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Abstract: | will discuss various different ways of quantifying the differences between two quantum observables (POVMs). Each of these approaches
givesrise to a notion of approximately measuring one observable by means of measuring some other observable. Thiswill be illustrated in the case
of position and momentum by studying the question which POVMs on phase space can reasonably be said to represent a joint approximate
determination of these observables. A new, universally valid trade-off relation for the associated inaccuracies will be rigorously formulated. | will
sketch the proof which is an adaptation of some interesting techniques and properties of covariant phase space observables used recently by R
Werner in arelated project.

Recommended reading (optional):

guant-ph/0405184 (R Werner), quant-ph/0609185 (PB et a),
and also for further background information quant-ph/0309091 (M Hall), quant-ph/0310070 (M Ozawa), quant-ph/9803051 (DM Appleby).
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Universal joint-measurement uncertainty relation for error bars

October 18, 2006

Abstract

We formulate and prove a novel form of uncertainty relation. valid for any joint ts of position
and momenturn that satisfy a condition of finite error bars. The measurement inaccuracies, defined as
minimal lengths of confidence intervals, satisfy a trade—off relation of the form 4g .- ép = Ch, with a

positive constant C.
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1 Introduction

In his seminal paper of 1927 [?], Heisenberg formulated not one but in fact three distinct variants of uncer-
tainty relations of the general form
dg-dp~h (1)
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Abstract

We formulate and prove a novel form of uncertainty relation, valid for any joint ts of position
and momentum that satisfs a condition of finite error bars. The measurement inaccuracies, defined as
minimal lengths of confidence intervals, satisfy a trade-off relation of the form &g . 8p = CF, with a

positive constant €.
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1 Introduction

In his seminal paper of 1927 [?], Heisenberg formulated not one but in fact three distinct variants of uncer-
tainty relations of the general form

dg-dpr~h (1)
which together comprise the full content of the uncertainty principle [?] but which were not received with
equal approval. The uncontroversial form of uncertainty relation is the one which characterizes possibilities
of preparations; it was made precise in terms of standard deviations. first for position @ and momentum P
and any vector state g,

A@.9) APg) 2 5, &

06100016 Page 8/63
and seneralized soon afterwards to annly fo all pairs of ohservables and all omantyam states [Z. 7. 7 Y] This .
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significant, Heisenberg uncertainty relation for error bars in joint measurements of position and momen-
tum. Here an observable on phase space is accepted as representing a joint measurement if it has fmite
errors, defined operationally as the widths of confidence intervals obtained in the calibration of the joint

messurement.

2 Covariant phase space observables

For the rest of this paper we consider a quantum particle in one spatial dimension. with Hilbert space
H = L*R) and canonical position and momentum operators @, P. By Q and P we denote the spectral
messures of () and P, respectively, and Wig,p) = E::cp{i"[Pq—Qp] are the Weyl operators which comprise an
irreducible unitary projective representation of the translations on phase space B%. States are represented as
positive operators p of trace 1, the convex set of all states being denoted 5. Oeccasionally we use unit vectors
@ = H to represent pure states. Observables are represented as normalized (E(f)) = I) positive operator
messures {POMs) on a measurable space (£, ¥}, which in the present context will be either (R.B(R)) or
(B2, B(B2)). We write pF for the probability measure induced by a state p and an observable E via the
formula o= (X ) = tr [pE(X )], X < E. Finally we use the notation E[k] for the moment operators [ z*E(dz)
of an ohservable E.

The earliest version of a quantum mechanical phase space probahility distributions was discovered in
1939 by Husimi [?]. This is of the form (written for any vector state )

(&:2) — |{¥lnep) *, (3)

where 1y = Wi(g, p)*n denotes the family of Gaussian coherent states. The totality of distributions (3)
determine a umique covariant phase space observable G, via

1
wpCa(2) = 55 [ plimes)dadp, o <5, Z < BR?). (4)
A more general form of covariant phase space observable is obtained if the above integrand is replaced

with [(W(g,p)*&|oWigq,p)*£) [?]; finally one can take convex combinations of such phase space POVMs to
obtain a covariant phase space observable

B > Z — 6(2) = 5= [ Wiap)'mWi,p)dadp. (5)

06100016 where the integral is defined weakly and the operator demsity is generated by an arbitrary fixed positive Page 10/63
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For later reference we write out the covariance property. For r = (g.p) = B2, let 7. be the shift map on
the space C(2) of bounded continuous functions f, so that 7. f{ ¥) = f(y — z). We can extend 7, to act on
indicator functions or the associated Borel sets in the obvious way. An observable (7 on phase space B? is
covariant if for all Z = B(R?),

GitigmZ) = Wig.p)*G(Z)Wig, p)- (6)

It is in fact the case that every covariant phase space observable is of the form (5). This important result
is implied by results of [7] using methods of quantum harmonie analvsis and has been made explicit in[7]
using Mackey’s machine of induced representations and in [7] using the theory of integration with respect
to operator measures.

The marginal observables of & are convolutions of the spectral measures (), P with the probability mea-
sures mg., m,,_'f[, that is,

G =Q+mpg, Gz;=Ps+mp. (7)
Here mg = MmlII* is the operator obtained from m under the action of the parity transformation IT
(MMe(r) = @(—x)). Taking the standard deviations as measures of inaccuracy,

5(Q.C)=A(Q.m), §(P.C)=A(P.m), (®)
one has the general measurement uncertainty relation for covariant phase space observables:

5Q.€) 5(P.C) = T )

The operational meaning of (say) the distribution m9 becomes fully transparent if one considers a sequence of
states p, such that the distributions g% are increasingly sharply pealed. approaching the Dirac distribution
concentrated at a point go. In this case the output distributions pf‘ approach {ﬂlu)g,, that is, the translate
of the distribution m% by go. Thuos the width of that distribution characterizes the likely range of the
prepared values of position if it is known that a fairly sharp distribution was prepared and an outcome gg is
recorded.

Since measures of the width of a distribution in terms of (second or other) moments are of limited
use. we note, for later reference. an altermative formmlation of uncertainty relation for joint measurement
inaccuracies, valid for covariant phase space observables.

827 x11.6%in
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messures of (} and P. respectively, and Wig,p) = mcp{%{Pq—Qp] are the Weyl operators which comprise an
irreducible unitary projective representation of the translations on phase space B%. States are represented as
positive operators p of trace 1, the convex set of all states being denoted 5. Occasionally we use unit vectors
@ = 'H to represent pure states. Observables are represented as normalized (E({}) = I) positive operator
measures (POMs) on a measurable space ({!, X}, which in the present context will be either (R.B{R)) or
(B2, B(B?)). We write oF for the probability measure induced by a state o and an observable E via the
formula o®(X ) = tr [pE(X )], X £ E. Finally we use the notation E[k] for the moment operators [ r*E(dr)
of an observable E.

The earliest version of a quantum mechanical phase space probability distributions was discovered in
1939 by Husimi [?]. This is of the form (written for any vector state )

(g.2) — |{e|ngp) °, (3)

where g = Wig.p)*n denotes the family of Gaussian coherent states. The totality of distributions (3)
determine a unique covariant phase space observable G, via

|
wp6r(2) = 5z [ (hslpnusldadp. p <5, Z < BEE). @)
A maore general form of covariant phase space observable is obtained if the above integrand is replaced

with [(W(q.p)*&|pW(g.p)*E) [7]; finally one can take convex combinations of such phase space POVMs to
obtain a covariant phase space observahble

B®?) > Z — G(Z) = 5z [ Wig.0)" mWia.p)dads. (5)

where the integral is defined weakly and the operator density is generated by an arbitrary fixed positive
operator m of trace 1 (for details of the proof of these properties. see. e.g.. [7]).

s
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For later reference we write out the covariance property. For = = (g.p) = R?, let 7. be the shift map on
the space C({B%) of bounded continuous functions f, so that 7. fl ¥) = f(y — z). We can extend 7, to act on
indicator functions or the associated Borel set= in the obvious way. An observable (7 on phase space B2 is
covariant if for all Z = B(R?),

GlrigpZ) =Wig.p)*"G(Z)Wig, p). (6)

It is in fact the case that every covariant phase space observable is of the form (5). This important result
is implied by results of [7] using methods of quantum harmonic analysis and has been made explicit in[7]
using Mackey's machine of induced representations and in [7] using the theory of integration with respect
0 Operator measures.

The marginal observables of G are convolutions of the spectral measures (). P with the probability mea-
SUTES mmmp that is,

Gi=Q+mpg, G;=Ps+mgp. (7)

Here mpg = IImIT* is the operator obtained from m under the action of the parity transformation IT
(MMp(r) = w(—x)). Taking the standard deviations as measures of inaccuracy,

5(Q.G) =A(Q.m), (P.C)=A(P.m), (8)

one has the general measurement uncertainty relation for covariant phase space observables:

5Q.6)-5(P.6) > 2.

The operational meaning of (say) the distribution m9 becomes fully transparent if one considers a sequence of
states pn such that the distributions p% are increasingly sharply peaked. approaching the Dirac distribution
concentrated at a point go. In this case the output distributions pf‘ approach {m;]]g, that is. the translate
of the distribution mrg by gz. Thwos the width of that distribution characterizes the likely range of the
prepared values of position if it is known that a fairly sharp distribution was prepared and an outcome gq is
recorded.

06100016 Smﬂe measures of the width of a distribution in temﬂ af {semmi or uthm'] moments are of hm:ted Page 13/63
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For later reference we write out the covariance property. For r = (gq.p) = B4, let 7. be the shift map on
the space C(R2) of bounded continuous functions f, so that 7. f( ¥) = f(y — z). We can extend 7, to act on
indicator functions or the associated Borel sets in the obvious way. An observable (7 on phase space B2 is
covariant if for all Z = B(R?),

GlTigpZ) = Wia.p)*"G(Z)Wig, p). (6)

It is in fact the case that every covariant phase space observable is of the form (5). This important result
is implied by results of [7] using methods of quantum harmonic analvsis and has been made explicit in[7]
using Mackey's machine of induced representations and in [7] using the theory of integration with respect
to operator measures.

