Title: The Missing Link Between Dark Matter And Structure Formation

Date: Oct 18, 2006 02:00 PM

URL: http://pirsa.org/06100015

Abstract: Weakly interacting massive particles (WIMPs) are excellent candidates for cold dark matter. After the first millisecond, WIMPs have decoupled from standard model matter, both chemically and kinetically, they enter the free streaming regime and the formation of cosmic structure begins. Another 40 million years pass before the typical first structures enter the nonlinear regime and collapse to the first WIMPy halos. Therefore, it has been assumed that structure formation is insensitive to the WIMP field theory and can be neglected. However,

this leads to a monotonically increasing power of structure formation on small scales and some kind of regularization procedure would be required to make the hierarchical picture of structure formation well defined. It will be shown that nonequilibrium processes give rise to a physical regularization of hierarchical structure formation. This

has important consequences for indirect and direct dark matter searches which are sensitive to sub-galactic and sub-milli-parsec scales.

Furthermore, due the existence of a physical regulator, the problem

of structure formation can consistently be solved using N-body simulations.

MOTIVATION

Folklore from large scale tructure formation:

- $\frac{6\varepsilon}{6}$ = \triangle (k₁z) = $\frac{1}{4}$ (k₁z) \triangle (k₁z;)
- Continuation to small scales? Problem: 'small scale structure crisis'

 $\Delta \propto ln(h/k_{\rm g}) \sim ln(M_{\rm g}/M_{\rm W})$

- monotonically increasing power of density flucturtions on small scribes
- impossible to consistantly solve structure formation

What is missing?

small scale structure crisis" is a serious problem because

- resolution of numerical experiments (until recently) $M_{res} \approx 10^6 M_{\odot}$ (Steeler et al. 2003, astro-ph/0307026)
- # substructures is growing with resolution (Marcetal. 1998, Ap7 499, L5-L8)
- real experiments, e.g. Φ_{σ} = diffuse flux + line contribution α Δ^2 (Bergokrom et al. 2001, PRL 87, 251301; Whis et al. 2002, PRD 66, 123501; Bergebrun et al. 2005, JCAP 0504:004)

Need for a consistent theory of small scale structure formation!

MP_s

Weakly Interacting Massive Partiles are generic (= matural in extensions of the Standard Model) CDM andiclater.

Accumptions:

(4) I WIMP anti WIMP asymmetry (2) WIMP, have been in chamical and thermal equilibrium for Tas m

$$
G = (G_F m_{\nu}^2)^2 m_{\nu}^2 / m_{\nu}^4
$$

Chemical decoupling

 $\frac{m}{L_d} = \chi_{cd}^2(m,\omega) \approx 23 + ln \left(\frac{m}{100 \text{GeV}} \frac{2}{\omega} \frac{d \omega}{d \omega} \right)$

$$
m_{\text{line}} = x_{\text{ad}} - 2.4
$$
\n
$$
m_{\text{rad}} = 2.4
$$
\

(delied)

log Gel

Weakly Interacting Massive Partiles are generic (= maturel in extensions of the Standard Model) CDM andidates.

Accumptions:

- (4) I WIMP anti WIMP asymmetry
- (2) WIMP, have been in chemical and thermal equilibrium for T>> m

$$
(3) \quad \sigma_{e}^{e} \approx (G_F m_{\mu}^2)^2 m_{\mu}^2 / m_{\mu}^4
$$

A Chemical decoupling

$$
\frac{m}{T_{dd}} \equiv X_{cd} \left(m_{1} \omega \right) \approx 23 + \ln \left(\frac{m}{100 \text{ GeV}} \frac{2}{\omega} \frac{3 \text{ s}}{3 \text{ s}} \right)
$$

- Kinetic decoupling # last scattering $\frac{m}{T_{\text{hd}}} = X_{\text{dd}}(m_1 \tau_{\text{relax}}) \approx \left[7.40^{45} (\text{Jelad})^{4/4} \frac{(m_1}{\text{gosee}})\right] \frac{1}{3+e}$ $\frac{1}{2}$ $\frac{1}{2}$ (= 0 (Direc) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ + (geltd)⁻¹⁶ MeV
	- For $2 = 4$ (Hajorano) $T_{bd} = 34.2 (96 \text{ rad})^{-4/3}$ MeV $\left(\frac{32}{100 \text{ deg}}\right)^{1/4}$

HYDRODYNAMICS

- T>> Ted: single radiation fluid
	- $J_{rad}^{col} = m_{rad} U$, $T_{ad}^{col} = \epsilon_{rad} U \otimes U P_{rad} R$
- Ty> Ty: radiation = CDM J_a (a), T_a^{∞} , as {rad, cdm }
- T ~ Try : radiation < > CDM described

$$
\frac{d_{cdm}}{d_{cdm}} = \frac{1}{d_{cdm}} \times \frac{1}{d_{cdm}} \times \frac{1}{d_{cdm}} \times \frac{1}{d_{cdm}} = \frac{1}{d_{cdm}} \times \frac{1}{d_{cdm}} \times \frac{1}{d_{cdm}}
$$

$$
\mathbb{T}^{\omega} \cdot \mathcal{B}\left(\rightarrow \text{D+}\right) +
$$

bulk viscosity

KINETIC THEORY

T~ T_{hd} : WIMP phase space distribution

$$
F = F^{\omega} \cdot \underbrace{F^{\omega}}_{\text{nom-equilibrium}}
$$
\n
$$
(\rho \cdot \nabla) F^{\omega} = \oint_{\omega} [F^{\omega}]_{\rho = \omega} \cdot \rho = \omega \cdot \mathcal{U} + I \vec{P}
$$

