Title: Working with John Brodie

Date: Oct 14, 2006 04:00 PM

URL: http://pirsa.org/06100044

Abstract:

Working with John Brodie

Amihay Hanany Perimeter Institute

Working with John Brodie

Amihay Hanany Perimeter Institute

Plethystic Exponential

Introduce the Plethystic Exponential

$$g(q) = \exp\left(\sum_{k=1}^{\infty} \frac{f(q^k)}{k}\right)$$

 counting BPS operators in the chiral ring of N=1 supersymmetric gauge theory

Pirsa: 06100044 Page 6/47

 I first met John in fall 1995 when he was a student at Princeton University

Pirsa: 06100044 Page 7/47

- I first met John in fall 1995 when he was a student at Princeton University
- After a short period it became clear that we share many interests in physics research and we had many fruitful discussions

Pirsa: 06100044 Page 8/47

 John was working on examples of Seiberg Duality in supersymmetric gauge theories and patterns of these in a work with Ken Intriligator and with Matt Strassler

Pirsa: 06100044 Page 9/47

- John was working on examples of Seiberg Duality in supersymmetric gauge theories and patterns of these in a work with Ken Intriligator and with Matt Strassler
- I was working on branes and making various efforts to realize supersymmetric gauge theories on branes in a hope to get some non-perturbative information

Pirsa: 06100044 Page 10/47

Pirsa: 06100044 Page 11/47

 Two important developments led us to work together

Pirsa: 06100044 Page 12/47

- Two important developments led us to work together
- The brane setup for supersymmetric gauge theories which was constructed by Witten and myself

Pirsa: 06100044 Page 13/47

- Two important developments led us to work together
- The brane setup for supersymmetric gauge theories which was constructed by Witten and myself
- The work of Elitzur, Giveon, & Kutasov on the realization of Seiberg Duality in such setups

Pirsa: 06100044 Page 14/47

 We quickly joined forces and studied various dualities which can be realized using the new techniques

Pirsa: 06100044 Page 15/47

- We quickly joined forces and studied various dualities which can be realized using the new techniques
- Our work contained many new results but soon after publication it became controversial

Pirsa: 06100044 Page 16/47

- Not due to the dualities we computed but rather due to the statement on Chiral Symmetry
- Let us see this in detail
- We will show the brane configuration for
- SQCD: SU(Nc) with Nf flavors

Pirsa: 06100044 Page 17/47

Brane Configuration SQCD

Pirsa: 06100044 Page 18/47

A new "name"

Pirsa: 06100044 Page 19/47

A new "name"

 In the first talk John gave in Princeton on this work, he termed these brane configurations as

Pirsa: 06100044 Page 20/47

A new "name"

- In the first talk John gave in Princeton on this work, he termed these brane configurations as
- Feynman Diagrams of the 90's

Pirsa: 06100044 Page 21/47

 Using the rules we derived in the work with Witten it was easy to see that this theory describes SU(Nc) with Nf fundamental flavors and W=0

Pirsa: 06100044 Page 22/47

Higgs branch N=2 theory

Higgs branch N=1 theory

Higgs branch Seiberg dual

Pirsa: 06100044 Page 25/47

This was not the controversial part

Pirsa: 06100044 Page 26/47

This theory has a global symmetry

SU(Nf)xSU(Nf)

This led to a puzzle

Pirsa: 06100044 Page 27/47

Puzzle

 How can we see this chiral symmetry in the brane setup?

Pirsa: 06100044 Page 28/47

Brane Configuration SQCD

Pirsa: 06100044 Page 29/47

- Answer: Tune the NS' brane and the D6 branes on the same x6 position
- D6 splits on the NS' and have two gauge groups instead of one.
- SU(Nf) gauge group on each semi-infinite D6 brane

Pirsa: 06100044 Page 30/47

Brane Configuration SQCD

Pirsa: 06100044 Page 31/47

- Answer: Tune the NS' brane and the D6 branes on the same x6 position
- D6 splits on the NS' and have two gauge groups instead of one.
- SU(Nf) gauge group on each semi-infinite D6 brane

Pirsa: 06100044 Page 32/47

 To be clear, recall the directions of the branes

NS 012345

NS' 0123 89

D4 0123 6

D6 0123 789

$$\xrightarrow{7}$$

6d theory on D6 branes

- To put the D6 on NS' we need to tune 3 directions
- This amounts to setting a mass of a 6d vector multiplet to zero
- 456 directions are 6d Fl triplet

456 1 7

Chiral Symmetry

- The gauge symmetry on the split D6 branes becomes SU(Nf)xSU(Nf) and chiral symmetry becomes visible
- motion of D6 along 45 directions Higgses (spontaneous breaking) the D6 theory down to SU(Nf)
- gives a mass to the quarks which indeed break chiral symmetry explicitly

Pirsa: 06100044 Page 35/47

Chiral multiplets

- This was probably the most controversial statement we made - many people criticized that chiral fermions can not be localized in space
- later this statement was generalized to other dimensions less than 4 by taking T duality on any or all of 123 directions

Pirsa: 06100044 Page 37/47

Insightful and intuitive

 This work still continues to be influential as one of the first models to introduce chiral matter using branes in string theory

Pirsa: 06100044 Page 38/47

 Later Elitzur Giveon Kutasov & Sarkisian did a world sheet computation which showed that this was precisely the case

Pirsa: 06100044 Page 39/47

Duality: a product of two gauge groups

Pirsa: 06100044 Page 40/47

SU(Nc)x SU(Nc')

Pirsa: 06100044 Page 41/47

Seiberg dual

Pirsa: 06100044 Page 42/47

Fig. 7: We see the NS 5-brane configuration in the (x^4, x^8) plane. The brane configuration on the right has a superpotential $W = (F\widetilde{F})^2$. The configuration of the left is the same theory perturbed by a mass term $W = (F\widetilde{F})^2 + \mu F\widetilde{F}$. The logical of the left is are not branes.

3 gauge group factors

Pirsa: 06100044 Page 44/47

Dual of 3 gauge groups

Pirsa: 06100044 Page 45/47