The marginal obhservables of ¢ are convolutions of the spectral measures Q). P with the probability mes-
sures mﬁ,mg.. that is,

G, =Q+mpg, G;=Ps+mg. (7)

Here mpg = IImIT* is the operator obtained from m under the action of the parity transformation IT
(MMe(r) = @(—x)). Taking the standard deviations as measures of inaccuracy,

5(Q.G) =A(Q.m), &(P.G)=A(P.m), (8)

one has the general measurement uncertainty relation for covariant phase space observables:

5Q.6)-5p.6) = 2. (0)

The operational meaning of (say) the distribution m9 becomes fully transparent if one considers a sequence of
states pn such that the distributions p% are increasingly sharply peaked. approaching the Dirac distribution
concentrated at a point ga. In this case the output distributions pf‘ approach {m;]]g], that is. the translate
of the distribution mg by gz. Thus the width of that distribution characterizes the likely range of the
prepared values of position if it 15 known that a fairly sharp distribution was prepared and an outcome gg is
recorded.

Since measures of the width of a distribution in terms of (second or other) moments are of limited
use. we mote, for later reference, an alternative formmulation of uncertainty relation for joint measurement
inaccuracies, valid for covariant phase space observables.

For ¢ € R. 4 > 0, let I ; denote the interval [¢ — §/2,q +46/2). (We will occasionally use the same
symbol to denote the indicator function of this set.) Then, for given confidence level 1 — ¢, = = 0, we define
the overall width of a probability distribution p on B as the smallest length of all intervals for which the

06100016 probability exceeds 1 —=: Page 14/63
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For the rest of this paper we consider a quantum particle in one spatial dimension. with Hilbert space
H = L*R) and canonical position and momentum operators @, P. By Q and P we denote the spectral
messures of () and P. respectively, and Wig, p) = expl( %{Pq —(C)p) are the Weyl operators which comprise an
irreducible unitary projective representation of the translations on phase space B%. States are represented as
positive operators p of trace 1, the convex set of all states being denoted 5. Occasionally we use unit vectors
@ = H to represent pure states. Observables are represented as normalized (E(£)) = I') positive operator
messures (POMs) on a measursble space (£, X}, which in the present context will be either (R. B(R)) or
(R2. B(R2)). We write gf for the probability measure induced by a state p and an observable E via the
formula p® (X ) = tr [pE(X )], X £ I. Finally we use the notation E[k] for the moment operators [ x*E(dx)
of an observable E.

The earliest version of a quantum mechanical phase space probahility distributions was discovered in
1939 by Husimi [?]. This is of the form (written for any vector state )

(g.2) — |(lnae) I, (3)

where 15, = Wi(g,p)*n denotes the family of Gaussian coherent states. The totality of distributions (3)
determine a unique covariant phase space observable &, via

1
xpGa(Z) = 55 [, (hwlomes)dadp, 5. Z < BRP). @)
A more general form of covariant phase space observable is obtained if the above integrand is replaced

with |(Wiq.p)*&|pWiq.p)*£) [?]; finally one can take convex combinations of such phase space POVMs to
obtain a covariant phase space observable

B®%) > 2 G(Z) =5 [ Wiap)mW(a,p)deds. (5)

where the integral is defined weakly and the operator density is generated by an arbitrary fixed positive
operator m of trace 1 (for details of the proof of these properties. see, e.g., [7]).
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It is in fact the case that every covariant phase space observable is of the form (5). This important result
is implied by results of [7] using methods of quantum harmonic analvsis and has been made explicit m[7]
using Mackey's machine of induced representations and in [7] using the theory of integration with respect

fto operator measures.
The marginal observables of G are conwvolutions of the spectral measures Q). P with the probahbility mes-

sures mg.. mg, that is,

G-'1=thﬂ_. GzZP*mH. {Tj

Here mpg = IImIT* is the operator obtained from m under the action of the parity transformation IT
(Me(z) = w{—=x)). Taking the standard deviations as measores of inaccuracy,

5(Q.G)=A(Q.m), &(P.G)=A(P,m), (8)

one has the general measurement uncertainty relation for covariant phase space observables:
ki
5Q.€) 5(P.C) = T (9)

The operational meaning of (say) the distribution m“ becomes fully transparent if one considers a sequence of
states pn such that the distributions p% are increasingly sharply peaked. approaching the Dirac distribution
concentrated at a point gs. In this case the output distributions pf‘ approach (mnjgu, that is. the translate
of the distribution m% by gg. Thos the width of that distribution characterizes the likely range of the
prepared values of position if it is known that a fairly sharp distribution was prepared and an outeome gg is
recorded.

Since measures of the width of a distribution in terms of (second or other) moments are of limited
use. we note, for later reference, an alternative formmlation of uncertainty relation for joint measurement
inaccuracies, valid for covariant phase space observables.

For ¢ £ R. 4 > 0, let I ; denote the interval [g¢ — §/2,q +46/2). (We will occasionally use the same
symbol to denote the indicator function of this set.) Then, for given confidence level 1 — =, = > 0, we define
the overall width of a probability distribution p on B as the smallest length of all intervals for which the
probability exceeds 1 —=:

Wip,z) :=infl{d : p{Igq) > 1 —z, for some » = B}. (10)

The following relation was shown in [7] to hold for any state p and positive ;. =2 > 0 for which /574,53 < 1
06100016 we write it here for p = m: Page 16/63
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to G;emtur measures, b
The marginal observables of & are convolutions of the spectral measures (J, P with the probability mea-

sures mg.. mg, that is,

G =Q+mpg, G;=P+mg. {TJ

Here mg = IMmIT* is the operator obtained from m under the action of the parity transformation IT
(MMglr) = @(—=x)). Taking the standard deviations as measures of inaccuracy,

'EEQ, G = Q{Q,Iﬂ:l, ;F{P_G'} = ﬁ{P,m:l, {8}

one has the general measnrement uncertainty relation for covariant phase space observables:

5Q.6) - 3(P,C) > =. (9)

The operational meaning of (say) the distribution m“ becomes fully transparent if one considers a sequence of
states p, such that the distributions g% are increasingly sharply peaked. approaching the Dirac distribution
concentrated at a point gg. In this case the output distributions pf‘ approach {mn]gi, that is, the translate
of the distribution mg by go. Thus the width of that distribution characterizes the likely range of the
prepared values of position if it is known that a fairly sharp distribution was prepared and an outcome gq is
recorded.

Since measures of the width of a distribution in terms of {second or other) moments are of limited
use. we mote, for later reference. an alternative formmlation of uncertainty relation for joint measurement
inaccuracies, valid for covariant phase space observables.

For g = R. d > 0, let I; denote the interval [g — §/2,q + 4/2). (We will occasionally use the same
symbol to denote the indicator function of this set.) Then, for given confidence level 1 — ¢, = > 0. we define
the overall widihh of a probability distribution p on R as the smallest length of all intervals for which the
probability exceeds 1 —=:

Wip.c) :=infld : p{I,.q4) > 1 —¢, for some r € B}. (10)

The following relation was shown in [7] to hold for any state p and positive c1.22 > 0 for which /51452 < 1;
we write it here for p = m:

Wim®, &) - W(mP,2) > 2rh- (1 — e —vaz). (11)
06100016 [NDTE I think lt muat be pmble to come up with tlghter lcm'er bound.s since fur Very sm sma.]l €12, one Page 17/63

= e e I M N — RS ST s e i— i — e —

4 827 x 11.6%in

g A " I - — = | ——— — SN



i Adobe Reader File Edit View Document Tools Window Help {1'{\—,?‘“' 4 =459 E Wed 4:25PM @

A= @ M st Bseamse @ (R -] [0 @5 -[@] D D &g - [mmmmerorne

086 ¥ ur-talk(161006).pdf

{:T_:H*mﬂ, L7'2=!“*mn. "f}

Here mg = IImII* is the operator obtained from m under the action of the parity transformation IT
(Mle(r) = @(—x)). Taking the standard deviations as measures of inaccuracy,

§(Q,G) =A(Q,m), 4(P.G)=A(P,m), (8]
one has the general measurement uncertainty relation for covariant phase space observables:

5(Q.€)-5(P.0) = T )

The operational meaning of (say) the distribution m9 becomes fully transparent if one considers a sequence of
states p, such that the distributions p% are increasingly sharply peaked. approaching the Dirac distribution
concentrated at a point gs. In this case the output distributions pf‘ approach {mu]gl, that is. the translate
of the distribution mg bv gz Thuos the width of that distribution characterizes the likely range of the
prepared values of position if it is known that a fairly sharp distribution was prepared and an outcome g; is
recorded.

Since measures of the width of a distribution in terms of (second or other) moments are of limited
use. we note. for later reference. an alternative formmlation of uncertainty relation for joint measurement
inaccuracies, valid for covariant phase space observables.

For g = B. § > 0, let I; denote the interval [g — §/2.¢ + 4§/2). (We will occasionally use the same
symbol to denote the indicator function of this set.) Then, for given confidence level 1 — =, = > 0, we define
the overall width of a probability distribution p on B as the amallest length of all intervals for which the
probability exceeds 1 —=:

Wip.z) :==inf{d : p{Ig4) > 1 —z, for some z = B}. (10)

The following relation was shown in [?] to hold for any state p and positive c1, 23 > 0 for which \/Z574+,/52 < 1;
we write it here for p = m:

Wim®, &) - W(mP,s2) > 2rk- (1 — 5 — V&) (11)

(NOTE: I think it must be possible to come up with tighter lower bounds since for very small =1,52, one
must allow rather large intervals. Check the Hilgevoord-Uffink relation for overall width and mean peak
width, from which they derive another lower bound for the above product.)