Ansatz:

 $F^{(4)} = A_{(44)^*} + B_{(44)^*} \cdot n + C_{(44)^*} \cdot (m \cdot n + \frac{4}{3} h) + \cdots$

 n

The 1st and 2nd moments of F^{u} are

 $7^{cd} = 0$

$$
T^{\alpha 1} = \epsilon c_i^2 \tau_{relax} \cdot \left[\frac{5}{3} \left(\frac{\sqrt{3}}{2} \right) + \left(\frac{\sqrt{3}}{2} \right) \right]
$$

KINETIC DECOUPLING

Effect of 3.4 on \triangle : collisional damping at $T\sim T_{\text{ad}}$

$$
\Rightarrow \Delta'' + \frac{3+\frac{4}{3}\eta}{\epsilon} \frac{k^2}{q} \Delta' + c^2 k^2 \Delta = 0
$$

$$
\sum_{d}(k) = \left| \frac{\Delta(k, z_{4})}{\Delta(k, z_{4})} \right| = exp \left[- \left(\frac{k}{k_{d}} \right)^{2} \right]
$$

characteristic damping wavenumber: $k_d = \frac{3.76 \cdot 10^7}{M_{\text{PC}}} \left(\frac{m}{100 \text{ GeV}}\right)^{1/2} \left(\frac{T_{\text{kd}}}{30 \text{ MeV}}\right)^{1/2}$

FREE STREAMING

Effect of geodesic motion on Δ :

collision les dauping at $T < T_{kd}$

 $(P \cdot \nabla) F = 0 \qquad \wedge \qquad F|_{\omega} \propto \mathbb{D}_{\omega}(k)$

$$
\mathcal{D}_{\rho s} (k_{1}z) = \frac{\Delta (k_{1}z)}{\Delta (k_{1}z_{M})}
$$

$$
= \left[1-\frac{2}{3}(\frac{k}{3})^{5}\right] \exp \left[-\left(\frac{k}{4}\right)^{5}\right]
$$

Characteristic damping wavenumber:

 $R_{13} = \frac{4.7 \cdot 40^{6}}{M_{P2}} \frac{(m/4cc \text{ GeV})^{4/2} (T_{bd}/30 \text{ MeV})^{4/2}}{46.6 \pi (T_{bd}/30 \text{ MeV}) / 43.2}$

BENCHMARK WIMP MODELS $So far,$ $\Delta(k, z) = \mathbb{T}_{\Delta}^{\mathcal{A}_{k}}(k, z) \mathbb{D}(k) \Delta(k, z_{i})$ \propto $ln(k/k_{\rm{eq}})$ $exp[-(k/k_{\rm{d}})^2]$ Contribution from CDM microphysics: $D(h) = \left[1-\frac{2}{3}\left(\frac{k}{a_{12}}\right)^2\right]\exp\left[-\left(\frac{k}{a_{12}}\right)^2-\left(\frac{k}{a_{21}}\right)^2\right]$ Scales: k_a ~ 10² M_{pc}⁻¹ \approx 10⁻² H_M⁻¹ \approx 10⁻¹⁰ M_o k_{ps} 10⁶ M_{pe} ⁻¹ \approx 10⁻⁸ H_{eq} ⁻¹ \approx 10⁻⁶ M₀ $M_1 \rho$

TRANSFERFUNCTION

Baryons:

Z> 10⁶: baryous are tightly coupled to photons => photon diffusion damping creaes baryon density perturbations

 $Z \sim 10^4$: tight coupling breaks down, but

 $\Delta_b \n\in \Delta_{\text{cdm}}$

103> 2> Z₆ ~ 150 : post decoupling residual electrons prevent Δ_b from growing on scales $k > k_b \sim A_0^3 M_{pc}^{-1}$

=> neglect perturbations in the baryon fluid

 \Box CDM :

 $\Delta_{dm} = 63 c [ln(h/h_{eq}) + 6] (\frac{4+2q}{1+2})^{3/2}$

Note: $\Delta_{\text{dim}}(2*300_j\omega_{\text{dim}}\cdot 0_i446_j\omega_b\cdot 0_i024)$ \approx 0, 4 Δ due (2=300; Wedne = 0, 14, W= = 0,00)

TYPICAL 1st HALOS

Mass variance on comoving scale R: $\sigma^2(\mathcal{R},\mathbf{z}) = \int_{0}^{\infty} \frac{d\mathbf{k}}{\mathbf{k}} \; \mathbf{w}^2(\mathbf{R}\, \mathbf{k}) \; \mathbf{P}_\mathrm{a} \left(\mathbf{k},\mathbf{z}\right)$ Criterium for montinear regime: $\sigma^2(R, z_{ne}) = 1$ For WMAP best $f_i' \notin \neg n = \preceq$: $\frac{z}{2}$ ne = 60 ± 10 Mass of the 1st generation of subhalos: $M(R) = 24, 6 \cdot 10^{-7} M_{\odot} \frac{\omega_m}{9.14} \left(\frac{R}{P^c}\right)^3 \sim M_{\odot}$ Physical size at turn-around: $T = 1.05 \frac{R}{1 + z_{ne}^{max}} \approx 0.02 \text{ pc} \text{ for } R_{min} = 1 \text{ pc}$ Present day density contrast:

