Title: Questions about high - k phsyics in expanding spacetimes

Date: Sep 06, 2006 09:00 AM

URL: http://pirsa.org/06090025

Abstract:

Questions about the high-k vacuum in expanding spacetimes

Jens Niemeyer Universität Würzburg

Questions about the high-k vacuum in expanding spacetimes

Jens Niemeyer Universität Würzburg

Motivation and setting

Setting:

Semiclassical QFT, no QG

Motivation:

What constrains the vacuum at high (i.e., trans-Planckian = TP) wavenumbers? (consistency? principles? dynamics?)

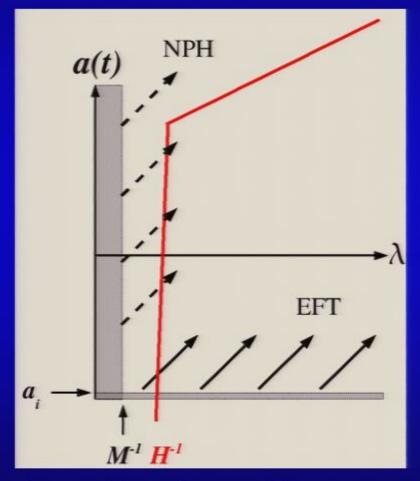
Relevance:

- 1. Signatures in the CMBR (\rightarrow Jerome's talk)
- Cosmological particle creation and UHECRs (Starobinsky & Tkachev, Goldstein & Lowe)
- → small deviations from the standard (Bunch-Davies) vacuum might be observable

1. Do TP modes exist or are they created?

- "existence" ↔ initial state formulation
 of EFT (e.g., Schalm, Shiu, van der Schaar, Greene)
 alternative: creation at Planck-scale
 crossing (Jacobson; Danielsson; JN, Parentani,
 Campo; Easther, Kinney, Shiu, Greene; ...)
- analogy: super-horizon modes in inflationless cosmology

"existence": impose perturbations on homogeneous slice at initial time, including super-horizon modes "creation": impose growing mode at horizon entry



from Easther et al., astro-ph/0505426

1. Do TP modes exist or are they created?

- Is this a useful question at all?
- Does "existence" imply observability?
 - –direct probes of I < $I_p \rightarrow$ bh formation \rightarrow "locality bound"
 - -IR effects in expanding/curved spacetimes do not constrain existence vs. creation (?)

Pirsa: 06090025 Page 6/47

1. Do TP modes exist or are they created?

- Is this a useful question at all?
- Does "existence" imply observability?
 - –direct probes of I < $I_p \rightarrow$ bh formation \rightarrow "locality bound"
 - -IR effects in expanding/curved spacetimes do not constrain existence vs. creation (?)

Pirsa: 06090025 Page 8/47

1. Do TP modes exist or are they created?

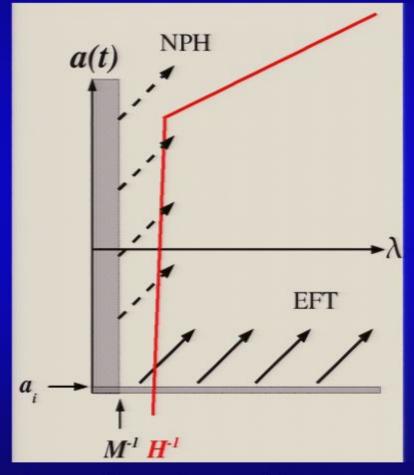
- Is this a useful question at all?
- Does "existence" imply observability?
 - –direct probes of I < $I_p \rightarrow$ bh formation \rightarrow "locality bound"
 - -IR effects in expanding/curved spacetimes do not constrain existence vs. creation (?)

Pirsa: 06090025 Page 10/47

1. Do TP modes exist or are they created?

- "existence" ↔ initial state formulation
 of EFT (e.g., Schalm, Shiu, van der Schaar, Greene)
 alternative: creation at Planck-scale
 crossing (Jacobson; Danielsson; JN, Parentani,
 Campo; Easther, Kinney, Shiu, Greene; ...)
- analogy: super-horizon modes in inflationless cosmology

"existence": impose perturbations on homogeneous slice at initial time, including super-horizon modes "creation": impose growing mode at horizon entry



from Easther et al., astro-ph/0505426

1. symmetry

- e.g., dS invariance → "α-vacua" including Bunch-Davies (BD) vacuum
- imprint of initial symmetry (cf. quantum cosmology, landscape,...)
- why is large-scale symmetry inherited by infinitesimally small scales?

Pirsa: 06090025 Page 13/47

1. symmetry

- e.g., dS invariance → "α-vacua" including Bunch-Davies (BD) vacuum
- imprint of initial symmetry (cf. quantum cosmology, landscape,...)
- why is large-scale symmetry inherited by infinitesimally small scales?