Fn]lowmg [?], we define the resolution 4(E:1 — =) (at confidence level 1 — c) of a POM E on B(R) as

06100016
follows. then
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{:1=H*mﬂ:. {_712=P*mﬂ. {'Irj 3

Here mg = ImII* is the operator obtained from m under the action of the parity transformation IT
(Ml{r) = @(—x)). Taking the standard deviations as measures of inaccuracy.,

§(Q,G) =A4A(Q,m), &4P.G)=A(P,m), (8]
one has the gemeral measurement uncertainty relation for covariant phase space observables:

5Q.€)5(P.0) = T )

The operational meaning of (say) the distribution m9 becomes fully transparent if one considers a sequence of
states p, such that the distributions p% are increasingly sharply peaked. approaching the Dirac distribution
concentrated at a point go. In this case the output distributions pf‘ approach {mn]gu, that is. the translate
of the distribution mg b¥ gz. Thuos the width of that distribution characterizes the likely range of the
prepared values of position if it is known that a fairly sharp distribution was prepared and an outcome g; is
recorded.

Since measures of the width of a distribution in terms of (second or other) moments are of limited
use. we note, for later reference, an altermative formmulation of uncertainty relation for joint measurement
inaccuracies, valid for covariant phase space observables.

For g = B. § > 0, let I; denote the interval [g — §/2,¢ +4/2). (We will occasionally nse the same
symbol to denote the indicator function of this set.) Then. for given confidence level 1 — =, = > 0, we define
the overall widih of a probability distribution p on B as the amallest length of all intervals for which the
probability exceeds 1 —=:

Wip,z) :=inf{d : p{Ig4) > 1 —z, for some z = B}. (10)

The following relation was shown in [?] to hold for any state p and positive c3, =3 > 0 for which /57452 < 1;
we write it here for p = m:

Wi(m®, &) - W(mP,2) > 2rk- (1 — Ve — V&z). (11)

(NOTE: I think it must be possible to come up with tighter lower bounds since for very small 1,22, one
must allow rather large intervals. Check the Hilgevoord-Uffink relation for cverall width and mean peak
width, from which they derive another lower bound for the above product.)

Following [7], we define the resolution 4(E:1 — =) (at confidence level 1 — ¢} of a POM E on B(R) as

0100010 follows. then

alp
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recorded.

Since measures of the width of s distribution in terms of (second or other) moments are of limited
use. we mote, for later reference. an altermative formmlation of uncertainty relation for joint measurement
inaccuracies, valid for covariant phase space observables.

For g = B. d > 0, let I; denote the interval [g — §/2.¢ + 4/2). (We will occasionally use the same
symbol to denote the indicator function of this set.) Then, for given confidence level 1 — ¢, = > 0, we define
the overall width of a probability distribution p on B as the smallest length of all intervals for which the
probability exceeds 1 —=:

E = r xrJ

Wip,s) :=infld : p{Ip4) > 1 —=, for some z = B}. (10)

The following relation was shown in [?] to hold for any state p and positive s3, sz > 0 for which /514,52 < 1;
we write it here for p = m:

Wim?, &) - W(mP, =) > 2rh- (1 — /o1 —/E2) (11)

(NOTE: I think it must be possible to come up with tighter lower bounds since for very small =1,52, one
must allow rather large intervals. Check the Hilgevoord-Uffink relation for overall width and mean peak
width, from which they derive another lower bound for the above product.)
Following [7], we define the resolution v(E:1 — =) (at confidence level 1 — c) of a POM E on B(E) as
follows. then
WE;1—¢)=inf{d >0 : pP{l,;) >1 —cforall r cR}. (12)

It follows readily (see also []) that for the marginals 77, &; of a covariant phase space observable & with
generating operator m, one has

HG1;1 — 1) =W(m%e1), ¥(Cail —e2) = W(m",e2). (13)
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3 Uncertainty relations for “classical” error measures

If one considers the idea that possibly any observable M on phase space conld provide information about
position and momentum, such that the marginals M;, M- represent approximate measurements of @, P,
respectively, then it is of interest to study the necessarvy minimal inaccuracies that must be present due
to the noncommutativity of ¢ and P. Classical intuition suggests that a suitable error measure could be
given by the average deviation of the value of an indicator observable of the measuring apparatus from the
value of the observable to be measured approximately, where these observables are represented as selfadjoint
operators Z and A respectively, that is, the root mean square ¢(Z. A) = ((Z — A)*)%/2. This measure
has indeed been widely used in the physical literature. and has in recent years been studied in the present
foundational context (e.g.. [, 7, 7] : these papers also give good surveys of the properties and applications
of this error measure). As shown. for instance. in [7], the above definition can be recast in terms of the
POM E that represents the given measurement and the observable A to be measured approximately; thus
a classical error measure can be defined as follows:

d(E. A:p)* = tr [o(EL] — 4] +tr [o(ER] — ERP)]. (14)

We note that €(E, 4 : p) =0 for all p exactly when E = A. The first term mesasures the difference between
the first moments of the observable to be measured. represented by the selfadjoint operator A. and the
ohservable E that represents the measurement. Note that this term cannot. in general. be determined from
the statistics of measurements of E and A alone.

The second term in (14) is a measure of the intrinsic unsharpness of E: it is always nonnegative and
vanishes for all p exactly when E is a projection valued measure. Again. this quantity is not determined
solely by the statistics of E alone.

The classical error measure €(E, 4; p) is thus seen to violate what would appear to be a natural require-
ment of operational significance: the requirement that the messure can be determined by the measurement
statistics of the observables to be compared (E.4). This requirement can only be satisfied if (E[1]) — 4)2
and E[1]* are functions of 4 or of E. This happens, in particular, if E[1] — 4 = I for some constant
c =R If E[l] = A. the measurement is called globally unbiased. This property. applied to the marginals
of an observable on phase space, is taken as a defining condition for a joint measurement of position and
momentum by some authors (e.g., [7. 7]).

In the case of a globally unbiased measurement the classical error measure reduces to the second term in
(14)

06100016 E{E?A"l P)z == AE [P{E[El = A:Z]] = ﬁEETP:IZ =is ﬁ{ATP]Z l:EI[I'] Z‘A)‘ {15} Page 21/63
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3 Uncertainty relations for “classical” error measures

If one considers the idea that possibly any observable M on phase space could provide information about
position and momentum. such that the marginals M;, M- represent approximate measurements of Q. P
respectively, then it is of interest to study the necessary minimal inaccuracies that must be present due
to the noncommutativity of ¢ and P. Classical intuition suggests that a suitable error measure could be
given by the average deviation of the value of an indicator observable of the measuring apparatus from the
value of the observable to be measured approximately, where these observables are represented as selfadjoint
operators Z and A respectively, that is, the root mean square ¢(Z, A) = ((Z — A)?)%/2. This measure
has indeed been widely used in the physical literature. and has in recent years been studied in the present
foundational context (e.g.. [7, 7. 7] ; these papers also give good survews of the properties and applications
of this error measure). As shown, for instance. in [?], the above definition can be recast in terms of the
POM E that represents the given measurement and the observable A to be measured approximately; thus
a classical error measure can be defined as follows:

d(E. 4:p)* = tr [o(EL] — 4] +tr [o(ER] — ERP)]. (14)

We note that e(E, A : p) = 0 for all p exactly when E = A. The first term measures the difference between
the first moments of the observable to be measured. represented by the selfadjoint operator 4. and the
ohservable E that represents the measurement. Note that this term cannot, in general. be determined from
the statistics of measurements of E and A alone.

The second term in (14) is a measure of the intrinsic unsharpness of E: it is always nonnegative and
vanishes for all p exactly when E is a projection valued measure. Again, this quantity is not determined
solely by the statistics of E alone.

The classical error measure €(E, 4; p) is thus seen to violate what would appear to be a natural require-
ment of operational significance: the requirement that the messure can be determined by the measurement
statistics of the observables to be compared (E.4). This requirement can only be satisfied if (E[1]) — 4)2
and E[1]* are functions of 4 or of E. This happens, in particular, if E[1] — 4 = eI for some constant
c =R If E[l] = A. the measurement is called globally unbiased. This property. applied to the marginals
of an observable on phase space, is taken as a defining condition for a joint measurement of position and
momentum by some authors (e.g., [7. 7]).

In the case of a globally unbiased measurement the classical error measure reduces to the second term in
(14)

N o(E, 4 p)? = tr [p(ER] — 47)] = A(E,pP — A4 0P (E[1] = 4). (15) page 23
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3 Uncertainty relations for “classical” error measures

If one considers the idea that possibly any observable M on phase space could provide information about
position and momentum. such that the marginals M;, M- represent approximate measurements of Q. P,
respectively, then it is of interest to study the necessarv minimal inaccuracies that must be present due
to the noncommutativity of ¢} and P. Classical intuition suggests that a suitable error measure could be
given by the average deviation of the value of an indicator observable of the measuring apparatus from the
value of the observable to be measured approximately, where these observables are represented as selfadjoint
operators Z and A respectively, that is, the root mean square ¢(Z. A) = ((Z — A)?)%/2. This measure
has indeed been widely used in the physical literature. and has in recent years been studied in the present
foundational context (e.g.. [, 7. 7] ; these papers also give good survews of the properties and applications
of this error measure). As shown, for instance. in [?], the shove definition can be recast in terms of the
POM E that represents the given measurement and the observable 4 to be measured approximately; thus
a classical error measure can be defined as follows:

d(E. 4:p)* = tr [o(EL] — 4] +tr [o(ER2] — ERP)] (14)

We note that e(E, 4 : p) =0 for all p exactly when E = A. The first term measures the difference between
the first moments of the observable to be measured. represented by the selfadjoint operator A. and the
ohservable E that represents the measurement. Note that this term cannot. in general. be determined from
the statistics of measurements of E and A alone.

The second term in (14) is a measure of the intrinsic unsharpness of E: it is always nonnegative and
vanishes for all p exactly when E is a projection valued measure. Again. this quantity is not determined
solely by the statistics of E alone.

The classical error measure €(E, 4; p) is thus seen to violate what would appear to be a natural require-
ment of eperational significance: the requirement that the messure can be determined by the measurement
statistics of the observables to be compared (E.4). This requirement can only be satisfied if (E[1]) — 4)2
and E[1]* are functions of 4 or of E. This happens, in particular, if E[1] — 4 = <] for some constant
c =R If E[l] = A. the measurement is called globally unbiased. This property. applied to the marginals
of an observable on phase space, is taken as a defining condition for a joint measurement of position and
momentum by some authors (e.g., [7. 7]).

