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Plan of the talk

Introduction

e Janus solution and its relation to interface CFT
e Classification of Supersymmetric Interface Super Yang-Mills theories
e N=1 Supersymmetric Janus solution in ten dimensions

e Conclusions
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Introduction

e The AAS/CFT correspondence relates string theory on a AdS space to a
CFT on the boundary of AdS.

e The best studied example relates |IB string theory on AdSs5 x S5 and
N =4 SU(N) Yang-Mills theory.

e Theduality is expected to hold in less symmetric situations, corresponding
to deformations of the original correspondence.
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Janus solution is a simple dilatonic deformation of the AdS5 x S5 background
of 1IB supergravity.

Named after the two faced Roman god of beginnings, endings, doors and
string dualities.
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[TCLA ) Perimeter Insiitute. Gau ies: Past. Present and Future

The Janus solution is a deformation of AdSs x S5 where the dilaton is non
constant and one parameterizes the noncompact space using AdSy slices

2.

gs —

9

f-(ﬁf ) (f!j_!z N D ”fﬁ_zjlds_l) —|— { ‘q:ﬁ,"-ﬁ
The five form and dilaton are given by
Fs =2f(u ']%r_'fp \Wads, T 2wes, © = o)

The undeformed AdSs is gwen by f(i) = 1/cos?(u) and & = const. The
coordinate p ranges from p € [—7w/2.7/2].

The equation of motion can be reduced to

Cp
id /)

“ll‘::il._J

}HIF == —lfﬂ = —lfz ? s t,j'if[_ ,U} ==
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For a nonzero ¢y the coordinate p ranges from g = [—pq. pol with

g > /2.

The dilaton @ approaches two constants values near u = g

=]
i

i
[}
[E3]

The Janus solution is 'fat’ dilatonic domain wall with a AdS; world-
volume.
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All supersymmetries are broken, since the dilatino variation is always nonzero

_ : Y S 7 VIND
SA = iPyTVB 1:‘*_ET'1I'\PCT_1J_-%',D-?

The solution is nevertheless stable against a large class of perturbations
[Freedman et al. hep-th/0312055].

Near ;1 = +ug the metric has the following asymptotic behavior in global
coordinates for AdS4

- | - . : . o 5
ds® ~ - —( cos” ,:"srf,uz — @ LA L x\f_fﬂ?j:_ )
(e I pg)? cos® A Sa
in Poincare coordinates for AdSx
2 1 2, 2 2 2 2
:f:ﬁ‘ et e — 5> 5 ( z u‘:{.i — {'H —+ .‘fr‘f‘l = = H}J‘j)
(1 F po)=z°
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In global coordinates the boundary consists of two halves of S at . = o,

joined at the pole of S35 where A\ — 7 /2.

In Poincare coordinates the spatial section of the boundary consists of two
three dimensional half planes joined by a two dimensional interface.

o

The dilaton behaves as

- - (0
lim o(u) =oL’
LE— T i) -

(1)
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Interface conformal field theory

The standard field operator mapping of AdS/CFT relates the constant part
of the dilaton ¢ ~ =z2~* with the insertion of the operator dimension A = 4
operator £/ = trF? + - - -

In Poincare coordinates the boundary corresponds to two half spaces. Since
the action of SYM theory is given by

: | S
— [ d*r — " i
. 9y A1

The dual of the Janus solution can be viewed as a theory where the YM
coupling constant makes a jump across the interface

0] :
”}__-"U[J'ﬂ_] == [’J;"i_{{]- mn r_j{:”‘r?r )
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—

where =™

is the coordinate normal to the three dimensional defect.

Xg=U

in

v X0.1.2

SYM- Syms

The position dependent gauge coupling breaks all supersymmetry, since
the supersymmetry variation of the Lagrangian is

l : ol S e,
0L = — (0. X"™ — (9:0)S")

)
g-
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Nevertheless the theory inherits many properties of the original N=4 theory,
and several checks of the correspondence have been performed [Freedman et
al. hep-th/0407073].

There are no degrees of freedom localized at the interface ™ = 0. The
presence of the interface breaks the conformal SO(4.2) symmetry down to
SO(3.2) (just as in the case of a boundary CFT). The SU(4) R-symmetry
is unbroken by the interface CFT.

¥
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Classification of supersymmetric Interface CFTs

The original Janus solution breaks all supersymmetry. In Freedman et
al. hep-th/0407073, it was shown that on the field theory side some
supersymmetry can be restored by adding 'Interface counterterms’.

