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Outline
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2. A new 1/4 BPS circular loop
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Introduction
The Wilson loop of N =4 SYM is given by

’ 1
W =—TrPexp |:}( r_'fr-"(ij-ﬁl'r ) A, (x) + |=H )8 (7) *I’I-i.ri)]
A Jo

with #/6! = 1. The construction for #/ = const. may be understood as the
holonomv of a heavv. fundamental W-boson:

Flthe SIX i;ta.l_ap.a of the SU(N + 1) theory are — N
given a VEV: i '

b g P! | w! = |
=\ Ii I e
w AMé
= = - i
this gives the w! (fundamental rep.) a mass M. e e

One can then show that

1 T % T, % ] - " _5-"’ T ] __1‘1 . i T %
B/;,!;; w(z)w'(z)w(y)w'(y)) ~ /D.r# [D.&HDtbff- so) ML) W (L)
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Wilson loop at strong coupling

At strong coupling the Wilson loop is given by the semi-classical partition
function for a string in AdS5 x §7:

P . VX [ 2 . O X"&X" +8,Y'8Y!
e / DX" DY DhoyD0" exp( — / o/ ha — | fermions |
Xtos =z,(1). Yoz =6 (")Y|ox, Ylox=0

= = = C
The saddle-point is obtained when the /53‘_
string worldsheet Y. describes a surface Ty >

of minimal area A

LT T 3 P ]_ f = TR, I o S T
chaiiis d o—/det (I, XtHRXE +I.YIRY )
2% Jg Y2V | y

L{C)
= -’lraeg. 5 i =

And so 1/= corresponds to M. the mass of the heavy boson. We then have.
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Introduction
The Wilson loop of N =4 SYM is given by

N 1 ’ .
W — v Ir Pexp I:}( ;_f,-—(,a'j'“".-' ; :Luf.;r'} 1 T'*IHIE'T} ‘I’Ié.f'])]
. e

with 218! — 1. The construction for #/ — const. mayv be understood as the
holonomv of a heavv. fundamental W-boson:

T‘he SIX :j{?;ﬂ_arﬁ of the SU(N + 1) theorv are — -
given a VEV: ; '

&l o
tI}I — . z " - M-~co
wl' MeT

v
< : _ 1
this gives the w! (fundamental rep.) a mass M. —— —

One can then show that

TR . 7 - S : —Sarrinm—N Ty r ;
f;,fy wiz)w'(x)wl(y)w'(y)) ~ /'D.r“ [D_{“Dtbft Ssuiny—ML(zu)p (Tp)
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Wilson loop at strong coupling

At strong coupling the Wilson loop is given by the semi-classical partition
function for a string in AdS5 x S*:

S X F 2 — RX"BE-LraYaY
= / DX* DY Dh;D9° +3}:p(—:—_ &/ by — S fermions
Xtogn =z,(1)., Yoz =6/ (r)Y|ox, Ylox=0

The saddle-point is obtained when the
string worldsheet X describes a swrface
of minimal area A

VA

o
i N

Ll .-'r 1 j - = - = = - - »
do—y/det (9, XXk + 9, YIaY )
5 } 2 \" ¥

L{C)

— A reg. 7

And so 1/= corresponds to M. the mass of the heavy boson. We then have.

(W) = ¢ 5 Aree.
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A class of special loops

The straight line: z,(7) = (7.0.0.0) ¢! — const.

f ]
> EF Fo 1 ) )
(W :}_—-—T{ fl/ r.l'.'l/ dm(idg +0- PV (M) (1A + 8 -DP) () + ...
i '\ < 1 < [

gy TEEOO  opmew.

472 \E{Ty) — T\T2))
So the loop-to-loop propagator vanishes for the straight line.

In fact this is a special case of a class of supersymmetric Wilson loops. due
to Zarembo. which have

Tp(T) )
i =" ;{- where in‘lﬁ =

|&(7)| il

For these loops. the loop-to-loop propagator alwavs vanishes.