In the case of a globally unbiased measurement the classical error measure reduces to the second term in
(14)

06100016

e(E, 4;p)* = tr [o(E] — 4%)] = A(E.p)> — A(4,p)° (E[1] = A). (15)
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dE. 4;p)" =tr [p(EQ] — A)"] +tr [p(E[2] — E1])]. (14)

We note that €(E, A : p) =0 for all p exactly when E = A. The first term measures the difference between
the first moments of the observable to be measured. represented by the selfadjoint operator A. and the
ohservable E that represents the measurement. Note that this term cannot. in general. be determined from
the statistics of measurements of E and 4 alone.

The second term in (14) is a measure of the intrinsic unsharpness of E: it is always nonnegative and
vanishes for all p exactly when E is a projection valued measure. Again, this quantity is not determined
solely by the statistics of E alone.

The classical error measure £(E. 4: p) is thus seen to violate what would appear to be a natural require-
ment of operational significance: the requirement that the measuare can be determined by the measurement
statistics of the ohservables to be compared (E.A4). This requirement can only be satisfied if (E[1]) — 4)2
and E[1]* are functions of 4 or of E. This happens, in particular, if E[1] — 4 = I for some constant
c =R If E[l] = A. the measurement is called globally unbiased. This property. applied to the marginals
of an observable on phase space, is taken as a defining condition for a joint measurement of position and
momentum by some authors (e.g., [7. 7]).

In the case of a globally unbiased measurement the classical error measure reduces to the second term in
(14)

S(E. 4 p)* = tr [o(E[2] — 4)] = A(E.p)* —A(A.p)* (E[1] =A). (15)

This is the surplus of the standard deviation of the distribution p¥ over that of the distribution p*.

It has been shown [7, 7, 7] that the classical error measures for the marginals of an observable M on phase
space do not, in general satisfy the standard uncertainty relation with a state-independent lower bound for
the error products. Instead. a rather weaker relation holds [?]:

(M1, Q; p) - el Mz, P; p) + €(M1.Q; p) - A(P, p) + A(Q. p) - el Mz, P; p) = g (16)

However, for unbiased measurements, where the classical errors are operationally significant. an uncer-
tainty relation for the error products stronger than (16) has been shown to hold (for a proof and a survey
of further relevant work, see [?]):

€O, Qip) - d(Ma,Pip) 2 5 (B[ =Q-+al, Mall] = P+cs). (17)

(QUESTION: is the unbiasedness condition strong enough to ensure covariance of the marginals? 1 suspect
not but have no proof.)

0100016 The classical error measures can be calculated in the case of a covariant phase space observable & [7, [Eqogic- o
-+ 827 x 11.65 in
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c = R. If E[1] = A, the measurement is mlledglah:ﬂy unhasexi Thlsprnpertr applied to the marginals
of an observable on phase space, is taken as a defining condition for a joint measurement of position and
momentum by some authors (e.g., [7. ?]).

In the case of a globally unbissed measurement the classical error measure reduces to the second term in
(14)

e(E. A; p)* = tr [p(E[2] — 4%)] = A(E.p)* — A(A.p) (E[1] = A). (15)

This is the surplus of the standard deviation of the distribution g¥ over that of the distribution p*.

It has been shown [7, 7, 7] that the classical error measures for the marginals of an observable M on phase
space do not, in general satisfy the standard uncertainty relation with a state-independent lower bound for
the error products. Instead. a rather weaker relation holds [Z]:

bt | 2

E{M]_,Q;p] . E{M‘J:PQF} +E{M13Q; P} T &{P.. p}l +ﬂ-{Q4P]| - EI*MRs P'! P} - {16)

However. for unbiased measurements, where the classical errors are operationally significant. an uncer-
tainty relation for the error products stronger than (16) has been shown to hold (for a proof and a survey
of further relevant work, see [?]):

(0, Qsp) - e(Ma,Pip) 2 5 (ML =Q+erd, Malt] =P +c3). (17)

(QUESTION: is the unbiasedness condition strong enough to ensure covariance of the marginals? I suspect
not but have no proof.)
The classical error measures can be caleulated in the case of a covariant phase space observable & [7,
Theorem 4|; one obtains
Gr=Q+twr[mQ]I, G;=P+umP]I, (18)
and so
E[GI: Q: PJ = ﬂ'{Qrer E{GZ'! P; PJ = '&{Pr l']].] l:]"gj
In this case the uncertainty relation (17) holds and coincides in fact with (9).
The following example illustrates that the classically motivated error measure seems indeed misleading.
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Example 1 Let M be an observable on B(R?) such that the first marginal is M; = Q and the second
is a trivial observable, defined as M2 = ul, where pu is a fired probability measure on B(R). Thus. for
X.Y = B(R), one has M{X = Y) = Q(X)u(Y). [REF on bimensure ertension?] We assume that u has
finite first and second moments pu[l].u[2]. & follows that

(M. Qip) =0, e(Mz,P;p) =A(P.p) + (tr[pP] — u[1])” + (2 — u1]?) - (20)

This is finite for many p (in fact for all p whose momentum distribution pF have finite first and second
mements), and can be made arbitrarily small by choosing the variances of p and p* sufficiently small and
tr[pP] = u[l]. On the other hand. it is clear that (M, P; p) is not bounded from above, reflecting the fact
that as a trivial observable, M; is the worst possible approrimate measurement of P. providing no information
at all about P. In any case it is evident that the generalized uncertainty relation (16) is fulfilled:

A(Q.p) - (M, Psp) = A(P.g) - A(P.p) > o (21)

It is the occurrence of the momentum standard deviation A(P, p) in el M3, P:p) that enforces the validity of
this uncertainty relation: so this relation now coincides with the standard wncertainty relation for prepara-
tions. Moreover. the finiteness of the guantity e(Mz, P; p) should not be interpreted as reflecting finite error
margins: the output distribution being the same fired u for all input states p, it follows that in a calibra-
tion scenario any momentum-localized state could have been the input given the output distribution; in other
words, the measurement should be considered to have infinite inaccuracy.

Thus it is =een that giving up unhiasedness as a criterion for a good approximate measurement leads to a
very “liberal” notion of joint measurement. where a vanishing error product occurs even when one marginal
provides no information at all.

Examples like this one suggest that a reliable measure of error should reflect the overall quality of the
approximate determination of an observable in terms of a given measurement scheme. The above classically
motivated error measure is state dependent and does not reflect adequately the notion of celibration; that
is the idea that the systematic and random errors (bias and width) of a given measurement procedure are
tested by applying it to a sufficiently large family of input states in which the ohservable one wishes to

0100010 measure with this setup has fairly sharp values. e
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e(M.Qp) =0, €Ma2.Pip)® =A(P.p)* + (tx[pP] —p[1])* + (u2] — u1]) .- (20)

This is finite for many p (in fact for all p whose momentum distribution pF have finite first and second
moments), and can be made arbitrarily small by choosing the variances of u and pF sufficiently small and
t:r[pP] = u[l]. On the other hand, it is clear that (M, P; p) is not bounded from above. reflecting the fact
that as a trivial observable. M> is the worst possible approvimate measurement of P. providing no information
at all about P. In any case it is cvident that the generalized uncertainty relation (16) is fulfilled:

A(Q.p) - (M, P:p) = AP, ) A(Pp) > 2. (21)

It is the occurrence of the momentum standard deviation A(P, p) in e{M3,P:p) that enforces the validity of
this uncertainty relation: so this relation now coincides with the standard wncertainty relation for prepara-
tions. Moreover. the finiteness of the quantity el Mz, P; p) should not be interpreted as reflecting finite error
margins: the output distritbution being the same fired u for all input states p, it follows that in a calibra-
tion scenario any momentum-localized state could have been the input given the output distribution; in other
words, the measurement should be considered to have infinite inaccuracy.

Thus it is =een that giving up unbiasedness as a criterion for a good approximate measurement leads to a
very “liberal” notion of joint measurement. where a vanishing error product occurs even when one marginal
provides no information at all.

Examples like this one suggest that a reliable measure of error should reflect the overall quality of the
approximate determination of an observable in terms of a given measurement scheme. The above classically
motivated error measure is state dependent and does not reflect adequately the notion of calibration; that
is the idea that the systematic and random errors (bias and width) of a given measurement procedure are
tested by applying it to a sufficiently large family of input states in which the ohservable one wishes to
measure with this setup has fairly sharp values.

‘We note that Hall [?] uses somewhat different definitions of inaccuracy, but arrives at similar conclusions,
inclnding also the situation where in estimating the simultaneous values of two observables. one uses prior
information abhout the state. The abowve critical comments apply to this approach, as well as to an inaccuracy-
disturbance trade-off relation studied by Ozawa [!] who uses a measure of disturbance similar to the above
classical error measure.

4 Werner’s joint-measurement uncertainty relation

06100016 The Werner distance between two observables E. F on B is defined as Page 32/63
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(M. Qp) =0, eMa,Pip)® =A(P.p)* + (tx[pP] —p[1])* + (2 — pl1]) .- (20)

This is finite for many p (in fact for all p whose momentum distribution pF have finite first and second
moments). and can be made arbitrarily small by choosing the variances of u and pF sufficiently small and
tr[pP] = u[l]. On the other hand. it is clear that (M, P; p) is not bounded from above. reflecting the fact
that as a trivial observable. M; is the worst possible approvimate measurement of P. providing no information
at all about P. In any case it is cvident that the generalized uncertainty relation (16) is fulfilled:

A(Q.p) - (My,P:p) 2 AP, p) - A(Pp) > 2. (21)

It is the occurrence of the momentum standard deviation A(P, p) in (M3 ,P:p) that enforces the validity of
this uncertainty relation: so this relation now coincides with the standard wncertainty relation for prepara-
tions. Moreover. the finiteness of the quantity e( M2, P: p) should not be interpreted as reflecting finite error
margins: the output distribution being the same fived p for all mput states p, it follows that in a calibra-
tion scenario any momentum-localized state could have been the input given the output distribution; in other
words, the measurement should be considered to have infinite inaccuracy.