The theory was written in terms of N = 1 chiral and vector superfields. The
interface terms break the R-symmetry to SU(3) and there is one unbroken
supersymmetry subject to the spinor projection

(1+iy*y")e = 0

The theory exhibits N = 1 interface susy, meaning 2 real unbroken
supercharges.

— Typeset by Foil TEX — 11
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e |s the solution of Freedman et al. the only solution ?

e Can interface counterterms be added to get theories with more

supersymmetry ?

e Can one classify all interface theories with supersymmetry 7
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. 1 < .
£a — _4.2“‘{?”5‘”} — —tr(D*¢'Dyo’) + —tr([o°, ¢7][¢", ¢7])

g 2g° 4g-

_ : ~ |
— Etl'(;_-*_PDP‘,_.] = Etl‘(D“f_‘“-”f_‘)
-4 2q
L (Co e, 9]+ v 16, v)
2g2 = W erle, v +vilip)le.v]
Where p*. i = 1.---.6 are the SU(4) Clebsch-Gordan -coefficients

(SO(6)gamma matrices). The scalars ¢* and spinors ' transform as a

6 and 4 of the SU(4) R-symmetry respectively. The theory has a NV =4
superconfomal invariance.
— Typeset by Foil TEX — 13

Page 16/57



The supersymmetry transformations are given by

r;U"—lfJ e ";"—H,'If.r."*- —_— .r‘I{?“'.“f_q

:_‘In(_‘}z — F‘-.,__‘EL-.’];_'.*E W 4 H_l:ﬂ ‘!'.'JE ].|=-L_.,=
- 1 v APIS - TR AR T x 1 11 o3
b = Fu7(+(Dpd’)¥B(p") ¢ — o, ¢']p7¢

The original interface theory is given by a space dependent coupling constant
gy m(x™), which makes a discontinuous jump at ™ = 0. The interface
counterterms are localized at +™ = 0. The interface will preserve SO(2.3).

In order to avoid technical complications we introduce a smooth function
gy m(x™). This breaks the conformal symmetry.

— Typeset by Foil IEX — 14
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hcmmcfn:lr::&icc =
One checks for the existence of 2+1 dim Poincare supersymmetry, which in
the limit gy pr (™) — gy amr (1 + Agy mO(x™)) to superconformal symmetry

The Lagrangian is modified by terms proportional to d,gy yrand (9,gy ar)>

== "::D T ﬁfnterface

dimension 3 consistent with gauge symmetry and 2+1 dimensional Poincare
— Typeset by Foil IEX —
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where L, terface = 0 for constant gy s and contains all terms of scaling
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invariance

In the superconformal limit d,gy ~ d(x™) and the interface terms are
localized at =™ = 0.

The supersymmetry transformations are modified
0D = 5P + ’imterface‘i’

The condition of interface supersymmetry then reads that the complete
susy variation of the new Lagrangian vanishes

g — Oglo + Opkint + Ointlo + ’jintLinr —

The variation of the original action can be expressed in terms of the

— Typeset by Foil TEX — 16
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supercurrent and Noether variation of the original action.

l f & =y & i .} r"}T.{f i | g . = » = -
i Ox( )" + 2 3 X7 '}G‘{-'mt o ”’érztiﬁi:r +— Ointlint = U
qg- Ja

up to total derivatives
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The complete set of possible interface operators is given by

K |.. .;__)'__:_;_}' |- = ,r' . |
LL‘ == _‘ tlh(_lrjl ey U + —,.I'IE)‘F it .-L]“E_] b
I‘IS )
?

— 2y (ptC iRy 1 piC(pR) ") )

. [f‘;j_._;_ ) ‘e : B = . .7 - =
LD == —_); ir ( ,;_'jn’.a_:.llr :__jif__."'T ) + 2 :.Ej}r_'!-IDr::'r}- = f’:é‘jlr}? r’_'r}_ {_'}L )
=g - : ]

(0x9)°
4

™
|

23 (13 13
o = o tr(6')

]

with respect to the SU(4) R-symmetry the operators transform as

173 B 7z - 16 20/ 2 = 1 6 20
y2 : 15 29 = 15 y:10010 2z23:1081
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Oint®" = Oint Ay = 0. Oinsth = (Og)x "0’

with some arbitrary =™ dependent spinors y’