—i(11) - £(72) + MIM! i, (11)%.(72)

_ _ \ >
{ (i, Ay + |Z|0 - @) (1) (1A, + |Z|0 - P) (12) ) = - -
\ Adx={xi{T1) —T(7T2))
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Supersymmetry of SUSY loops

1 - | -
W = —TrP / drd (i2" + |2]0 - F'}Ee:{p(/ dr’ (id,A, + |£]0 - fb})

So if (ix,* + ||@-I'Je = 0 for some constant . we'll have some SUSY. In fact
this operator is nilpotent. indicating a halving of the supersvmmetry.

¥

(i7" + |2]0-T)* = —3* +3%0-0=0
but. in general solutions will require ¢(7) which is local SUSY - not a svmmetrv
of N =4.

In the SUSY loop case. the path dependence factorizes.
r (7)) (9 + MITT) (e - (T’ e) =0
Jp_!.;(a’- —+ | p )[".‘g—f—ﬁly{.]» 4"]_)—

which gives one halving for each non zero component of &,(7). and which acts
mmdependently on the Poincaré () and superconformal (¢ ) supersvmmetries.

d
d-dimensional loop = (1) BPS

Pirsa: 06100009 Page 10/45
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Protection of SUSY loops

(Wsusy) =1 {independent of contour)

B

This has been proven for 1/2 — 1/8 BPS loops by Guralnik & Kulik using the
fact that Ag1 2 + 3 of the ®’s form a chiral superfield ® of an NV = 2 subalgebra
of SYM's superalgebra:

Wsusy ~ t‘}:p( / P - f_'f;}') £ chiral ring of subalgebra

i ’ ¥ = e . i
Explicit cancellation was shown up to A~ order for all SUSY loops in original
Zarembo work.

1/16 BPS loop protection remains conjectured as far as gauge theorv is con-
cerned.
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Protection from AdS/CFT: Simple Example

" - = - A —y - fi Y
Here we expect Ay = 0. since (W) —e T=Arz  Simple to see for the 1/2 BPS

— (0.0.0.0). #f =const. Here the string worldsheet sits at a

straight line x,

point on the S”. so we just need the AdSs piece

e [ f_!.-«!n*;,z V___.-'(I,g Ly (i’z *}‘*2) 0 (1 X }'.&")

. - v b = . it s
If we set X123 = 0. we have two embedding functions to worry about X%(o. )
and Y (0.7). But we also have this much gauge invariance. Actually the choice

X%o,7) =0 ¥loa)—n (1)
solves the equations of motion trivially and obevs the B.C.'s

X*o:0) =2, —(0;0.0.0) Y(5.0)=0 (2)

7

so then we have

= do (C']
A= [an [T 5=12 2O 3)

Pirsa: 06100009 = - Page 12/45
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Protection from AdS/CFT

Zarembo: found the minimal surface for the 1/4 BPS circle z, =

R (coso.sine.0.0) and found A,., = 0. In fact the AdS5 contribution is al-

ways necative after subtracting the divergence. The S° contribution. suffering

no divergence. is of course positive.

Dymarskyv. Gubser. Guralnik. and Maldacena: proved A, = 0 for all
1/2.....1/16 BPS loops using a calibration. One can decompose the AdS5 x S°
metric as follows
> YRU® .. R’ S
do® —— ' JXTIX™: —(i} dY™ + dU’dl )
R? Y2+ U?
where u —=0.....3. m=4.....7. i = 8.9. Theyv showed that

area > / J where J = JapdX* A dXP
b

where X4 = (X#. Y™ . U"') and Jsp is an almost complex structure obeving
J_B J}E;; = —ri‘i:_if - ;"F_’jfr‘ifn. A minimal surface saturates the bound. then
L)
/ .I B f
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The 1/2 BPS Circle: The straight line’s conformal
half-brother

Xu— Xp/X°
g -
—_ | - _——
Y —1 WY -
1/2 BPS. €. ¢ independent 1/2 BPS because e related to «;

So the 1/2 BPS circle is given by x, = R(cos7T.sin7.0.0) and ¢ —const. If we
analyze the supersymmetry.