Thus it is =een that giving up unbiasedness as a criterion for a good approximate measurement leads to a
very “liberal” notion of joint measurement, where a vanishing error product occurs even when one marginal
provides no information at all.

Examples like this one suggest that a reliable measure of error should reflect the overall quality of the
approximate determination of an observable in terms of a given measurement scheme. The above classically
motivated error measure is state dependent and does not reflect adequately the notion of calibration; that
is the idea that the systematic and random errors (bias and width) of a given measurement procedure are
tested by applying it to a sufficiently large family of input states in which the ohservable one wishes to
measure with this setup has fairly sharp values.

‘We note that Hall [?] uses somewhat different definitions of inaccuracy, but arrives at similar conclusions,
inclnding also the situation where in estimating the simultaneous values of two observahles. one uses prior
information abhout the state. The abowve critical comments apply to this approach. as well as to an inaccuracy-
disturbance trade-off relation studied by Ozawa [?] who uses a measure of disturbance similar to the above
classical error measure.

4 Werner’s joint-measurement uncertainty relation

06100016 The Werner distance between two observables E. F on B is defined as Page 33/63
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messure with this setup has fairly sharp values.

‘We note that Hall [7] uses somewhat different definitions of inaccuracy, but arrives at similar conclusions,
including also the situation where in estimating the simultaneous values of two observables. one uses prior
information ahout the state. The abowve critical comments apply to this approach. as well as to an inaccuracy-
disturbance trade-off relation studied by Ozawa [7] who uses a measure of disturbance similar to the above

classical error measure.

4 Werner’s joint-measurement uncertainty relation

The Werner distance between two obhservables E. F on ] is defined as
d(E,F):= sup |tr[pE(h)] — tr[pF(h)] = sup |E(h) — F(h)|| =sapd(p®,pF), (22)
S hsn peS

kehpe

where A := {h : R — R|h bounded. |hiz)— hiy)| < |z —y| vz,y = R}, and E(h) = [ hiz)E(dz). The
funetion d is the so-called Monge metric between probahility distributions on B.

Werner's joint-measurement uncertainty relation then holds for any observable M on phase space, with
marginals My, M;:

d(M,,Q) - d(M;,P) > Ch. (23)

A erucial step of the proof consists in showing that for any M there is a covariant phase space ohservable G
whose associated distances d(Gq1, Q) and d( G2, P) are not greater than those of M. The tightest lower bound
for the product of distances can thus he determined within the class of covariant phase space ohservahbles
and has a value of approximately 0.3047. We note that for a covariant &, with generating m. one has

#61.Q) = [ law(da). diG2.P) = [ lpim®(dp). (24)
The relation (23) states that for any attempted joint measurement in which one marginal serves to

estimate position and the other marginal serves to estimate momentum, the marginal ohservables canmot
both be arbitrarily close to position and momentum, respectively.
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Example 2 Trivial observables on R (E(X) =p(X JI. X = B(R)) have infinite Werner distance from sharp
momentum P: d(ul.P) =

Take the family of functions hp(z) =n — |z —cn — 0| if |z — e —n| < n. and hy(z) =0 otherwise; here
(Cr)ncn 5 an increasing sequence of positive numbers still to be determined. Note that h, = A. We have
||P[h )|| = hnlen ) =n, so this approaches infinity as n — .

For a trivial observable E we obtain E{hy) = [hpdul =: u(hy) I. We show that for a suitable choice of
the sequence ., one obtains ||E{hy)|| = plha) — 0 asn — .

Let ¢y, be such that the set I, = (—0,ca] has measure p(I,) = 1 —1/n®, so that u(R\ I,,) = pl(en,x)) <
1/n?. Then

cnf2n
|E ()| = ) = f h(z)pt(d) < nps((ea,00)) < 1/n.
By the triangle megquality for norms we get

IPtAs) — Eha)| = [[P(he)ll — IE(Bs)]| > 5 —1/n.
It follows that the distance d(P. E) = s0.[0

For the observables M on phase space discussed in Example 1. with margimals M; = Q. M5 =
oceurs in certain models of sequential measurements where first Q) is measured, followed by a measurement of
P. The sharp position measurement thus distorts the subsequent momentum measurement, and Example 2
demonstrates that Werner's uncertainty relation is recovered in that d(M;Q) = 0 goes along with d{M3, P) =
=, The next example exhaustively generalizes this conclusion.

Example 3 Let M be an observable on phase space R? whose first marginal M,y is sharp position Q. Then
the second marginal Mz has infinite Werner distance from sharp momentum P. (This case was not covered
by Werner's proof. which required the distances to be finite.)

Proof. We note first that all positive operators (effects ) Maz( X)) in the range of My commute with Q and
are thus functions of Q) (see, e.g., [T] (quant-ph/0610122). Thus one can write M2(X) = [ Q(dg)m(g. X),
where the functions m(-, X ) are defined almost everywhere for all (Borel) subsets X of R, and X — mig. X))

po 100010 is then a probability mensure. We consider states p with the same fired position distribution, p® = p, and
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‘We note that Hall [7] uses somewhat different definitions of inaccuracy, but arrives at similar conclusions,
including also the situation where in estimating the simultaneous values of two observables, one uses prior
information about the state. The ahove critical comments apply to this approach. as well as to an inaccuracy-
disturbance trade-off relation studied by Ozawa [?] who uses a measure of disturbance similar to the above

classical error measure.

4 Werner’s joint-measurement uncertainty relation

The Werner distance between two observables E. F' on R is defined as
d(E,F):= sup |tr[pE(h)] — tr[pF(k)] = sup |E(h) — F(h)|| =sapd(p®,pF). (22)
k s BsA psS

EApe

where A :== {h : R — R|h bounded. |hiz) — hiy)| < |z —y| vz,y = B}, and E(h) = [ hiz)E({dzx). The
function d is the so-called Monge metric between probability distributions en R.

Werner's joint-measurement uncertainty relation then holds for any observable M on phase space, with
marginals My, My:

d(My,Q) - d(M;,P) > CH. (23)

A erucial step of the proof consists in showing that for any M there is a covariant phase space ohservable &
whose associated distances d(&, Q) and d( G2, P) are not greater than those of M. The tightest lower bound
for the product of distances can thus he determined within the class of covariant phase space ohservables
and has a value of approxdimately 0.3047. We note that for a covariant ¢, with generating m. one has

4(€1.Q) = f lgjm®(dg), d(CpP) = [ [pjm® (dp). (24)

The relation (23] states that for any attempted joint measurement in which one marginal serves to
estimate position and the other marginal serves to estimate momentum, the marginal ohservables cannot
both be arbitrarily close to position and momentum, respectively.
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‘We note that Hall [7] uses somewhat different definitions of inaccuracy, but arrives at similar conclusions,
including also the situation where in estimating the simultaneous values of two observables, one uses prior
information about the state. The ahowve critical comments apply to this approach. as well as to an inaccuracy-
disturbance trade-off relation studied by Ozawa [?] who uses a measure of disturbance similar to the above

classical error measure.

4 Waerner’s joint-measurement uncertainty relation

The Werner distance hetween two observables E. F' on R is defined as
d(E,F) = sup |tr[pE(h)] — tr [oF(h)] = sup | E(h) — F ()| =supd(s®,p" ). (22)
s RsA =

kshpcs

where A := {h : R — R|h bounded. |h(z) — hiy)| < |z —y| vz,y = B}, and E(h) = [ hiz)E(dz). The
function d is the so-called Monge metric between probability distributions on R.

Werner's joint-measurement uncertainty relation then holds for any observable M on phase space, with
marginals M, My:

d(My,Q) - d(M;,P) = CH. (23)

A crucial step of the proof consists in showing that for any M there is a covariant phase space observable &
whose associated distances d(&, Q) and d( G2, P) are not greater than those of M. The tightest lower bound
for the product of distances can thus be determined within the class of covariant phase space ohservables
and has a value of approximately 0.3047. We note that for a covariant &, with generating m. one has

461,Q) = [ lgm®(da). d(G2.P) = [ Iplm® (dp). (24)
The relation (23) states that for any attempted joint measurement in which one marginal serves to

estimate position and the other marginal serves to estimate momentum, the marginal ohservables cannot
both be arbitrarily close to position and momentum, respectively.
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‘We note that Hall [?] uses somewhat different definitions of inaccuracy, but arrives at similar conclusions,
including also the situation where in estimating the simultaneous values of two observables, one uses prior
information about the state. The abowve critical comments apply to this approach. as well as to an inaccuracy-
disturbance trade-off relation studied by Ozawa [?] who uses a measure of disturbance similar to the above

classical error measure.

4 Werner’s joint-measurement uncertainty relation

The Werner distance hetween two observables E. F on R is defined as
d(E,F):= sup [|tr[pE(h)] — tr [pF(h)] = sup | E(h) — F (k)| =supd(p”,p"). (22)
s heA pss

kshpe

where A := {h : R — R|h bounded. |h(z) — hiy)| < |z —y| vz,y = B}, and E(h) = [ hix)E(dz). The
function d is the so-called Monge metric between probability distributions en R.

Werner's joint-measurement uncertainty relation then holds for any observable M on phase space, with
marginals My, My:

d(My,Q) - d(M;,P) = CH. (23)

A erucial step of the proof consists in showing that for any M there is a covariant phase space ohservable &
whose associated distances d(&1, Q) and d( G2, P) are not greater than those of M. The tightest lower bound
for the product of distances can thus be determined within the class of covariant phase space ohservables
and has a value of approximately 0.3047. We note that for a covariant ¢, with generating m. one has

461.Q) = [ lgm®(da). d(G2.P) = [ Iplm® (dp). (24)
The relation (23) states that for any attempted joint measurement in which one marginal serves to

estimate position and the other marginal serves to estimate momentum, the marginal ohservables cannot
both be arbitrarily close to position and momentum, respectively.
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Example 2 Trivial observables on R (E(X) = u(X )I. X = B(R)) have infinite Werner distance from sharp
moementum P: d(ul.P) =

Take the family of functions hp(z) =n — |z —cn — 0| if |2 —en —n| < n. and hy(z) =0 otherwise; here
(Cr)nch &5 an increasing sequence of positive numbers still to be determined. Note that h, = A. We have
[|P(Rn)|| = hnlca) =n, so this approaches infinity as n — .

