full theory is IR free only if total value for *Pirse: 06* 70051 satisfies $a_{IR}^{free} > a_{IR}^{interacting}$ *Page 3646*

Chiral operators above the unitarity bound can also become IR free

IR free operator X with large $R^{(0)}$? a(R) ? $R^{(0)}(X)$ $R^{(0)}(X)$ R(X) R(X)

If so, accidental symmetry reduces a. Possible?

My conjecture: No. Only X with $R^{(0)}(X) < 5/3$ can become IR free. The weaker conjecture is that the full theory is IR free only if total value for PITSE: 06 70051 Satisfies $a_{IR}^{free} > a_{IR}^{interacting}$ Page 38/6

Example SQCD

$$\begin{split} \mathsf{U}(1)_{\mathsf{R}} \text{ determined to be: } & R(Q) = (N_f - N_c)/N_f \\ R^{(0)}(M) &= 2(N_f - N_c)/N_f & \qquad \\ & \mathsf{Unitarity: } \mathsf{M=IR free} \\ & \mathsf{if} \quad N_f \leq 3N_c/2 \\ R^{(0)}(B) &= N_c(N_f - N_c)/N_f & \qquad \\ & \mathsf{Is } \mathsf{B IR free or} \\ & & \mathsf{interacting?} \end{split}$$

 $N_f = N_c + 1$ Seiberg: "both M and B are free."

Consistent with my conjectured diagnostic:

 $a_{IR}^{free} > a_{IR}^{interacting}$

 $R^{(0)}(B) < 5/3$

SQCD, continued

 $N_f \leq 3N_c/2$

Seiberg: "IR free theory of M, and $SU(N_f - N_c)$ dual gauge fields and quarks q."

Compatible with my conjectured diagnostic. IR free scenario preferred over a hypothetical interacting one: $a_{IR}^{free} > a_{IR}^{interacting}$

Follows from $R^{(0)}(q) = N_c/N_f < 5/3$

Check diagnostic in other IR free cases

Many examples of theories have been argued to be IR free. The diagnostic checks if all have

$$a_{IR}^{free} > a_{IR}^{interacting}$$

The stronger conjecture is that all IR free ops X have $R^{(0)}(X) < 5/3$

This is indeed satisfied, for every example that I have checked.

SQCD, continued

 $N_f \leq 3N_c/2$

Seiberg: "IR free theory of M, and $SU(N_f - N_c)$ dual gauge fields and quarks q."

Compatible with my conjectured diagnostic. IR free scenario preferred over a hypothetical interacting one: $a_{IR}^{free} > a_{IR}^{interacting}$

Follows from $R^{(0)}(q) = N_c/N_f < 5/3$

Check diagnostic in other IR free cases

Many examples of theories have been argued to be IR free. The diagnostic checks if all have

$$a_{IR}^{free} > a_{IR}^{interacting}$$

The stronger conjecture is that all IR free ops X have $R^{(0)}(X) < 5/3$

This is indeed satisfied, for every example that I have checked.

Also check known non-free examples

The conjectured diagnostic again works in every known case that I have checked. E.g. examples of Brodie, Cho, KI: $R(\text{Tr}S^n) = 4n/(N+2)$ some exceed 5/3, so diagnostic says they're not all IR free. And for all N find:

$$a_{IR}^{interacting} > a_{IR}^{free}$$

Diagnostic correctly favors interacting over IR free scenario. This is the correct answer.

Back to SU(2) with Q in the 4 R(Q) = 3/5 so $R^{(0)}(X = Q^4) = 12/5$

Find $a_{IR}^{interacting} > a_{IR}^{free}$ since R(X)>5/3.

So, applied to this example, our conjectured diagnostic suggests that the correct IR phase is interacting (and the 't Hooft matching was a misleading fluke). If so, the theory does not yield DSB after all (unfortunately). Still, not a direct argument, so the jury is still out on this Pirsa: 061000 theory...

Conclude

- A speculative diagnostic for the IR phase: a plausible IR free phase is favored over an interacting phase if that has the larger conformal anomaly a. The stronger conjecture: each operator X can be IR free only if that increases a.
- Appears to work in every known (susy) example checked so far. (But doesn't give the answer we wanted, for DSB, in the SU(2) theory.)