== kil = = = ~-F §F
Ty yF :—H-rj:r|}—:-—_t'}_‘ _.‘L el —1 ) 1) €1 :—H-]_—F{j
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Erickson, Semenoff, Zarembo

The loop-to-loop propagator on the circle is a constant:

B ) . | 1 — cos Ty cos T2 — sin 73 sin T 1
l".. { E‘I‘il '_1i_: —|_ H ” {I-' } { E ‘11 [ £ '_1 i 0 H p {I}.} ) — 3 ¥ = = ] — »
\ S = e y A7 [(cos Ty —cos T2)° + (sin Ty — sin72)-] 87

So summing planar ladder diagrams becomes a counting exercise:

@ = /m'/'% ~ 3 (//’_ﬂ\ﬁ\ -
+ ﬁﬁ + ﬁ.@ﬁr —@‘_:i‘@_@;;

This gives a recursion relation which mav be solved

(2n)!

—-\ J"1+1 = E —-\TI_L"‘:\I\‘ T —\‘. Tk — ‘Ihr il 1 le'.]r
k=0 o A

Taking care of factors from the path-ordered integration. one has

H_'l il — ' — — T { \)

adders E P \ = A

- ‘ (m+ 1)t /)

Pirsa: 06100009 ="t} Page 15/45
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Drukker and Gross

The diagrams with one internal vertex were shown to cancel by ESZ. further.
thev noticed that the counting of planar ladders can equally be accomplished
through a large-N limit of a Hermitian one-matrix model

(W, . D1[1T= M ex HI-\F
\ ¥¥ circle, —E[ i T rexp /i exp | — ) | .

Drukker & Gross went further with the matrix model and solved also for
arbitrarv N.

(Warde) = iJ‘Zi- (.—\.-’T ‘4 \F) e T = Ii(V) + 2 (V) +
\ Y¥ cirde/ — N N1\ 4 £y — \,.I 1 A} ASNZ 2 / e
Theyv also understood that the inversion r, —

r,/r? is a singular one. which gives a sort of +g
conformal anomaly. The dynamics are captured

bv a O-dimensional theoryv at the point mapped
from infinitv. voila the matrix model. In fact. —_—
the result is general

(Weaosed) = F (A N) (W, pen)
Pirsa: 06100009

Page 16/45
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Drukker and Gross

The diagrams with one imternal vertex were shown to cancel by ESZ. further.
thev noticed that the counting of planar ladders can equally be accomplished
through a large-N Imit of a Hermitian one-matrix model

) x"’

1 1 2 =
(W ) — Z /D_lf? Trexp M exp (— Tr _U‘)

A

Drukker & Gross went further with the matrix model and solved also for
arbitrarv N.

s o Bew £ oo e R B
\¥YY circle/ :_\_—L_\'—l (__‘“)"‘-L')t' = VEIH%:\}—FJE_\,EIE"u‘x\_l—|—..,

They also understood that the inversion r, —

r,/r? is a singular one. which gives a sort of +g
conformal anomaly. The dynamics are captured
bv a (O-dimensional theorv at the point mapped
from infinitv. voila the matrix model. In fact. ———

the result is general

(Wetosed) = F(A. N)(Wopen)
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Circle from AdS/CFT

The minimal surface has been found. and the regulated area is —27 giving

(W) = eVA. The large X and N limit of the gauge theory result is
. .. :\
(WY ...~ Iln. A) ~ _

The discrepancy is resolved because of the path integral over zero modes
associated with the disk amplitude. There are 3 constraints. each gives a
factor of A\~1/%.