For a trivial observable E we obtain E{h,) = [ hadul =: p(ha)I. We show that for a suitable choice of
the sequence c,. one obtains || E(h, )| = plhs) — 0 asn — oc.

Let c,, be such that the set I, = (—20, ca] has measure u(I,) = 1—1/n?, so that y(R\ I,) = p((€n. ) <
1/n*. Then

cnH2n
|E (Bl = ) = f o (2)p(dz) < np((en oc)) < 1/n.

By the triangle inequality for norms we get
IP{hn) — E(ha)| = |[P(A=)]| — |[E(Rs)|| > n —1/n.
It follows that the distance d(P.E) = 0.0

For the observables M on phase space disenssed in Example 1. with marginals M; =Q, Mz =u [..... This
oceurs in certain models of sequential measurements where first Q is measured, followed by a measurement of
P. The sharp position measurement thus distorts the subsequent momentum measurement, and Example 2
demonstrates that Werner's uncertainty relation is recovered in that d(M;Q) = 0 goes along with diM3, P) =
=¢. The next example exhaunstively genersalizes this conclusion.

Example 3 Let M be an observable on phase space B* whaose first marginal M, is sharp position Q. Then
the second marginal Mz has infinite Werner distance from sharp momentum P. (This case was not covered
by Werner's proof, which required the distances to be finite.)
Proof. We note first that all positive operators (effects ) Mz( X in the range of M; commute with () and
are thus functions of Q) (see, e.g., [T] (quant-ph/0610122). Thus one can write M2(X) = [ Q(dg)m(q. X),
where the functions m(-, X ) are defined almost everywhere for all {Borel) subsets X of R. and X — miq. X))
is then a probability measure. We consider states p with the same fired position distribution, p9 = p, and
06100016 compute Page 45/63
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Let ¢ be such that the set I, = [—20, Cn] Ras measure (il ] = I —I/n™, so that p(l\ I, ] = f[ca, o)) <
1/n*. Then

cnf2n
|E ()| = il k) = f i (z)pt{dz) < np((emy 00)) < 1/m.

By the triangle inequality for norms we get
IP(Ar) — E(ha)| = [[P(A=)]| — |E{fx)|| > n —1/n.
It follows that the distance d(P,E) = oc.0

For the observables M on phase space discussed in Example 1, with marginals M; = Q. M5 =u I..... This
oceurs in certain models of sequential measurements where first Q) is measured, followed by a measurement of
P. The sharp position measurement thus distorts the subsequent momentum measurement, and Example 2
demonstrates that Werner's uncertainty relation is recovered in that d(M1Q) = 0 goes along with diM3, P) =
=¢. The next example exhanstively generalizes this conclusion.

Example 3 Let M be an observable on phase space R? whaose first marginal M is sharp position Q. Then
the second marginal Mz has infinite Werner distance from sharp momentum P. (This case was not covered
by Werner's proof, which required the distances to be finite.)

Proof. We note first that all positive operators (effects ) Mz( X)) in the range of M; commute with ()} and
are thus functions of Q (see, e.g., 7] (quant-ph/0610122). Thus one can write M2(X) = [ Q(dg)m(g. X).
where the functions m(-, X ) are defined almost everywhere for all {Borel) subsets X of R, and X — mig, X)
is then a probability measure. We consider states p with the same fired position distribution, p% = p, and
compute

tr [pMa(h)] = [ h(z)mg(dz), my(X) = f p(daymig, X).

We will let b run through a family h, = A and p through a family p, = S, such that p3 = p and
tr [pMaihy )] — 0, while tr [paP{hn)] — oc. This shows that d{M3,P) = ~.

Choose hy, as in Erample 2. where we have now p = my. This gives tr [poM2(hy)] — 0 for any py, (yet
to be specified) with p! = p.

Let pro = W0, cn+n—(c1+1) ) W(0, cn+n—(c1+1))*. with py a state whose momentum distribution is
centered symmetrically at ¢, + 1. the peak location of hy. Then the momentum distribution of p,, is centered
at the peak location e, +n of h,. Also note that pf = p? =: p. Specifically we take p,, such that the densities
of(p) =x1,(p). In=[c, +n —1/2, 6. +n+1/2]. Then we have tr[p,P(h,)]=n—1/4— oc asnm —occ. O

06100016 Example 4 Let g be a bounded measurable function on B. Then the Werner distance of Q and Q9 is Page 46/63
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Let eg ; e setl, = |—x,Cxn| has measure ((l,) = 1 —1/n", so that gl I,] = {l{[€x,20)) <

1/n*. Then

[

cp4-2n
|EGl =pthn) = [ olaulda) < nul(em <) < 1/n.

By the triangle inequality for norms we get
IP(Ar) — E(ha)| = [|P(Ra)]| — |E{Ax)|| > n —1/n.
It follows that the distance d(P.E) = oc.0

For the observables M on phase space discussed in Example 1, with marginals M, =Q, M, =u I..... This
ocours in certain models of sequential measurements where first Q is measured, followed by a measurement of
P. The sharp position measurement thus distorts the subsequent momentum measurement, and Example 2
demonstrates that Werner's uncertainty relation is recovered in that di M, Q) = 0 goes along with diM5. P) =
=¢. The next example exhanstively generalizes this conclusion.

Example 3 Let M be an observable on phase space R? whaose first marginal M is sharp position Q. Then
the second marginal Mz has infinite Werner distance from sharp momentum P. (This case was not covered
by Werner's proof, which required the distances to be finite.)

Proof. We note first that all positive operators (effects ) Mz( X)) in the range of M; commute with () and
are thus functions of Q (see, e.g., [T] (quant-ph/0610122). Thus one can write M2(X) = [ Q(dg)m(g. X),
where the functions m(-, X ) are defined almost everywhere for all {Borel) subsets X of R, and X — mig, X))
is then a probability measure. We consider states p with the same fired position distribution, p2 = p, and
compute

tr [pMa(h)] = f h(z)mgl(dz), my(X) = f p(da)mig, X).

We will let b run through a family h, = A and p through a family p, = S, such that p3 = p and
tr [pnMa{ by )] — 0, while tr [poP{hn)] — oc. This shows that d{M3,P) = ~.

Choose hy, as in Example 2. where we have now g = my. This gives tr [poMa(hy)] — 0 for any p, (yet
to be specified) with p! = p.

Let pro = W0, cn+n—ic1+1) ) W(0, cn+n—(c1+1))*. with py a state whose momentum distribution is
centered symmetrically at ¢y + 1, the peak location of hy. Then the momentum distribution of p,, is centered
at the peak location ¢, +n of h,. Also note that pf = p? =: p. Specifically we take p, such that the densities
ph(p) =x1.(p)s In =[cn +7 —1/2,6, + n+1/2]. Then we have tr[p,P(h,)] =n—1/4— oo asn —occ. O

LA Example 4 Let g be a bounded measurable function on R. Then the Werner distance of Q and QF is Page 47/63
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‘We note that Hall [7] uses somewhat different definitions of inaccuracy, but arrives at similar conclusions, -

including also the situation where in estimating the simultaneous values of two observables, one uses prior

information about the state. The above critical comments apply to this approach. as well as to an inaccuracy-

disturbance trade-off relation studied by Ozawa [?] who uses a measure of disturbance similar to the above

classical error measure.

4 Werner’s joint-measurement uncertainty relation

The Werner distance hetween two observables E. F on R is defined as
dE.F):= sup |tr[pE(R)] — tr[oF(h)] = sup | E(h) — F(h)]| = supd(p®. 7). (22)
k b3 hcA p=s

A pe

where A := {h : R — R|h bounded. |h(z) — hiy)| < |z —y| vz,y = B}, and E(h) = [ h(zx)E(dzx). The
function d is the so-called Monge metric between probability distributions en R.

Werner's joint-measurement uncertainty relation then holds for any observable M on phase space, with
marginals My, My:

d{M,.Q) - d(M;.P) = Ch. (23)

A erucial step of the proof consists in showing that for any M there is a covariant phase space ohservable &
whose associated distances d(&1, Q) and d( G2, P) are not greater than those of M. The tightest lower bound
for the product of distances can thus be determined within the class of covariant phase space ohservables
and has a value of approximately 0.3047. We note that for a covariant ¢, with generating m. one has

#61.Q) = [ lawO(da). d(G2.P) = [ lpm®(dp). (24)
The relation (23) states that for any attempted joint measurement in which one marginal serves to

estimate position and the other marginal serves to estimate momentum, the marginal ohservables cannot
both be arbitrarily close to position and momentum, respectively.
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It follows that the distance d(P. E) = 0.0

For the observables M on phase space discussed in Example 1. with marginals M; = Q. M> =u I..... This
occurs in certain models of sequential measurements where first Q) is measured, followed by a measurement of
P. The sharp position measurement thus distorts the subsequent momentum measurement, and Example 2
demonstrates that Werner's uncertainty relation is recovered in that d{M,Q) = 0 goes along with d{M>, P) =
=, The next example exhaustively generalizes this conclusion.

Example 3 Let M be an observable on phase space R? whose first marginal M is sharp position Q. Then
the second marginal M2 has infinite Werner distance from sharp momentum P. (This case was not covered
by Werner's proaf. which required the distances to be finite.)

Proof. We note first that all positive operators (effects ) Ma( X)) in the range of My eommute with Q and
are thus functions of Q@ (see, e.g., [1] (quant-ph/0610122). Thus one can write M2(X) = [ Q(dg)m(qg. X),
where the functions m(:, X ) are defined almost everywhere for all (Borel) subsets X of R, and X — miq, X))
is then a probability measure. We consider states p with the same fired position distribution, p% = p, and
compute

tr [pMa(h)] = f h(zmy(dz), my(X) = f p(dg)m(g, X).

We will let b run through a family h, = A and p through a family p, = S, such that p? = p and
tr [paMzi{hy )] — 0, while tr [p.P(h,)] — oc. This shows that d(Mz,P) = .

Choose h,, as in Erample 2. where we have now p = my,. This gives tr [p,Ma(h,)] — 0 for any p, (yet
to be specified) with p9 = p.

