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Motivation:

~ind a useful (experimentally testable) application of gauge theory/ string theory

correspondence
Consider ' = 4 SU(N) SYM:
. ;;;f-_”_\' < 1 (weak effective coupling) = perturbative gauge theory description
+ 5;'{-_”_\-' -.1-1 (strong effective coupling) = 1IB string theory on AdS- x S°

Gauge theory/string theory (Maldacena correspondence)
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Motivation:
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B ;;f-_”_\-' 1.1 (strong effective coupling) = 1B string theory on AdS: x S°
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B Effective description of a dynamics of a thermal system on length and time scales much

longer than any relevant microscopic scale is provided by hydrodynamics

B microscopic system can be strongly coupled: in this case its hydrodynamic description (if
valid) is characterized by a few “phenomenological parameters”

In this talk we discuss hydrodynamic properties of strongly coupled hot gauge theory plasma
gauge/string correspondence

hydrodynamics of metric fluctuations in IIB SUGRA black hole background

f’?

B The latter map would allow to compute "‘phenomenological parameters” of the
hydrodynamics from first principles
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Qutline of the talk:

e Consistencies of hydrodynamic description (gauge theory perspective)
e Consistencies of hydrodynamic description (SUGRA perspective)
e Applications A

B renormalization of cascading gauge theories

B dynamical vsi_t thermodynamic instabilities of the horizon geometries

® beyond SUGRA: o' comrections in Fs backgrounds of string theory
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As with any duality information flows in both directions:

A: gauge theory — string theory
B: string theory = gauge theory
e A What hydrodynamics can teach us about string theory?
e B What are the lessons for the transport properties of hot gauge theory plasma from

string theory?
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Qutline of the talk:

e Consistencies of hydrodynamic description (gauge theory perspective)
e Consistencies of hydrodynamic description (SUGRA perspective)
e Applications A

B renormalization of cascading gauge theories

B dynamical vs. thermodynamic instabilities of the horizon geometries

® beyond SUGRA: o’ comrections in Fs backgrounds of string theory
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e Applications B
small shear viscosity of N\~ = 4 plasma and why this could by of relevance to RHIC physics
bulk viscosity of “realistic plasma”

Jet quenching in strongly coupled plasma

Universality of shear viscosity with chemical potential

Conclusions. future directions. open problems

M

w0
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Hydrodynamics (gauge theory perspective)

hydro mode computation produces

shear (sh.1) < 1,,., >gr.a +Kubo formula n

shear (sh.2) < Ty. .. > +pole D=7
T

sound (sw.1) < T <l Vs

sound (sw.2) < To0.00 > g +pole .. I

B (sh.1) and (sh.2) produces 77 — must be consistent

B (sw.1) and (sw.2) produces v, — must be consistent, also

|!c
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Hydrodynamics (gauge theory perspective)

hydro mode computation produces

shear (sh.1) < 71,,., >gr.a +Kubo formula n

shear (Sh2) < Ir:..r: ~R “P{-']‘P Y= %
¥,

sound (sw.1) & Top 2. T > Vs

sound (sw.2) < Too.00 > g +pole -

B (sh.1) and (sh.2) produces 1) — must be consistent

® (sw.1) and (sw.2) produces v, — must be consistent, also

'JC
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Hydrodynamics (gauge theory perspective)

hydro mode computation produces
shear (sh.1) < TWJSJ >nr a4 +Kubo formula n
shear (sh.2) < T,.. .. >r +pole D=-
sound (sw.1) < Tap > < Ty > Us
sound (sw.2) < To0.00 > g +pole Ve, I

B (sh.1) and (sh.2) produces 77 — must be consistent

B (sw.1) and (sw.2) produces v, — must be consistent, also
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Hydrodynamics of supergravity fuctuations

T =0
gauge theory string theory
SU(N)SYM <= N-units of 5-form flux
”‘i’._.“, = f.{‘
B we study the theory in the 't Hooft (planar limit)) N — ~c, ;;f-_” — U with I;;f-_” kept
fixed

®» SUGRAisvalid N g, —

H

+~ -Corrections g s-corrections

Y M
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Hydrodynamics of supergravity fuctuations

gauge theory string theory
SU(N)SYM

N-units of 5-form flux

H

]_l

9y at Js

B we study the theory in the 't Hooft (planar limit), N — ~c, ;;'f-_-”r — ) with ﬁ.‘;;f-_” kept
fixed