Although coefficients (', are unknown. DG argued that the disk mav be
decorated by degenerate handles. which gives

B "l ;\et‘:p—SJ_-"-L e e
M- f""(1+c?il.-"x M)

!
).
p k

In fact. a large A expansion of their matrix model result gives exactly this. with
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Circle from AdS/CFT

The minimal surface has been found. and the regulated area is —27 giving

‘W) = eV?. The large A and N limit of the gange theorv result is
2 = T eV A
W pange = —=L1(VA) = | ———
gaug 5 V 7234

The discrepancy is resolved because of the path integral over zero modes
associated with the disk amplitude. There are 3 constraints. each gives a
factor of A\~ 1/

Although coefficients ), are unknown. DG argued that the disk may be
decorated bv degenerate handles. which gives

. ("p ’_\tiﬁp—SJ_.-'-L e _
| -8 .L"" > !}F I, %
" = E 2o o ¢ 1+L:_1-\.,»\|)
I_'}

In fact. a large A expansion of their matrix model result gives exactly this. with

P
D ="
V 7962
Pirsa: 06100009 Page 20/45
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1/4 BPS Circles
Recently. Drukker presented the following Wilson loop

— R{cos7.sin7.0.0) #! = (sin By cos T.sinflgsin 7. cos . 0.0.0)

I

If g = w/2 — 1/4 BPS SUSY circle of Zarembeo. If 8 =0 — 1/2 BPS circle.

For general #,. there is one condition each of ‘

e and ;. and one more condition relating them

"W

:‘Ll‘-&u- the [uupvti;}vlt;rup prupa,*;a.tur is constant:
cos- Hg 872. This is Just cos” H;} bv the 1/2 BPS
circle propagator.

Further. leading internal vertex diagrams cancel in the calculation of (W) by
the same mechanism as for the 1/2 BPS circle. The only difference is that

A — X = cos? @y ). On the string side. the minimal surface for the loop was
found and (W) = exp(y/N). Thus

(Wy4) = (Wa e} (A — X))

Pirsa: 06100009 Page 21/45
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1/4 BPS Loop - Chiral Primary Correlator

DY, Semenoff hep-th /0609158
We are interested in calculating a connected correlator (W7 4O} /(W 4) of the
loop with a chiral primary operator O.

In particular we are interested in the limit of large separation between the two.
When viewed from a large distance. the Wilson loop should look like an
assembly of local operators

W[C] = (W|C] (1 + Z Oa,(0) L[C]?€A,[C] + )
A; >0

The leading behaviour of the correlator is given by the operators of smallest
conformal dimension - the chiral primaries. which we normalize as

O A AF
e AA
y .r} = 7 ’, i
(Oa(x)OA(0) 1 22)A
We then expect
WI[C] Oa(z), LiC™ %
T — ; _ CA ——
(W[C] (472|x)2)>
Pirsa: 06100009 Page 22/45
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1/4 BPS Circles
Recently. Drukker presented the following Wilson loop
xr, = R{cos7.sin7.0.0) 6! = (sin Hg cos T.sinfgsin 7. cos fg. 0.0, 0)

If g = x/2 — 1/4 BPS SUSY circle of Zarembo. If 5 = 0 — 1/2 BPS circle.

For general #,. there is one condition each of ‘b

eg and ;. and one more condition relating them.

\/

Also. the loop-to-loop propagator is constant:

2 o N = 2 1 s ~
cos” Hg/87x~. This is just cos” fg by the 1/2 BPS
circle propagator.

Further. leading internal vertex diagrams cancel in the calculation of (W) by
the same mechanism as for the 1/2 BPS circle. The onlv difference is that

A — X = cos? @y \. On the string side. the minimal surface for the loop was
found and (W) = exp(yv/ ). Thus

Wi sa) — (Wisd (A — A0
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1/4 BPS Loop - Chiral Primary Correlator

DY, Semenoff hep-th /0609158

We are interested in calculating a connected correlator (W7 4O} /(W ,4) of the
loop with a chiral primary operator O.