The vanishing of the variation can be decomposed by demanding that
independent field combinations like o*¢, &'Ozv, Fuut,, D,o't" and
Fri Lty )

ar . Q| T,

The SO(2,1) Poincare symmetry can be used to further decompose the
equations

for later convenience we defined

- 17 44 = 1k o S
Y2 = y;' p” Ya=—y3 (p7")
_ _%J ij — _ijk f iik\*
Z:*: -QJ’J 23:_-3 {f-*J } (1)
— Typeset by Foil TEX — 19
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The equations for unbroken susy are given by

(1) \.,:}Fg‘ TH-H:

|'j] }_3{.»“& = _'I.I{’flrl*- TE:L._* = :{jlf.f}ﬁzq-rf:k.":
< ] | o ;j'{}T“ 1 s r LJ\*_ W2 ~* 9 kv*_
[.J_] — L TP TP = __}jf‘.l'x.,__}j{f.’ <) tt‘.‘h._~ — DZa i;* ) b\_,
Uxd
—j:éjg — f.',r.l! ) *( :{L = = “_l'{ 12 S T ,.rij"tf Zik T Z9 )P —s |
{]Tr;‘ : 1_.
(4) — = —iy1( + =Y
Org -
_ .1"_1_,:_.___ ‘ : o ; .
{ ) f-.'ue = = ".Ulf-’i"-» — —-} 9 P ( — :.-}Jlg.'!'}g"
Org 4 - -
(6) X' = — (27 +22)(p?)*+y*B¢*
i — . J‘ r 27 17 A w0 r 5] 2] ]
( () | —211 —I}g o lII_’;1 T Z9 !--;_H]; Yy B —};3'1';1 T =9 Il,.rrj.;,_‘
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7 . 2 = O B(* _
—:_zljl;_r}_l v B¢ '“U—:.E‘FII;I‘]I — U

J n{

The SU(4) symmetry SYM action and covariance of the interface

Lagrangian allows to find the general solution to these complicated set
of equations.

Firstly one can gauge away Y5 and diagonalize Y3
1

}T'} == “_ }_3 = f—'IHDS ===F ”::I f
)

Zy = —tiys (1-48 2 5})
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The equations for unbroken susy are given by

|J_] x‘:-}‘é“_giﬁz
(2) }_3;J\__:—{;*{"t‘TBn.,s—,;'}';lez‘rf_"‘: -
- i fll'_._,‘__ . -
(3) 220 tmip G o dag (| ¥5(p”)
Org :
= i ik L 2 o -
___}:é-’l,‘\—lifj! I:'_'?Iiil == Liny ,ll;j \_‘_—ll;'r’rl [ ]!-'I‘_
e:'-jr_,.;_‘ D
(4) — = —iy1( + =Yo(
Irg 4
.0, o S L
()  { = f‘f};ll;.;l._“ T }.—} J,r,i“__‘ e :E}'}f"r}k“
‘r-‘i":'_‘_f - -
(6) X' = (=7 + 22 p?) B
_ | i N T - i
(7) l—r;;l—z'}g—l_||,,1 2N Y 7 B — Y3

— Typeset by Foil TEX —

Pirsa: 06100035

SEFN-_§
ST T __2 lf"_}"h

20

Page 25/57



. L T > . O Y"B(*
—z ()Y B¢ — (27 +23)(P7) =1

= d e 4

The SU(4) symmetry SYM action and covariance of the interface

Lagrangian allows to find the general solution to these complicated set
of equations.

Firstly one can gauge away Y> and diagonalize Y3
1

= : s : _ :
}"} — {}_ } i F:IEDS == 18 L f
)

T = i (I—41‘1 2 ii)
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Pirsa: 06100035 Page 26/57



Pirsa: 06100035

The equations for unbroken susy are given by

(1) ( =Yyy"B(®

(2) }_3{.»’1H = —I!,r!ffl*‘ TE;__" 4 ;'ijq.!j flz"-:f_;u.,;

D L] : - 17, zjf'.}-'-"'* l}- 17 } f BPNE 'F * >
() —P LT NP TP — R B ) 3 — D24
Org E

_J:E_FL, — I:;j! If -?F_}L‘ = = __%K ll;.i e 'I;ij 'Itf '.:f_..';;‘__‘ — '!
E’i"'._\'t j_ iz
'—L] —Eth§ T }1.‘_‘
dxq
o (-'L:"-. 3 1 s i
{ =)} J;_'.i = — I.U]_Jr';z""- —— } ) ],l.l' L — :_:'Jfr}"“-
Org - -
(6) \’ — —{ :ij - _é? _I['Juj V*~*BC*
_ 1 L G S
(7) —1Y1 —E}g — 3 M ’:iJ = 5 :éj (7 ) *y"B(* — Y3(2 s = ’:.E.j ) o7 (
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The interface supersymmetry transformations are

f”mr"—'f — 'iz'nf*_l,u = 0. ‘-imt"—‘ == {"E]Tri-f}\lf_'ll

with some arbitrary =™ dependent spinors \’

The vanishing of the variation can be decomposed by demanding that
independent field combinations like o'¢), @'Oxv, Fuut,, D,o't and
-‘__}3'. r__J-Ifz Tl
The SO(2,1) Poincare symmetry can be used to further decompose the
equations

for later convenience we defined

- 1T 34 = 1k sy K
Y2 = y5 p" Ya=—y3" (p7*)
%3 ij . _itk f ijk\*
er: -9 I“_,T Zg:—-g {_‘r)‘} } (1)
— Typesst by FoilIEX — 19
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The complete set of possible interface operators is given by

(Oxq) = -

£s — _ tl‘(‘fh ™ + —y) f_“-?‘_flu. b
g - 4

T oL 1. . R
_;Héih (a'_.'fLTIUU;lF_'T a,__|L|;JIIJII_,TJEL.r ) ])

) (D-q) | o e s

Ei — 20 tr(:;ﬁu &'61) + 229006 D, o — izF% 5[, o )
2¢3 - - :

- “-L:'"JF }I_ ] 1

o = oo tr(6')

with respect to the SU(4) R-symmetry the operators transform as

e = ¥ zs - 1. 20 za - 1. 20
y2 : 15 72 - 15 y3:10210 23:10=10
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0 '

The SU(4) symmetry SYM action and covariance of the interface

Lagrangian allows to find the general solution to these complicated set
of equations.

Firstly one can gauge away Y5 and diagonalize Y3

1

}T'J == ”_ }Tg — FI‘EDS = 6 ‘F
)

Za = —4iy (I—4f1 2 f{)

— Typeset by FoilTEX — 21
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Zg == “'&Fg + 321y € » h & i]r.
hs = g E 2
:_'El_} == _l:,_?rlz_ ,_i!it]{,__? 'f_} l|

Where /7 is an eigenvector with unit eigenvalue of Ds. The number of linearly
independent vectors 3 determines the number of unbroken supersymmetries.

The theory with N = 1 interface supersymmetry is given by choosing
a = b = ¢ = 0 and corresponds (after rescaling of fields) to the theory of
Freedman et al.

— Typeser by Foil IEX — 27
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The SU(4) symmetry SYM action and covariance of the interface

Lagrangian allows to find the general solution to these complicated set
of equations.

Firstly one can gauge away Y5 and diagonalize Y3
1

}T}:{}_ }_3:#?&_5'3:(-?5 f
)

Zy = —tiys (I-48; 2 5})
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) = iy s H
Z3 = 8Y3+ 32175 .fi

L e (-ik 4 :5;1‘]{,_);1‘ JL-]

. — —v4

= s

Where /3 is an eigenvector with unit eigenvalue of Ds. The number of linearly
independent vectors 3 determines the number of unbroken supersymmetries.

The theory with N = 1 interface supersymmetry is given by choosing
a = b = ¢ = 0 and corresponds (after rescaling of fields) to the theory of
Freedman et al.
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i s e - TR
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o J x4

The SU(4) symmetry SYM action and covariance of the interface

Lagrangian allows to find the general solution to these complicated set
of equations.

Firstly one can gauge away Y5 and diagonalize Y3

1

}T) = “ }_3 —= f—'iEDS = r-“‘q ‘I
)

T = —fi (I—Jn’q_ > 61)
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23 = S} :'-3 = = 3‘_)4"];1 € - j]_ . f{
i (giky iky gk ik
g = ey SArity 2

Where /7 is an eigenvector with unit eigenvalue of D3. The number of linearly
independent vectors 3 determines the number of unbroken supersymmetries.

The theory with N = 1 interface supersymmetry is given by choosing
a = b = ¢ = 0 and corresponds (after rescaling of fields) to the theory of
Freedman et al.
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e = = Oy ?TE,'H*
i g\EmRer _ (id  _idy( dy=UR _
—24 (P')Y"BC — (2 +22)(p')"— T

The SU(4) symmetry SYM action and covariance of the interface
Lagrangian allows to find the general solution to these complicated set
of equations.

Firstly one can gauge away Y5 and diagonalize Y3

b

— Typeset by FoilIEX — 21
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Zs = 8Y3+32y;e¥0 D5

_1] (. ik __zi:”h_ﬂf ik
-4 =+ o L J 1 J

Where /7 is an eigenvector with unit eigenvalue of Ds. The number of linearly
independent vectors 3 determines the number of unbroken supersymmetries.

The theory with N = 1 interface supersymmetry is given by choosing

a = b = ¢ = 0 and corresponds (after rescaling of fields) to the theory of
Freedman et al.
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There are theories with extended N = 4 and N = 2 interface
supersymmetry where y; = Y5 = Z> = 0 and D3 given by

(1) h=c=1 et? — 1 SU(2) x SU(2)
(II) b—c—1 @ arbitrarv SEN2) x SU(2)
(IIT) b—c£ 01 g = SO(2) x S50(2)

I

Theory (I) has N = 4 interface supersymmetry and (ll,Ill) has N
interface supersymmetry.

The theories with extended supersymmetry have a superconformal limit,
a gy ar dependent rescaling of the scalar fields eliminates the (O.gyar)?
terms.

— Typeset by Foil IEX — 23
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The SYM analysis shows that there is a ten dimensional supersymmetric
Janus solution which is dual to the supersymmetric interface theory of
Freedman et al. The approach we are pursuing is to write down the most
general ansatz consistent with the symmetries and solve the conditions for
the existence of an unbroken supersymmetry.

The solution is of Janus type to guarantee the interface CFT structure.

The symmetry of the ansatz should respect the symmetries of the interface
CFT

SO(3.2) x SU(3)
The superpotential interface counterterms have dimension A = 3 and are

— Typeset by Foil TEX — 24
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4 and N = 2 interface
supersymmetry where y; = Y5 = Z> = 0 and D3 given by

There are theories with extended N =

(1) hb=ec=1 el — 1 SU(2) x SU(2)
(II) b—c—4 f arbitrary SO(2) x SU(2)
(III) b—ec--0.1 g = 3 SO(2) x SO(2)

I

Theory (I) has N = 4 interface supersymmetry and (llIll) has N
interface supersymmetry.

The theories with extended supersymmetry have a superconformal limit,
a gy ar dependent rescaling of the scalar fields eliminates the (9.gyar)?
terms.
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The SYM analysis shows that there is a ten dimensional supersymmetric
Janus solution which is dual to the supersymmetric interface theory of
Freedman et al. The approach we are pursuing is to write down the most
general ansatz consistent with the symmetries and solve the conditions for
the existence of an unbroken supersymmetry.

The solution is of Janus type to guarantee the interface CFT structure.

The symmetry of the ansatz should respect the symmetries of the interface
CFT

SE(3. 2) x SU(3)
The superpotential interface counterterms have dimension A = 3 and are

— Typeset by Foil IEX — 24
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in the multiplet transforming as 10 & 10 of SU(4). The operator field
correspondence maps these operators to the second rank AST potential of
|IB supergravity.

The N = 1 interface conformal field theory corresponds to one unbroken
supersymmetry from the five dimensional supergravity point of view.

The SU(3) symmetry can be implemented by noting that S5 can be
constructed as a U(1) fibration over C' P

;f*—.f_;.._: — ['f._j'r = o :1]_ }2 = = JJT‘HE—PE

since CP, =SU(3)/(SU(2) xU(1)) and S5 = SU(3)/SU(2).

The metric ansatz corresponds to Janus like slicing of AdSs and a squashing

— Typeset by Foil TEX — 25
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of the five sphere

Where f;. f>. f1 all depend on i only.

The ansatz for the complex third rank AST is

s

Where a.b.c.d all depend only on pu
r.-'ﬁ = }‘1 | 1 (dF — Aq). et — fal 1 ]rf;f
and A3’= dA, is the Kaehler form on CPs.
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Weyl spinors. The supersymmetry variations of the fermions are

_ : o z P
N = a’R\j]__lfb l':‘ i ETH'\' P(T_\[_\'Pf
e/ B " NPQRSyp .
OUy = D;_l: T _L?'_ﬁi-lfl 5 _YPQRS]__ = ]__-_‘uf:
1

. NPQ NP oo
+${T_U Q(rj{pQ — 91" " Gunp)B ¢
A0

The gravitino variation implies (_ = 0.
The dilatino variation for (. implies
(e+d)(c*—d*) = fFUB'|%(f1) 2
The integrability conditions (4.0 —d.9.), of the gravitino equations imply
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of the five sphere

Where f;. f2. f1 all depend on i only.