®» SUGRAisvalid N g, —

+« -Corrections

']'[

- g, -cfrrectinna

Y M
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gauge theory at temperature < black brane in AdSs x S°
{ at Hawking temperature Ty = T
B Both finite and I = () gauge/gravity correspondence can be extended to non-conformal

gauge theories (by turning on fluxes) and to quiver gauge theories (by starting with

branes on conical singularities)

We would end up computing correlation functions of gauge theory operators on SUGRA side

i“?
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e We will be interested in correlation functions of the stress-energy tensor 1,,, = so the
relevant SUGRA mode is the 5D mhetric fluctuations f‘i;;w,

®» Complication: in cases with reduced SUSY and broken conformal invariance 0¢,,,,
fluctuations mix with "matter” fluctuations

B one has to worry about the issue of gauge (reparametrization) invarnance —not all

fluctuations are physical

e Suppose that Z represents gauge invariant fluctuation —analog of Bardeen potentials in
cosmology —for a retarded correlation function

® 7 is an incoming wave at the horizon
B near the boundary

Z=Ar2-(1+4---) + Br 2+ 1+4--.)

non-normalizable mode normalzable mode
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It is straightforward to evaluate using the general prescription above [P Kovtun A _Starinets,
hep-th/0506 184+other people]

B
< 00 >p ~ y + contact terms
so to extract the poles of a 2-point correlation function one has to find the spectrum of black
brane quasinormal frequencies
Definition: Z is a quasinormal mode if it is:
(1) an incoming wave at the hornzon;

(n) satisfy a Dinichlet condition at the boundary

Some important points:

|

B the poles of the retarded correlation functions can be extracted without renormalizing the
theory: boundary counterterms (on top of the standard Gibbons-Hawking counterterm)

can modify only contact terms of correlators (which are renormalization prescription
dependent anyway)
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e We will be interested in correlation functions of the stress-energy tensor Tp,, = s0 the
relevant SUGRA mode is the 5D metric fluctuations fifh”,

®» Complication: in cases with reduced SUSY and broken conformal invariance 4¢,,,,
fluctuations mix with "matter” fluctuations

B one has to worry about the issue of gauge (reparametrization) invariance —not all

fluctuations are physical

e Suppose that Z represents gauge invariant fluctuation —analog of Bardeen potentials in
cosmology —for a retarded correlation function

®» 7 is an incoming wave at the horizon
B near the boundary

* o *
Z=.,-1J"‘_._""_[_l+---] - ,'5';_“-'+11+}

non-normalizable mode normalizable mode
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It is straightforward to evaluate using the general prescription above [P Kovtun A _Starinets,
hep-th/0506 184 +other people]

B
< OO0 3 ~ v + contact terms
so to extract the poles of a 2-point correlation function one has to find the spectrum of black
brane quasinormal frequencies
Definition: Z is a quasinormal mode if it is:
(1) an incoming wave at the honzon;

(n) satisfy a Dinichlet condition at the boundary

Some important points:

B the poles of the retarded correlation functions can be extracted without renormalizing the
theory: boundary counterterms (on top of the standard Gibbons-Hawking counterterm)

can modify only contact terms of correlators (which are renormalization prescription
dependent anyway)
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e We will be interested In correlation functions of the stress-energy tensor T“,J = so the
relevant SUGRA mode is the 5D metric fluctuations f‘iy}“,_.,

®» Complication: in cases with reduced SUSY and broken conformal invariance 0¢,,,,
fluctuations mix with "matter” fluctuations

B one has to worry about the issue of gauge (reparametrization) invariance —not all

fluctuations are physical

e Suppose that Z represents gauge invariant fluctuation —analog of Bardeen potentials in
cosmology —for a retarded correlation function

®» 7 is an incoming wave at the horizon
B near the boundary

Z=Ar2-14+---) + Bra&+14---)

non-normalizable mode normalizable mode
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e We will be interested in correlation functions of the stress-energy tensor 7,,, = so the
relevant SUGRA mode is the 5D metric fluctuations dg,,,,

® Complication: in cases with reduced SUSY and broken conformal invariance 0¢,,,,
fluctuations mix with "matter” fluctuations

B one has to worry about the issue of|gauge (reparametrization) invariance —not all

fluctuations are physical

e Suppose that Z represents gauge invariant fluctuation —analog of Bardeen potentials in
cosmology —for a retarded correlation function

® 7 is an incoming wave at the horizon
B near the boundary

™

E=Ar"—{LE--) + Br—=v1})--)

non-normalizable mode normalizable mode
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e We will be interested in correlation functions of the stress-energy tensor TH,, = so the
relevant SUGRA mode is the 5D metric fluctuations r‘i_r';w,

®» Complication: in cases with reduced SUSY and broken conformal invariance 04,
fluctuations mix with “matter” fluctuations

B one has to worry about the issue of gauge (reparametrization) invariance —not all

fluctuations are physical

e Suppose that Z represents gauge invariant fluctuation —analog of Bardeen potentials in
cosmology —for a retarded correlation function

®» 7 is an incoming wave at the horizon
B near the boundary

Z=Ar2-(1+---) + 5:""";*'{14—@--}

non-normalizable mode normalizable mode
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It is straightforward to evaluate using the general prescription above [P Kovtun A _Starinets,
hep-th/0506 184+other people]

B

< 00 >p ~ — + contact terms
™ -

so to extract the poles of a 2-point correlation function one has to find the spectrum of black
brane quasinormal frequencies
Definition: Z is a quasinormal mode if it is:
(1) an incoming wave at the honzon;

(n) satisfy a Dinchlet condition at the boundary

Some important points:

B the poles of the retarded correlation functions can be extracted without renormalizing the
theory: boundary counterterms (on top of the standard Gibbons-Hawking counterterm)
can modify only contact terms of correlators (which are renormalization prescription
dependent anyway)
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e We will be interested in correlation functions of the stress-energy tensor T“,J = s0 the
relevant SUGRA mode is the 5D metric fluctuations 'i.’hu-f

®» Complication: in cases with reduced SUSY and broken conformal invariance 0¢,,,,
fluctuations mix with “matter” fluctuations

B one has to worry about the issue of gauge (reparametrization) invarnance —not all

fluctuations are physical

e Suppose that Z represents gauge invariant fluctuation —analog of Bardeen potentials in
cosmology —{j;::r a retarded correlation function

® 7 is an incoming wave at the horizon
B near the boundary

Z=Ar2-14+---) + Bra&+(14---)

non-normalizable mode normalizable mode
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It is straightforward to evaluate using the general prescription above [P Kovtun A _Starinets,
hep-th/0506 184+other people]

B
< 00 >p ~ g + contact terms
so to extract the poles of a 2-point correlation function one has to find the spectrum of black
brane quasinormal frequencies
Definition: Z is a quasinormal mode if it is:
(1) an iIncoming wave at the hornzon;

(n) satisfy a Dirichlet condition at the boundary

Some important points:

B the poles of the retarded correlation functions can be extracted without renormalizing the
theory: boundary counterterms (on top of the standard Gibbons-Hawking counterterm)

can modify only contact terms of correlators (which are renormalization prescription
dependent anyway)
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B Recall that for the sound wave mode v, can be computed from
(sw.1) af = % [1-point oy A ] == needs renormalization

(sw.2) From the sound pole of < TooTho > == using quasinormal mode

approach without holographic renormalization

Consistency of (sw.1) and (sw.2) provides a highly nontrivial check on holographic
renormalization of the theory

B for the shear mode certain correlation functions do not have a pole (because they do not
couple to ehergy or momentum fluctuations) < corresponding (=transverse) metric

fluctuations riy“ ,, do not couple to SUGRA matter and their dynamics is that of the
minimally coupled scalar in black brane geometry

1

i

(sh.1) n=lim,_os— [G'-*‘ (w.0) — GB(w.0 }]

Sound wave mode has a pole, couples to energy and momentum fluctuations =
corresponding graviton fluctuations do  couple to SUGRA matter

: 4 n | 3£ 2
irsa; 06100048 (5‘”2} Gt = Ul — %:}:% 1 -+ '1":"(1' }
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Suppose we study conformal theory (\' = 4)
Conformal invariance of .\ = 4 is not broken by finite 't Hooft coupling

L ¢ = 0 even including &’ corrections

—p .{*__‘ -

but dispersion relation (sw.2)

T

is sensitive to o’ corrections involving 5-form flux (5d SUGRA “matter”)l

Consistency of (sh.1) and (sw.2) provides a consistency check on o' structure of

corrections in |IB SUGRA with 5-form flux

Applications A

Page 37/59

e Check on holographic renormalization of cascading gauge theories
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B Recall that for the sound wave mode v, can be computed from
(sw.1) af = % [1-point < X > ] == needs renormalization