In particular we are interested in the limit of large separation between the two.
When viewed from a large distance. the Wilson loop should look like an
assemblyv of local operators

W[C] = (W]C]) (1 + Z Oa,(0) L[C]?€A,[C] + )

A; >0

The leading behaviour of the correlator is given by the operators of smallest
conformal dimension - the chiral primaries. which we normalize as

F"AAJ

[OA(x)OA(0)) = — 7

We then expect
WIC] Oa(x) ™ .
. = = —— .E:_\L I . = =
(WI[C] {—lr:}[.rrji_‘hk b

Pirsa: 06100009 Page 24/45
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Example: 1/2 BPS circle
Take the 1/2 BPS circle with #/ = (1.0.....0).

i ) e A 1 _ - k '
W =(W .-(Z-ri’rﬁi'mTr{Z{m+Z-.’U].J T)

— (W) ( 1+ o502 R) e+ ... )

where Qj(xr) = T Z’. Z = ®&; + i®>. We then have

vl

(O ()W (0)) 27 R J ) J =y
= - = o f,j f;,j — — vJA
Wi{0) 1722 N2JI

In fact. all planar (loop-to-loop) ladders can also be summed for the
calculation of £;. Leading corrections also vanish. the result is (Semenoff.
Zarembo)

11 —T15( \J .
5 — ?—k AJ T—— confirmed with AdS/CFT - more to come
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Comparing SUSY’s: CPO and 1/4 BPS Loop

Comparing supersvmmetries:

. s 2 P

sin@p(v' T~ ++°T Jeg =0

1 / - a ¢ 172 211y

1/4 BPS loop: sinfpg(y I'“+9T )eg =0
- - > -

COs H{]F(} — R{(— > -+ SIn H;:;r_ ]]._3"

General CPO Tr(u-®)/
— r'-‘ﬁ_ ¥

. t-T'eg = 0. e free
where i € I ——

For a 1/2 BPS circle 85 = 0 and there is one relation between eg and ;. The
CPO condition will further halve this. so that O W, ;5 respects 1/4 of the
SUSY.

This is likely responsible for the protection of this quantityv. What about for

Wi 47

Pirsa: 06100009 Page 26/45

Perimeter Institute. October 10, 2006 16



Comparing SUSY’s: CPO and 1/4 BPS Loop

Comparing supersvimmetries:

= . 7 . \
sin@p(y7 IL* 4+ 4T J)eog =0
1/4 BPS loop: sin@g(+'T% +~+%T1)e = 0

o v G i e
cosbpeg = R(—iy +sinfgl'" I

General CPO Tr(u-$ )
.r"ili_:; o

— il - ]_—-FD —= l'_ Fl :lj.h*;"f_"‘
T‘-'}l*_‘l‘ti‘ ek W —U:

For a 1/2 BPS circle #5 = 0 and there is one relation between e5 and ¢;. The
CPO condition will further halve this. so that O W, ;5 respects 1/4 of the

SUSY.
This is likely responsible for the protection of this quantityv. What about for
Wi4?

Pirsa: 06100009 Page 27/45

Perimeter Institute. October 10, 2006 16



Comparing SUSY’s: CPO and 1/4 BPS Loop

For 8y = 0. we find shared supersvmmetrv for 3 cases (where @ = (ug... .. ug) ):

e u; = us = 0: The loop commutes with an SO(6) R-symmetrv rotation
which we act on {uy4. us. ug) to set us = ug = 0. Then onlv solution is for
uz — +iuyg — 1/8 SUSY s shared.

® u3z = uy = 0: ditto but with u#; = d7us. 1/8 shared SUSY.

® 1y = +ius: Onlv solution is for us = +iuy. and onlv 1/16 of SUSY's are in

COIININOIL.

Thus the least supersvmmetric choice is Tr{y(®; + i®2) + (P35 + 1Dy ¥

Anvthing more general we do not expect to be protected.