2. decoupling / equivalence principle

- conserved, renormalizable $\langle T_{\mu\nu} \rangle \leftrightarrow O(4)$ -adiabatic vacuum ("locally flat physics") (e.g., Anderson et al., hep-th/0504134)
- doesn't require exact symmetry on TP scales
- dS: 1) + 2) → BD vacuum

3. regularity

 quantum cosmology: prediction of BD vacuum for broad range of boundary conditions (Hallwell & Hawking) Wata Vacuum for broad range of Vacuum and American (A)

equivalent to 2)

3. regularity

- quantum cosmology: prediction of BD vacuum for broad range of boundary conditions (Halliwell & Hawking, Wada, Vachaspati & Vilenkin, Vachaspati, Laflamme) (?)
- equivalent to 2)?

Pirsa: 06090025 Page 16/47

3. regularity

- quantum cosmology: prediction of BD vacuum for broad range of boundary conditions (Halliwell & Hawking, Wada, Vachaspati & Vilenkin, Vachaspati, Laflamme) (?)
- equivalent to 2)?

4. "naturalness"

- "the deviation from BD must be small, so without fine-tuning the state must be exactly BD"
- NB: ...and Λ = 0...

Pirsa: 06090025 Page 17/47

3. Does quantum cosmology really predict a BD vacuum on TP scales?

The argument in a nutshell (cf. Vachaspati '89, PLB 217, 228):

-Wheeler-deWitt eq. for the wave function of the universe:

$$H\Psi = 0$$

 consider minimally coupled scalar field in closed dS background+perturbations

-expand field in spherical harmonics: $\phi \sim \sum_{n,l,m} f_{nlm}(t) Q_{lm}^n(x)$

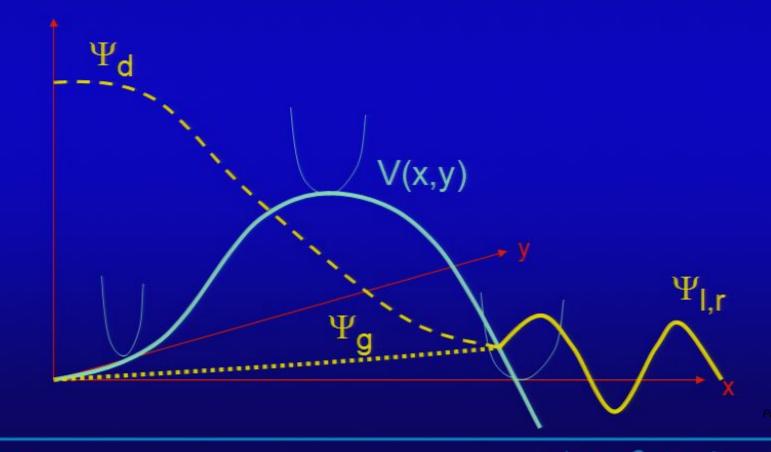
-WdW eq. (x = ln a):
$$\left[\frac{\partial^2}{\partial x^2} - \sum_n \frac{\partial^2}{\partial f_n^2} - V(x, f_n)\right] \Psi = 0$$

where

$$egin{align} V(x,f_n) &= e^{4x}(1- \wedge e^{2x}) - e^{4x} \sum_n (n^2-1) f_n^2 \ &\equiv V_0(x) + \sum_n V_n(x) f_n^2 \ &= V_0(x) + \sum_n V$$

-separate the wavefunction: $\Psi = \Pi \Psi(x, f_n)$

 \rightarrow problem equivalent to n independent 2-d QM problems for each mode $f_n = y$



-write
$$\Psi = \exp\left[-S_0(x) - \frac{1}{2}\sum_n S_n(x)f_n^2\right]$$
 and expand WdW eq. in \hbar :

$$(\partial_x S_0)^2 = V_0 \tag{1}$$

$$(\partial_x S_0)(\partial_x S_n) - S_n^2 = V_n \tag{2}$$

(1) yields (with
$$\tau \to i\tau$$
 for a < $\Lambda^{-1/2}$):

$$\frac{dS_0}{da} = i\frac{da}{d\tau}$$

$$a = \frac{1}{1}$$

$$a = \frac{1}{\Lambda^{1/2} \cos \tau}$$

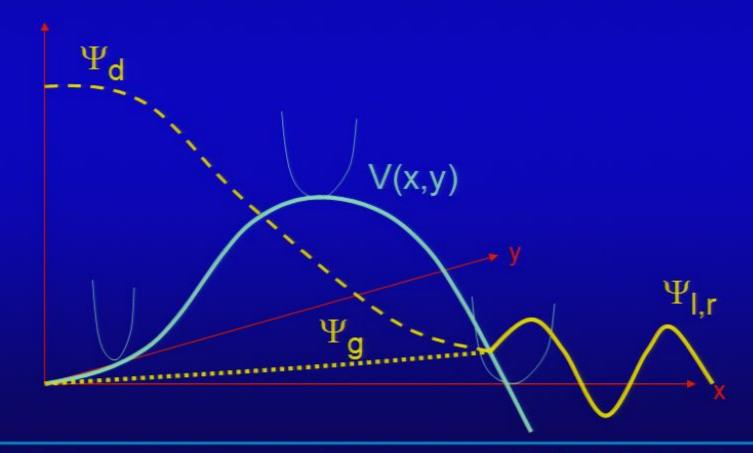
$$\bar{S}_n = -ia^2 \frac{\dot{v}_n}{v_n} \quad , \quad u_n = av_n$$

$$\ddot{u}_n + \left(n^2 - \frac{2}{\cos^2 \tau}\right) u_n = 0$$
 (3)