Let po = W0, cn+n—(c1+1)) o W(0, e +n—(cy +1))*. with p; a state whose momentum distribution is
centered symmetrically at ¢; 4 1. the peak location of hy. Then the momentum distribution of p,, is centered
at the peak location e, +n of h,,. Also note that p% = 2 —: p. Specifically we take Prn such that the densities
ph(p) =x1.(P): In =[cn +7n —1/2,6, + n +1/2]. Then we have tr[p,P(h,)] =n—1/4— c asn —occ. O

Example 4 Let g be a bounded measurable function on B. Then the Werner distance of Q and QF is
d(Q.Q?) = x.

Proof. We will show that ||Q(h,) —Q9(h,)|| — ¢ as n — oo for a suitable sequence of functions h, = A.
To this end we use the inequality ||Q(hn) — QF(ha)|| = |||Q(R=)|| — ||Q%(Rn)|||. and choose h, such that
[|Qlh.)|| — oo as n — oc. while ||Q9(h, || will remain bounded.

Let |g{z)| < go. Choose holz) =n— |z —mn| if |z —n| = n and R,(z) = 0 otherwise. Then we have
hy € A. Further, Q(hs) = [ halz)Q(dx), so ||Q(h,)|| =n — = as n — oc. Next, we see that

06100016 Page 51/63
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the mﬂmid marginal Mz has infinite Wenier d:stmce: from shm"p m-:rmentmn B ."Thu case was not Eﬁiﬂrﬂd
by Werner's proof, which required the distances to be finite. )

Proof. We note first that all positive operators (effects ) Mz( X ) in the range of Mz commute with ) and
are thus functions of Q (see, e.g., [T] (quant-ph/0610122). Thus one can write M2(X) = [ Q(dg)m(q. X),
where the functions m(-, X ) are defined almost everywhere for all {Borel) subsets X of R, and X — mig X))
is then a probability measure. We consider states p with the same fired position distribution, p% = p, and
compute

tr [pMy(h)] = f h(z)my(dz), my(X) = f p(da)mi(g, X).

We will let b run through a family h, = A and p through a family p, = S, such that p3 = p and
tr [paMal by )] — O, while tr[psP(hn)] — oc. This shows that d{M2,P) =~

Choose h, as in Erample 2. where we have now y = myp. This gives tr [ppoMa(hy )] — O for any p, (yet
to be specified) with p! = p.

Let po = W0, cn+n—(c1+1)) i W(0, cn+n—(c1+1))*. with py a state whose momentum distribution is
centered symmetrically at ¢y + 1. the peak location of hy. Then the momentum distribution of p,, ts centered
at the peak location ¢, +n of h,,. Also note that p% = p? =: p. Specifically we take p, such that the densities
h(p) =x1.(p). In =[c, +n—1/2,c, +n+1/2]. Then we have trp,P(h,)] =n —1/4— oo asn — occ. [

Example 4 Let g be a bounded measurable function on B. Then the Werner distance of Q and Q9 is
‘d{Q}qg} ke

Proof. We will show that ||Q{hn) — Q% (hn)|| — < as n — x for a suitable sequence of functions h, = A.
To this end we use the ineguality ||Q(hn) — Q%(ha)|| = |||Q(Ra)|| — ||Q%(Ba)|||. and choose hn such that
[|QlA)|| = oo as n — oc. while ||Q%(h,)|| will remam bounded.

Let |gixr)| < go. Choose hplz) =n— |z —n| if |r —n| £ n and h,(z) = 0 otherwise. Then we have
hy € A. Further, Q{hn) = [ ha(z)Q(dzx), so ||Q(h,)|| =n — ¢ as n — oc. Next, we see that

Q¥ () = f i (£)QF(dt) = j i (9(2))Q(dz)

is a bounded operator since |h.(g(x))| < go for some positive constant go = R. and so ||Q7(ha)|| < go. O

This example can be taken as an indication that the Werner metric is somewhat coarse: it assigns infinite
distance to the position observable from any of its bounded functions. although the latter might in certain
cirenmstances be considered as reasonable approximations to the former.
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5 Joint-measurement uncertainty relation for error bars

We will say that a state p is (Q-)localized in an interval I ; if the position distribution ¥ vanishes outside
I ;.5 similarly, p is localized in the momentum interval [, s if the momentum distribution o" vanishes outside
docis

Let = = (0.1),§ > 0. We say that an observable M, onR is an (=, §)-approxdmation to Q if there is a
positive number w < ~c such that for all ¢ = R and all states g localized in I;.5. one has p*([,...) > 1—=. The
infimum of all such w is called the imaccuracy (of M; with respect to Q) and will be denoted A, 5(M;. Q).
Finally. the resolution (of M, with respect to Q) is defined as the smallest inaccuracy across all 4 = O
A.(M;,Q) = infs A, 5(My. Q).

The maccuracies describe the range of values within which the input values can be inferred from the
output distributions. with confidence level =, given initial localizations within 4.

‘We propose to accept M; as representing an approrimate measurement of Q) (in short: M; is an approx-
imation to Q) if M; has finite accuracies, that is, A, 5(M;. Q) < og, for all =, > 0. An approximation M;
of Q is said to have finite resolution if A(M,Q) >0forall c > 0.

Similar definition apply to approximations M; of momentum P, with ensuing inaccuracy Ao ;( Mz, P)
and resohation A, (M5, P).

Using this notion of approximation, we say that an observable on phase space M is an (=, 4 |-approrimate
joint observable of position and momentum if the marginals M. Mz are (=. 4 -approximations to Q and P,
respectively. For later use we state this condition explicitly:
there are positive numbers w, w" < oc such that the following conditions hold:

(I) for all ¢ =R and all p localized in I, tr[pMi(Iw)] > 1 —=
(II) for all p < R and all p localized in Is, tr[pMy(L,0 )] > 1 — <.

Thus, a joint measurement of position and momentum is required to yield pointer distributions which
are concentrated around the values of position and momentum if these are prepared to lie within intervals
I,s and I, s, respectively; and it is required that for given confidence level =, the associated bulk widths of
the output distributions, the inaccuracies A, 5(M71, Q). A 5( M3z, P) are finite.
We propose to accept as an approrimate joint observable of Q.P any observable M on phase space that
06100016 has ﬁﬂﬂ-’ﬁ accuracies JﬁErJ{M_‘”Q} < O, .&E_J{Mz, PJ < o forall e > llé = 0. Page 53/63
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A(M,, Q) = inf, A_y(My Q).

The imaccuracies describe the range of values within which the input values can be inferred from the
output distributions, with confidence level =, given initial localizations within 4.

‘We propose to accept M; as representing an approrimate measurement of () (in short: M; is an approz-
imation to Q) if M; has finite accuracies, that is, A. 5(M;. Q) < o, for all =,§ > 0. An approximation M;
of Q is said to have finite resolution if A_.(M;,Q) >0 forall = > 0.

Similar definition apply to approximations M; of momentum P, with ensuing inaccuracy Ao ;( M. P)
and resohation A (M3, P).

Using this notion of approximation, we say that an observable on phase space M is an (=, 4 | -approzimate
joint observable of position and momentum if the marginals M;, Mz are (. 4 -approximations to Q and P,
respectively. For later use we state this condition explicitlv:
there are positive numbers w. w" < oc such that the following conditions held:

(I) for all g = and all p loealized in [5, tr[pMh([gw)] > 1 —=;
(II) for all p = B and all p localized in I ;, tr[pM5([,.,v)] > 1 —=.

Thus. a joint measurement of position and momentum is required to yield pointer distributions which
are concentrated around the values of position and momentum if these are prepared to lie within intervals
I,.s and @5, respectively: and it is required that for given confidence level =, the associated bulk widths of
the output distributions, the inaccuracies A, 5(M71,Q). A, s(M3, P) are finite.

‘We propose to accept as an approrimate joint observable of Q,P any observable M on phase space that
has finite accuracies A, s(M,,Q) < o0, A (M2, P) <« ¢ forall=s > 0.4 > 0.

(It is straightforward to adapt this definition and the subsequent considerations to the case where the
conditions for M, and M: formulated with different values =, 2" and 4.4" of the confidence parameters and
localization widths.

It is possible to characterize the case of a sharp measurement of . First note

A.5(Q.Q) =4 and A.(Q.Q)=0. (25)
Proposition 1 Let M; be an approzimation to Q. Then the following are equivalent:
(a) A, 5(M;.Q) =4 for all= £ (0,1),4 > 0;
() M =Q.
06100016 Pmof Assume | b) lmlds Let = E (D l) 5 :} ﬂ Certamly one canclmuse w = § so that for any ¢ = I and page 54/63
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Using this motion of approcxamation, we say thalb an observabDle On phase space M 15 all (£, § [-apProTiimaie

joint observable of position and momentum if the marginals M. M3 are (. 4 ]-approximations to Q and P,
respectively. For later use we state this condition explicitly:
there are positive numbers w. w" < oc such that the following conditions hold:

(I) for all g =R and all p localized in [,4, tr[pMi(Igw)] > 1 —=5
(IT) for all p = B and all p localized in I 4, tr[pMy{I, )] > 1 —=.

Thus, a joint messurement of position and momentum is required to yield pointer distributions which
are concentrated around the values of position and momentum if these are prepared to lie within intervals
I,.s and I, respectively; and it is required that for given confidence level =, the associated bulk widths of
the output distributions, the inaccuracies A, 5({ M, Q). A- s(M2, P) are finite.

‘We propose to accept as an approrimate joint observable of Q,P any observable M on phase space that
has finite accuracies A, 5(M7,Q) < >0, AL 5(M2.P) <« x foralls > 0,4 > 0.

(It is straightforward to adapt this definition and the subsequent considerations to the case where the
conditions for M; and M formmulated with different values =,c” and 4.4" of the confidence parameters and
localization widths. )

It is possible to characterize the case of a sharp measurement of Q. First note

A-5(Q.Q) =4 and A.(Q.Q) =0 (25)
Fovb i Eok i fe it e € (T e Sl i aielonts
(a) A s(My.Q) =45 for all = € (0,1),5 > 0
(b) My =0Q.