Pirsa: 06100009 Page 28/45
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R-symmetry pares down CPO further
In fact. all (®; + i®5) terms in the two-point function will vanish by
R-svmmetrv.

This is because a spatial rotation in the rg-r; plane can be un-done bv
shifting the loop parameter 7. and then by applving a compensating
R-svmmetry rotation in the #'-6% plane. Let Q5 = Tr(®; + i®5)7:

— (RO;(Ux)RT W, 4) =1 O (Uz) Wise) = e'7%(04(z) Wi/s

So we've proven (Oj(x) Wy ,4) = 0. Therefore we can take

: 1 7
OfF=—Tr(®P3 + 1P4)
VLT

without loss of generalitv.

Pirsa: 06100009 Page 29/45
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Gauge Theory Computation
We want to evaluate

1
VAT T

T (®3 + i®y)” Wy )y
Wy /s

in perturbation theorv.

Recall that 8%(7) = cos8y. and #*(7) = 0. Thus the .J scalar lines simply
provide .J powers of cosfy over the 1/2 BPS circle case. There are .J powers of
A. and a factor of A=7/2 from the CPO normalization. Thus A — X = cosZfp\.

Next: Ladders. Recall that the N
qui}tu—luup propagator is constant.
The 1/2 BPS result comes over
again. with the modified coupling.

Pirsa: 06100009
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Leading Corrections

Leading ladders decorated with internal vertices vanish as we have seen. The
other leading corrections are as follows:

We were able to show that these di- é
agrams add to zero for the 1 /4 BPS 1
loop. as they do in the 1/2 BPS
case.

3

A
2

Conjecture: Higher-order analogues all vanish.

Pirsa: 06100009 Page 31/45
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Strong Coupling Calculation from AdS/CFT

The chiral primaries are dual to su-

pergravitons propagating in AdS5 x Q‘ .
S5®. The large distance correlator

mayv be thought of as an exchange
of such a mode. between the loop’s

worldsheet and the boundarv

The easier wav is to extract &;

from a loop-loop correlator. BCFNM X
showed that ‘/r\—‘z_?/r
W({z)W(0) - 2J
-3t 3(1) +-

Wir )

That i1s. the bulk-to-bulk exchange is dominated at large distance bv the chiral
primaries.
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1/4 BPS Loop: Minimal Surface

The embedding for our 1/4 BPS loop was given in the original reference. We

chose coordinates on AdSs x 57 as follows

ds? = V)

2
U

= (tf}.}j -+ {f'i"% 2t f'%-’_?]{')% — J_h'% — .r'%{'{'{_'rg

+  db* + sin”8dd” + cos” 0 ({f;_lz + sin? pdd® + cos® p :_fc_;f) )

The string world-sheet is then embedded as follows.

R
o R[ﬂ]_]_hr_'r e @y —7T I'a — I @92 — CONst.
cosha
: 1 w : _ -
sinf = O =7 pP== o=0 @ = const.

cosh{og + o)
where o € [0. x| and 7 € [0. 27] are the world-sheet coordinates. The + in the
# embedding reflects the fact that the string action has two saddle points.
Theyv give (W) = exp(+v X). Obviously the minimal saddle-point is the

dominant one - but it turns out to be interesting to consider both.
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1/4 BPS Loop: Minimal Surface

The embedding for our 1/4 BPS loop was given in the original reference. We

chose coordinates on AdSs x S° as follows

e —_ f_fyj — {ff'% — I'%r.ff_‘::% — J_!I*g — f'g{ff_'i;:
ds2 = VXx[= ¢ B St
Yy

= = EH‘)'E == hi_uj H{IUE F (‘u:-;j 5 ({f;_;lz = 5'1]_12 P {t"-f_)j + fLHE P l‘_f{;}:l) )

The string world-sheet is then embedded as follows.