(sw.2) From the sound pole of < TooToo > == using quasinormal mode

approach without holographic renormalization

Consistency of (sw.1) and (sw.2) provides a highly nontrivial check on holographic
renormalization of the theory

B for the shear mode certain correlation functions do not have a pole (because they do not
couple to ehergy or momentum fluctuations) < corresponding (=transverse) metric

fluctuations ,i”“ ,, do not couple to SUGRA matter and their dynamics is that of the
minimally coupled scalar in black brane geometry

1

i,

(sh.1) o liﬂl_._-_.l_l + |:C;rl | &, U) — (;'R{ﬁ.- ) I:|

Sound wave mode has a pole, couples to energy and momentum fluctuations =

corresponding graviton fluctuations do_ couple to SUGRA matter

. . & N | 3¢ 2
irsa: 06100048 (sw.2) W = VUgd — “é‘j“:r"‘: 14+ '1':;‘? } Page 38/59
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Suppose we study conformal theory (\" = 4)
Conformal invariance of .\ = 4 is not broken by finite 't Hooft coupling
= Uy, = #_1 ¢ = () even including &’ corrections

Vo

but dispersion relation (sw.2)

i1

is sensitive to o’ corrections involving 5-form flux (5d SUGRA “matter”)!

Consistency of (sh.1) and (sw.2) provides a consistency check on o' structure of
corrections in 1IB SUGRA with 5-form flux

Applications A

e Check on holographic renormalization of cascading gauge theories
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B Recall that for the sound wave mode v, can be computed from
(sw.1) af = % [1-point B 3 ] == needs renormalization

(sw.2) From the sound pole of < TooTho > = using quasinormal mode

approach without holographic renormalization

Consistency of (sw.1) and (sw.2) provides a highly nontrivial check on holographic
renormalization of the theory

B for the shear mode certain correlation functions do not have a pole (because they do not
couple to[energy or momentum fluctuations) < corresponding (=transverse) metric

fluctuations riy“ ,, do not couple to SUGRA matter and their dynamics is that of the
minimally coupled scalar in black brane geometry

-*‘i‘

(sh.1) n=lim,_ps— [G-*‘ (w.0) — GB(w.0 }]

Sound wave mode has a pole, couples to energy and momentum fluctuations =
corresponding graviton fluctuations do  couple to SUGRA matter

= L d 3 2
irsa: 06100048 (5‘”2} W = Ug( — T{Z'ETL: 11 — -1-:-(1' }
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Suppose we study conformal theory (\' = 4)
Conformal invariance of \\" = 4 is not broken by finite 't Hooft coupling
e — % ¢ = () even including &’ corrections

Vo

but dispersion relation (sw.2)

s sensitive to o corrections involving 5-form flux (5d SUGRA “matter”)|

Consiﬁtenfy of (sh.1) and (sw.2) provides a consistency check on &’ structure of
corrections in 1IB SUGRA with 5-form flux

Applications A

e Check on holographic renormalization of cascading gauge theories
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® Consider \" = 1 SUSY quiver gauge theory SU(N) x SU(N + M) with two
bifundamentals and two anti-bifundamentals + certain quartic superpotential —this
theory is known as KS cascading gauge theory

5. I
N =N(E) ~ 2M*In — E> A

i A’
where A is the strong coupling scale of the theory
® [f we define cascading theory at some scale u with g'f-‘.l (N({p) < 1, inthe UV we
always encounter g;f, A P\" > 1 = it is not possible to renormalize the theory

conventionally and one unavoidably has to use holographic renormalization

® Holographic renormalization of this theory was done in hep-th/0506002,

O.Aharony,A.Yarom AB. Specifically, we computed < 7,,,, > at finite temperature and
extracted

1 2

= : T
3 9ln T

T P> .-Hi.

Above result can be precisely reproduced from the sound wave dispersion relation (which can
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B Consider \' = 1 SUSY quiver gauge theory SU(N) x SU(N + M) with two
bifundamentals and two anti-bifundamentals + certain quartic superpotential —this
theory is known as KS cascading gauge theory

) _ 9, B
N=N(E) ~ 2M*In T E> A
where A is the strong coupling scale of the theory

® [f we define cascading theory at some scale u with 5’%'.‘1{*\" (o) < 1, inthe UV we
always encounter glf- A I_Y > 1 => it is not possible to renormalize the theory

conventionally and one unavoidably has to use holographic renormalization

B Holographic renormalization of this theory was done in hep-th/0506002,
O.Aharony,A.Yarom AB. Specifically, we computed < 7,,,, > at finite temperature and

extracted
1 2

Above result can be precisely reproduced from the sound wave dispersion relation (thjachM%gan
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e Gubser-Mitra conjecture

Gravitational backgrounds with translationary invariant horizon develop an instability precisely
when the specific heat of a black brane geometry is negative

TraTsiaEte 1o gauges theory via Madscera cormespandence

Finite temperature gauge theories with a negative specific heat must have a dynamical
instability

T

trivial to identify such an instability:

B Consider a sound wave mode in such gauge theory plasma

. D -
q- - oP

W q) = U O =1. =
\9) = Vg + (T) Vs e

Page 45/59
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now, at zero chemical potential, f = — P

(HP) B nf‘) e r_(’f_-u-)
ar). \aF). - T "R L

S0

) Fjp ( % v s

1" -~ ——

e Oe B (&
¥ oT v ©
— A | —— RS IS Imaginary

B sound wave amplitude grows (dynamical instability)
TJarsdte CIcK IO raviy

B sound wave quasinormal mode is unstable

Example:
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Consider \" = 1 SYM from NS5 branes wrapping S~ of the resolved conifold —
Maldacena-Nunez model

» from thermodynamics of MN black branes

T - T
=2 —-—-1] . as — -
(TH ) b <TH 1) 1

® b

fl-

whereét‘:?e regime (% — 1) < 1 corresponds to the size of the resolved conifold
S? . (NS5 branes are almost flat); 1 g i1s a Hagedorn temperature of flat NS5 branes

T 50 —pm—
v/ #0f branes

Identical r-’ can be extracted from the pole of the appropnate correlation functions of the
stress energy tensor. or equivalently the dispersion relation of the sound quasinormal mode

e o’ corrections in IIB SUGRA

® |n hep-th/9808126 GKT constructed o’ corrected nonextremal 3-brane geometry based
on the following type IIB corrected SUGRA action:
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now, at zero chemical potential, f = — P

S0

d

OP
oT

),

Of
—t —_— f = — 5. ;'.i.l:"“_]
T )
- (OP
» OP  \3T)v
f & — — —
= £y e 3
(e (T)l C.
IS imaginary

B sound wave amplitude grows (dynamical instability)

L rarsate back b0 oraviy

B sound wave quasinormal mode is unstable

Example:
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Consider \" = 1 SYM from NS5 branes wrapping S? of the resolved conifold —
Maldacena-Nunez model

» from thermodynamics of MN black branes

» /3 . T
- 4Y.. s — il
v (TH ) as (TH 1) 1

where the regime (% = ) < 1 corresponds to the size of the resolved conifold
S? . (NS5 branes are almost flat); 1z is a Hagedorn temperature of flat NS5 branes

T x %
- / #0f branes

ldentical rf can be extracted from the pole of the appropnate correlation functions of the
stress enerqy tensor, or equivalently the dispersion relation of the sound quasinormal mode

e o’ corrections in IIB SUGRA

» |n hep-th/9808126 GKT constructed o’ corrected nonextremal 3-brane geometry based
on the following type 1IB corrected SUGRA action:
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now, at zero chemical potential, f = — P

(‘?.}P') B af ) - - - ('{h; )
oL, \BF), =~ T T \exE),

SO
m 3 o P B {:_I;h S
Y S (:'_*},)1 2 o

= e, < )= v, IS imaginary

» sound wave amplitude grows (dynamical instability)
Tarmaie Dack 10 Ofaviy

» sound wave quasinormal mode i1s unstable

Example:
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Consider A = 1 SYM from NS5 branes wrapping S~ of the resolved conifold —
Maldacena-Nunez model

» from thermodynamics of MN black branes

: T y /
. af . 3Y . = Ll
v’ (TH ) ! (TH 1) 1

where the regime (% - ) < 1 corlesponds. to the size of the resolved conifold

S2 . ~c (NS5 branes are almost flat); I’y 1s a Hagedorn temperature of flat NS5 branes