Proof. Assume (b) holds. Let = = (0, 1), é > 0. Certainly one can choose w = § so that for any g € R and
any state p wﬁhpq[fg;g} =1, we also have pq[LEg] > 1 —=. This shows that A_3(Q.Q) < 4. FA_;(Q.Q)
were smaller than 4. one could choose w < 4§ such that still p9(I,.,) > 1 — = for all p localized in I ;5. But
this is vielated by any p localized in I\ I ... for which p9(I,..) = 0. (Here we are using the continuity of
the (spectrum) of Q.) Hence A, 5(Q.Q) =4.
Conversely. assume that (a) holds. Consider any = = (0.1),4 > 0. For w = A_ 5(M;.Q) =4, we have. for
all g € B and all p with p%(I.s) = 1. that p*1(IL.,) > 1 — = This entails for any vector state o for which
Q(Igs)e = ¢ that (| Mi(Igs)e) = 1 —=. As this holds for any = = (0, 1), it follows that {(p|M1(Igs)e) = 1.
This entails that Q(I;;) = Mi({I ). Since g £ B and § > 0 are arbitrary, this ordering holds for any interval
06100016 J =[a,b). Let J be a ma:uher of a part.ltmn J of Il. then I E Q[J ) = 3., M,(J,) = I. This ensures Page 55/63
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Proposition 2 Let M be an observable on phase space whose first marginal coincides with sharp position,
My =Q. so that A, 5({M;.Q) =0. Then the second marginal M2 cannot be an (=, §)-approrimation to P for
any £ > 0,4 > 0, that is, A, 5{M3, P) = c0. In particular, M cannot be an approrimate joint observable to
Q. P.

Proof. Lete (0 <= < 1) and § > 0 be given and w’ > 0 be arbitrary. We hawve to show that there is an
interval I 5 and a state p localized in I,;5 so that trfpMa(Ipw)] <1 —-=.

As noted in Example 3. since M; = Q. the observable M is commutative, and every effect in its range
is a function of @, and we can write: M2(X) = [miq X )Q(dr). Consider a partition of R into disjoint
intervals I, ... Since I = Ma(R) =% Ma(l,, o ) (ultraweskly), it follows that for every state p.

tr [pMaz(Ip, )] =qu(d§erEqsfp.:w*}—'—ﬂ as |pn| — oe.

Let pg be localized in I, 5. that is, the distribution g vanishes outside that interval Then p, =
W0, pr )0 is localized in I, 5, while the position distribution is unchanged, p; = pDQ.

For the g,lmn.s = (0,1), there is an n = N such that for the fixed state py, tr [paMs (I, W ))] < 1 —=
Then, since p& = pQ. WEBISD]]H."FE tr [prnMa(lp, )] < 1 — =, whereas p, is localized in I, 5. O

This result reproduces. in particular. the well-lmown fact that there is no observable on phase space
whose marginals are sharp position and sharp momentum.

As an observable M on phase space with M; = Q cannot be regarded as an approximate joint mea-
surement of position and momentum. it is appropriate to consider (=. § -approximate measurements whose
inaccuracies are bounded away from 0 across all §. Thus we focus on the class of approximate joint mea-
surements of Q, P with finite resolutions, that is, A (M, Q) > 0. A (M3, P) > 0. We will see shortly that
this class is not empty. In particular. all covariant phase space observables belong to it. Our main result is
the following.

Theorem 1 Let M be an approrimate joint observable for Q,P. Then for all 2,8 with0 < =< 1/2, § > 0,
the inaccuracies and resolutions of M, and M, satisfy the uncertainty relation

AL 5(M1,Q) - A, 5(Mz,P) = AL (My.Q) - A.(Mz,P) > C(e)h. (26)

For the proof of Theorem 1. we set out to show that for each member M in this class of approx<imate
joint messurements. there is a covariant phase space observable G whose resolutions are not greater than
06100016 those of M, that is, A (G, Q) < A (M;,Q), ¢ =1, 2. We then use the results reviewed In Section 2 to prove Page 56/63
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W(ﬂ,pn}m is localized in [ 5, whj.lethe pmrmndmhumnmunﬂimnged. Q= q
For the g,lwns = (0,1), there is an n = M such that for the fixed state p,, tr[p&M}{ w )] < 1—=

Then, since p& = p9. we also have tr[p, Ma(I,, )] < 1 — =, whereas p,, is localized in Ipm,s. O

This result reproduces. in particular, the well-lmown fact that there is no observable on phase space
whose marginals are sharp position and sharp momentum.

As an observable M on phase space with M; = Q cannot be regarded as an approximate joint mea-
surement of position and momentum. it is appropriate to consider (=. 4 }-approximate messurements whose
inaccuracies are bounded away from 0 across all §. Thus we foeus on the class of approximate joint mes-
surements of Q, P with finite resolutions, that is. A (M, Q) > 0. A (M3, P) > 0. We will see shortly that
this class i= not empty. In particular. all covariant phase space observables belong to it. Our main result is
the following.

Theorem 1 Let M be an approrimate joint observable for Q,P. Then for all 2.8 with0 < =< 1/2, § > 0,
the inaccuracies and resobutions of M, and M- satisfy the uncertainty relation

AL 5(M1,Q) - A, 5(Mz,P) = AL (My,Q) - A.(Mz,P) = C(e)h. (26)

For the proof of Theorem 1, we set out to show that for each member M in this class of approximate
joint measurements. there is a covariant phase space observable G whose resolutions are not greater than
those of M, that is, A (G, Q) = A (M;.Q), i =1.2. We then use the results reviewed in Section 2 to prove
the uncertainty relation (26) for G.

Following Werner, we make use of the concept of the invariant mean on the group of phase space transla-
tions to introduce a covariant phase space observable M?®" associated with anyv observable M on phase space.
The invariant mean is a linear functional n on C{R*) which is linear, positive (it sends nonnegative functions
to monnegative numbers), and has the invariance property nim.f) = n(f). This extends the operation of
integrating [ over an interval. dividing by the imterval length, and letting that lemgth go to infinity. While
this operation only works for a very limited class of functions, the existence of 1 is guaranteed by the axiom
of choice.

Any observable M on phase space can be viewed as a functional on the space C,_(B%) of bounded
uniformly continuous functions via M( f) = [ flq, p)dM (q.p). For any f = C,.(R*), the operator M*¥( f) is
defined wvia the following equations. required to hold for all p = S5:

tr [pM**(£)] = n(uip. f)), u(p, f)(g.p) = tr [Wig,p)*pWi(a. p)M (r(45,f)] - (27)

M3 is defined first only as a positive, normalized. linear funetional f — M?®*"(f) on Cy.(R). The covari-
06100016 ance of M ' is an immediate consequence of the invariance of . We will show that under the assumptions of Page 57/63
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It seems that the definition of approximsate measurement based on finite inaccuracy and finite resolution
is somewhat more restrictive than the definition based on finite Werner distances d{M;. Q). d{M3,P). al-
though the latter condition need not be satisfied for a phase space observable M to be an approximate joint
messurement of , P.

Following the reasoning of Werner [1]| these results can be adapted as follows to cover the second form of
messurement uncertainty relation for accuracy and disturbance. Asswme a (sharp or approximate) position
messurement is made. This will in general lead to a change of the state and hence a change of the momentum
distribution, which can be tested by a subsequent momentum messurement. This sequence of measurements
induces an observable M on phase space whose first marginal is the (approximate) position observable
measured first. while the second marginal represents the momentum which is distorted by the position
messurement. Since our measures of error quantify the differences between the marginal distributions M. A,
and their corresponding sharp counterparts Q). P. the measurement resolution for the first marginal describes
the accuracy of the first measurement. while the resolution for the second marginal represents a measure of
disturbance of the momentum distribution.

The joint meassurement uncertainty relation is thms seen to entail the accuracy-disturbance uncertainty
relation. Finally, we note that the joint messurement uncertainty relation was obtained by reduction to
the covariant case, for which the standard type of uncertainty relations for quantum states was utilized to
dednce the joint measurement uncertainty relation. Im this way, all three forms of uncertainty relations are
ultimately seen to be formally equivalent within quantum mechanics.
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[1] R.F. Werner, quant-ph/0405134.

4 827 x11.6%in

File Edit View Document Tools Window Help (-a-Q v o &, (@D (4:14) E Wed 5:04 PM @

Page 58/63

e . —_— =1 h |~ S




i Adobe Reader :I'_IIE Edit View Document Tools ‘u':ﬁndnw Help &> ‘C:? ~ 4 O @& «l4 E Wed 5:04 PM @
A S @ W st Bsamse @ Q- 0sx -0 |0 &- '
06 ¢ ur-talk(161006).pdf =

It seems that the definition of approximate measurement based on finite inaccuracy and finite resolution
is somewhat more restrictive than the definition based on finite Werner distances d{M;. Q). d{M3,P). al-
though the latter condition need not be satisfied for a phase space observable M to be an approximate joint
messurement of , P.

Following the reasoning of Werner [1]| these results can be adapted as follows to cover the second form of
messurement uncertainty relation for accuracy and disturbance. Assume a (sharp or approximate) position
messurement is made. This will in general lead to a change of the state and hence a change of the momentum
distribution, which can be tested by a subsequent momentum messurement. This sequence of measurements
induces an observable M on phase space whose first marginal is the (approximate) position observable
measured first. while the second marginal represents the momentum which is distorted by the position
messurement. Since our measures of error quantify the differences between the marginal distributions M. Al
and their corresponding sharp counterparts Q, P. the measurement resolution for the first marginal describes
the accuracy of the first measurement. while the resolution for the second marginal represents a measure of
disturbance of the momentum distribution.

The joint messurement uncertainty relation is thus seem to emtail the accuracy-disturbance uncertainty
relation. Finally, we note that the joint messurement uncertainty relation was obtained by reduction to
the covariant case, for which the standard type of uncertainty relations for quantum states was utilized to
dednce the joint measurement uncertainty relation. Im this way, all three forms of uncertainty relations are
ultimately seen to be formally equivalent within quantum mechanics.
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