R
y — Rtanhao rp = — da—7 ro — 0 @09 = const.
cosha
y 1 iy : : =
sinf — : Q=T p—— Q=0 @ — const.
cosh{op 1+ o) 2

where o € [0. x| and 7 € [0. 27] are the world-sheet coordinates. The + in the
# embedding reflects the fact that the string action has two saddle points.
Theyv give (W) = exp(+v X'). Obviously the minimal saddle-point is the

dominant one - but it turns out to be interesting to consider both.
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Relevant Supergravity Modes

The supergravity modes dual to CPO’s are the lightest scalars s”(z) with
2 . < ¢ : : - - :
m* = J(J —4). J > 2. These are responsible for metric fluctuations as follows

] 6.J 4 e

g — | —Guat — Do Dgy s7(X) Y ()
5 J+1

rier — 25 JIK :-i'jr{jf ) }:L Q)

The orientation of the ® fields in the CPO correspond to the choice of Y ;(£2).
Specifically
Tr(u-®)" — YHQ) = N(u)(u- X)’

where X! are the embedding functions of the S® in RS.

Our embedding of the string worldsheet sets three of the XI's to zero. so we
have
: J
Yi0.0) =Nj(u)|uysinf cos © + ussiné sin o + uzcosé
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1/4 BPS Loop: Minimal Surface

The embedding for our 1/4 BPS loop was given in the original reference. We
chose coordinates on AdSs x S° as follows

2 37 J'U: + di f 3 ‘%{f{')% +d !% + .';:HJ l’__ﬁ:;‘:
ds” VA . 5 = S
Yy

+  d8” +sin” Odo” + cos” 0 ({f,r.:rz + sin? pdd® + cos® p tff_;i}) )

The string world-sheet is then embedded as follows.

R
Y — Rttl]_lh-“_'-" Fpq —————— o =T I'a = 0 @9 — Cconst.
cosho
) 1 w - ‘ ~
sinf — O—T p=— o—0 @ = const.
cosh{og + o) 2

where o € [0. x| and 7 € [0, 27] are the world-sheet coordinates. The + in the
# embedding reflects the fact that the string action has two saddle ponts.
Thev give (W) = exp{ £V A’). Obviously the minimal saddle-point is the

dominant one - but it turns out to be interesting to consider both.
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Relevant Supergravity Modes

The supergravity modes dual to CPO’s are the lightest scalars s”(z) with

9 \ iy - = = : .
m* = J(J —4). J > 2. These are responsible for metric fluctuations as follows

) 6.J 4 ! B
0Ja3 = —T Jas T+ T+ 1 D—,QD__-?} HJ{ X)) Y5(Q)
dgixk = 2kgrx s’ (X)Yr(Q)

The orientation of the ® fields in the CPO correspond to the choice of Y (€2).
Specifically
Tr(u-®) — Y3(Q) = N(u)(u-X)’

where X! are the embedding functions of the S® in RS.

Our embedding of the string worldsheet sets three of the XI's to zero. so we

have 4

Yi(0.0) = Nj{u)|u;sinf cos © + ussiné sin o + uscosé
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Supergravity Mode Exchange
The loop-loop correlator is then computed like this

W)W (0)
W) (WH(0}))

B / _/ 3. XM3* XY 5gpn P(X. X) 6g5g 5 0 XM XY

where M. N =1.....10. and P(X. X) = (s (X)s7( X)) ~ yT§7 /2% . and we've
used the gauge-fixed Polvakov action.
What we find has the following structure

2

[J,-' / do |:I' 2+ rF - r% \y? =2 + (0% +sin2 0 Ij}‘J:| Y (8. 0)

But 7 appears only in Y;(8.0). since o = 7.