The ansatz for the complex third rank AST is

id e*

g ae” / __112_”“_—1 ! A—lj—r"r-:} i

I|-l--l

Where a.b.c.d all depend only on pu
r:} =— _}Cll'la'!:l{tf l;'—_—l]_l_ r-'_l = f_Li;I]nfrl.f_.f
and 4> = dA, is the Kaehler form on C'Fs.
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for the C' P directions

—
b by
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WP iP_ul_'Ub_l:‘* = s M N PE
2 "
S Det— Fovona NPQRST, -

M I’ 130" (5)NPQRS

1 NPQ NP =1 3
+${r_\j Q(r]{pQ — gyt P(J_u_\'p 8
0
The gravitino variation implies (_ = 0.

The dilatino variation for (. implies

(c+d)(c —d) = ,?HB;E[.T.-L'_E

The integrability conditions (4.0 —d.0, ), of the gravitino equations imply
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for the C' P directions

-.lf‘ n...
f-z . _f-_i i I; Iy
T = \ac +— 0a)
/2 2f<B’
= -9
.-Ti.r—l — £, }[._ . ..f--l ”(!1 e HEH 'J
E - = 2pn |

The fiber component gives

f1
1 _ J4 3ac s
s —= ST L (ac — o |
f1 2§28
- 2 i )
J1J o j 779 .
}—_1: __#) i — f—j’:fj — %'-ﬁ{fﬂ‘l‘ — -JIT'H'}
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The AdS4 component gives

74 4 (E_Q)E ,
| = fa fa

It can be shown that solutions to these first order equations are also solutions
to the equations of motion.

A simple solution of this system of equation can be obtained by setting
a = 0. All functions of the solution can then be obtained from a single
function ©> satisfying

ey
T~
Il
I
P . N
-
|
.:. I"-‘K'-
"-I-. _‘.I
e | MY
p
=
el
ra
|
.
l

where p and (2 are integration constants.
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The relations for the metric functions f;. f2 and f4 are

i) — ¥
4 p~ G5 o
j—l = E " ab L
urs f_ll,{J
. I;_'J' . i
.FLE == o= .fl =
Jaw Ja

and similarly for the functions b. ¢.d of the AST.

This solution is presumably closely related the ten dimensional lift of the
supersymmetric Janus solution found in five dimensional N = 2 gauged
supergravity [Clark and Karch, :hep-th/0506265]
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The equation can be easily solved numerically The dilaton is given by
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the metric functions f4 and f;. f> are given by

e e
| L. 13
T AT e
— D .
—
5 = | -
. =3 -85 5 = =
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the functions ¢ and d of the AST are given by

> . =
o - e
\ .
e i - = _
T e - -
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The AST field does indeed correspond to a interface counterterm
localized on the defect:

For the Poincaré metric of Euclidean AdS5

Near the boundary of AdS5, where = — 0, a scalar field ®,,, of mass m
behaves as

(o 5 (o y_4—A ; %0
{I}m[ =-L) ™~ Onon—norm\L)= T Qnorm|\L)=

The metric of the Janus solution has a slightly more complicated asymptotic
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structure

3

' ]- 9 9 ) 9
.‘fi.s;.-z — e “F:_ _ ;_f“f"f — — :-f.-lrI‘U- o
}u‘ 2 = |'“I|:| o se ; H
the boundary is reached by €% = (4 = jig)?-% — 0. The AST field satisfies
l I,U' | == r‘.r_'_lf',.l,'-.]f'[ ﬂ“'j == i !.‘3 =

Which corresponds to a dimension A = 3 operator in the CFT. The non
normalizable part, gives the operator insertion

- A—4
Cnon—morm — hﬂt € ‘ f‘{i )
) COTLST _
— lim (e T po)>
e—0 £
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(1 T+ Mo )2

== lim const
pFpeg)z—0 z

Which vanishes away from the interface where = == 0. l.e at the boundary
i — =g away from the defect. There is no operator source.

At the interface = — 0 the operator source blows up, indicating a delta
function source localized at the interface.
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Conclusions
e The Janus solution is an interesting deformation of AdS5; x S5 solution
leading to a dual interface CFT

e A complete classification of supersymmetric interface CFT's was given

e A gy ar dependent rescaling of the scalar fields allows a superconformal
limit for all supersymmetric interface theories.

e The interface theory of Freedman et al is the only N = 1 (up to SU(4)
rotations).

e Interface CFTs with N =2 and N = 4 supersymmetry were found.
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