\/ #0f branes

Identical :-} can be extracted from the pole of the appropnate correlation functions of the
stress energy tensor, or equivalently the dispersion relation of the sound quasinormal mode

e o' corrections in IIB SUGRA

» |n hep-th/9808126 GKT constructed o’ corrected nonextremal 3-brane geometry based
on the following type |IB corrected SUGRA action:
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: 1 '!m. —[ 5 1.‘]_”2 1 L2 _,d-:‘-{-.,--
OIIB =77~ [ ¢ TV—g|i—5(09) —goges) oo+

-
b
—
—
1
+

167G .

where ¢ is a dilaton. ~ = %Ei 3)(a’)?, and W is constructed from the Weyl tensor C,,, .

i .. |
LTI oy F TED g
—I— E{(_ (’_ Ir',.-_!l”-i.;;_{’_ I; ( i"."i-,f

[

r _ ovhmnk o Y TSP
Ii E— ( s (— lr_uh!ﬂ_-'_‘.!( f;- ; ( {h‘-

and - - - denote other SUGRA modes and higé™r order o’ corrections

Some features of the o’ corrected geometry at 7" == ()

a =0 a #0
o =10 @ = (). depends on r
size of S° is constant size of S° depends on r
S = Anorizon S # Abezizon yse Wald formula
Ty =To Ty =To(1 + 15v)
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Notice crucial assumption: only metric receives ' corrections: 5-form does not

Claim: consistency of hydrodynamics provides a highly nontrivial check on all these features

Az above assumption

B Using Kubo formula (correlation functions without a pole) one finds, hep-th/0406264
J.Liu A Starinets AB:

lH i

1 "
E = —(]. -+ 13-']‘.*) - L-j[_"_ )

e
B Alternatively, one can study dispersion relation for the shear quasinormal mode,
hep-th/051004 1 PBenincasa AB:

w=—iDg* = —iT, 3 where I', =- (1 + lf”*~)

‘ ETFTU ‘

According to hydro consistency relation %}‘— = D ( the shear diffusion constant)

r, T 1 | 1 -
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B Consider a sound wave mode , hep-th/0510041 PBenincasa AB:

| : 1
= !“_‘i‘j" - ." [‘“-'””“__ # '\-’i,_l_]j-:'ri'_-" -[‘-q..-’lr!ffl_s _— E(l + _]_2”") —l— =

1 :
p, = 7= 1+0-v+--- ) = doesnotreceive a’ cormections
Ve

Consistency of hydro

e '1+:5.5' 2 1 '1+13'-) '1+35'
7Tn 3T s in )~ 3T 4= in

or
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Again. 1) computation is not sensitive to o' corrections in matter sector (in this case 5-form

flux) of IIB SUGRA, while sound dispersion relation (which depends on 7)) is sensitive

Applications B

e shear viscosity at RHIC

B Expenimental data at RHIC suggest very fast thermalization of the quark-gluon plasma
produced in heavy ion collisions

B (for review: hep-ph/0510232, Kovchegov) the thermalization time 7
¥ i n 1/3
S T3

small thermalization times <= small ii
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Drag force vs. jet quenching parameter

e For a massive quark m > VAT

f.ﬂ'! . ?T'-..'XTQ U
dt 2 12

Problem: in SUGRA approximation A = ~x

e Consider a light-like Wilson loop €' with large extension L~ in x~ direction and small

extension L in transverse direction. Introduce a ‘jet quenching parameter’ ¢

1 1
< W3(C) >=exp (_TIL_L; + O(L~ })

Problem: in SUGRA approximation A =

relation ?
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Shear viscosity in the presence of chemical potential

e Recently (A Starinets, D Son. - - - ) it was shown that introducing R-charge chemical
potential for NV = 4 SYM leads to

Can it be generalized?
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e (with J Liu) We constructed new gauged supergravities by gauging U'( 1) isometry of

Y P9 manifolds

B | eads to new examples of SUGRA dual to CFT plasmas with a chemical potential
B Dual (rotating/charged) black hole solution is found analytically

»
n

-

1 h
47 'I"I_?
O

» Claim: Above result implies universality for shear viscosity even with a chemical potential

B Proof: (with PBenincasa and R.Naryshkin) hep-th/0610145
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Conclusions

e fun to study non-equilibrium AdS/CFT correspondence

B |n the future:
e relation between different approaches to jet quenching in plasma

e photon and dilepton production in non-conformal QGP
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