I}'ﬁ-

2w 2 J
/ dr Y;(8.0) = N j(u) / dr {ul sinfcosT + ussinfsint + us cos H]
0 0

Now. if we take u; = +iu>. so that we have the minimum SUSY. this intecral
1 2 =

evaluates to 27N j(u)(uscos@)”. i.e. dependence on u; and us vanish.
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Results

In the SUSY case our results are

(W (x)W(0)) JE 17 £ A BT 1 i 1 ‘4z +cosbo\’
== —_ _ az — az Z

5

(R)HJ)\I[  Fg1 =
= ([ — — (1) cos Ug
r) N24 |

This gives the result

| —
M.L‘J =7 )Tz\ COos” H']W

exactly the large A Imit of the gauge theorv result. and the 1/2 BPS ciurcle
result with A — cos? fg)\.

What if we choose u; = *7us. so that there is no SUSY? Well. for example for
— 2. we get things like this:

Wiz)W(0}}
Wiz)){W(0))

i 2 k) i i Fs
2(1 —cos” ) ) 4 — cos by A cos by — 2

- D> .
C lJT'wS H.:. ¥ cos- H{]

x In{1 + cos#y) (

indicating a lack of protection.
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Double Saddle Points

mentioned that the string action had two saddle points earlier. One then
| t | that the string act had t Idle | t 11 One tl
to be a sum of two terms: one proportional to

expects the result for (W)
In fact the asvmptotic A\’ expansion of

exp(v ') and the other to exp(—v/ V).
the Bessel function (large N result) gives

Z . r3/2+ky . e~ VN i 1 . [(3/2+k)
e— ‘! —_— -
& r\ E(3 —:l»l \ 3,\‘ Y ET(3/2 — k)

"\: zu L ¥ /\’ \:’ 2_|-"‘.‘ ;\ L.:ﬂ.

The factor of 1 was associated with the fluctuation determinant of tachvonic
modes associated with the worldsheet slipping off the unstable pole of the
five-sphere.

Due to the sign structure in our result we expect a sum of a term proportional
to exp(V \) and of another proportional to (—1)7! exp{—V\’). Our

asvinptotic expansions for the the gange theoryv result give

= k — k
W5\, O J+k+1/2) TR L E e T o 1 C(J+k4+1/2)
E 2 ( P }‘r) ET(J—k4+1/2) + 2| ]‘] € L ak—0 (—]\. ,\") ET(J—k+1/2)

k i k
VN r(3/24+k) - VN 3¢ 1 '(3/24k)
; ) S ( 2y, ,a.,f) RTG/2 B = ) D 2N ) KI(3/2—k)
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Double Saddle Points

I mentioned that the string action had two saddle points earlier. One then
expects the result for (W) to be a sum of two terms: one proportional to
exp(vN) and the other to exp(—v/ V). In fact the asymptotic X’ expansion of
the Bessel function (large N result) gives

e VN i( 3 )‘“’ r(3/2+k .. e¥¥ i( 1 )"" r(3/2+ k)
= Zus N =1 / o Ev ; y
VvV 2rV N 2V N ET(3/2 — k) V2V N 1 2 N ETt3/2 k)

The factor of 1 was associated with the fluctuation determinant of tachvonic
modes associated with the worldsheet slipping off the unstable pole of the
five-sphere.

Due to the sign structure in our result we expect a sum of a term proportional
to exp(v N) and of another proportional to (—1)77! exp(—vN). Our
asvimptotic expansions for the the gange theorv result give

— k | k
VN xox 1 C(J+k+1/2) T —VN B C(J+k+1/2)
e Y o (_—g\ ;‘r) ey (1) > ko /) BTI—kEi/2)

k k
VN r3/2+k) e—" N > 1 I'(3/2+k)
€ ZL_*} ( 2/ ,)._’) E'T(3/2—k) + 2 ZL—H 2N EL(3/2—k)
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Perspectives

e [ didn't touch upon a verv beautiful picture which has emerged deseribing
“giant loops™ . These are loops with verv large representations - not the
fundamental representation used here.

e They correspond to D-branes expanding into either the AdSs or S°. much
like the giant gravitons.

e Can we find a D-brane description of the loop presented here?

1

e Can we find overlaps with CPO’s. giant gravitons. other giant loops?

Thank-You
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