-regularity ($|\Psi| < \infty$) requires Re(S_n) > 0

-separate the wavefunction: $\Psi = \Pi \Psi(x, f_n)$

 \rightarrow problem equivalent to n independent 2-d QM problems for each mode $f_n = y$



-write
$$\Psi = \exp\left[-S_0(x) - \frac{1}{2}\sum_n S_n(x)f_n^2\right]$$
 and expand WdW eq. in \hbar :

$$(\partial_x S_0)^2 = V_0 \tag{1}$$

$$(\partial_x S_0)(\partial_x S_n) - S_n^2 = V_n \tag{2}$$

(1) yields (with
$$\tau \to i\tau$$
 for a < $\Lambda^{-1/2}$):

$$\frac{dS_0}{da} = i\frac{da}{d\tau}$$

$$a = \frac{1}{\Lambda^{1/2} \cos \tau}$$

$$\bar{S}_n = -ia^2 \frac{\dot{v}_n}{v_n}$$
 , $u_n = av_n$ $\ddot{u}_n + \left(n^2 - \frac{2}{\cos^2 \tau}\right) u_n = 0$ (3)

-regularity ($|\Psi| < \infty$) requires Re(S_n) > 0

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

this is only positive definite for τ → ∞ (a → 0) if A=0
 ⇒ BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory

-write
$$\Psi = \exp\left[-S_0(x) - \frac{1}{2}\sum_n S_n(x)f_n^2\right]$$
 and expand WdW eq. in \hbar :

$$(\partial_x S_0)^2 = V_0 \tag{1}$$

$$(\partial_x S_0)(\partial_x S_n) - S_n^2 = V_n \tag{2}$$

(1) yields (with
$$\tau \to i\tau$$
 for a $< \Lambda^{-1/2}$):

$$\frac{dS_0}{da} = i\frac{da}{d\tau}$$

$$a = \frac{1}{\Lambda^{1/2} \cos \tau}$$

$$\bar{S}_n = -ia^2 \frac{\dot{v}_n}{v_n}$$
 , $u_n = av_n$ $\ddot{u}_n + \left(n^2 - \frac{2}{\cos^2 \tau}\right) u_n = 0$ (3)

-regularity ($|\Psi| < \infty$) requires Re(S_n) > 0

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

this is only positive definite for τ → ∞ (a → 0) if A=0
 ⇒ BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory

-write
$$\Psi = \exp\left[-S_0(x) - \frac{1}{2}\sum_n S_n(x)f_n^2\right]$$
 and expand WdW eq. in \hbar :

$$(\partial_x S_0)^2 = V_0 \tag{1}$$

$$(\partial_x S_0)(\partial_x S_n) - S_n^2 = V_n \tag{2}$$

(2) becomes:

(1) yields (with
$$\tau \to i\tau$$
 for a $< \Lambda^{-1/2}$):

$$\frac{dS_0}{da} = i\frac{da}{d\tau}$$

$$a = \frac{1}{\Lambda^{1/2}\cos\tau}$$

-define mode functions via
$$\bar{S}_n = -ia^2 \frac{\dot{v}_n}{v_n}$$
 , $u_n = av_n$ (2) becomes: $\ddot{u}_n + \left(n^2 - \frac{2}{\cos^2 \tau}\right)u_n = 0$ (3)

-matching conditions at the turning point require equal coefficients of the solution in the classically allowed and prohibited regions

-regularity ($|\Psi| < \infty$) requires Re(S_n) > 0

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

this is only positive definite for τ → ∞ (a → 0) if A=0
 → BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory

Mode creation by quantum tunneling

Idea (not even half-baked):

Shift the turning point to n- (or k-)dependent time (or scale factor), so that Ψ_n becomes oscillatory at the Planck-scale crossing time of n.

Realization:

"Manual" implementation by introducing n-dependent term into V_0,

$$V_0 = a^4(1 - \Lambda a^2) \rightarrow a^4(1 - \Lambda a^2 + \mathcal{F}_n(a))$$

where

$$\mathcal{F}_n(a) egin{cases} \gg 1 & , & n \gg a \, l_p^{-1} \ pprox 1 & , & n pprox a \, l_p^{-1} \ \ll 1 & , & n \ll a \, l_p^{-1} \end{cases}$$

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

– this is only positive definite for $\tau \to \infty$ (a \to 0) if A=0 \to BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory

-write
$$\Psi = \exp\left[-S_0(x) - \frac{1}{2}\sum_n S_n(x)f_n^2\right]$$
 and expand WdW eq. in \hbar :

$$(\partial_x S_0)^2 = V_0 \tag{1}$$

$$(\partial_x S_0)(\partial_x S_n) - S_n^2 = V_n \tag{2}$$

(1) yields (with
$$\tau \to i\tau$$
 for a $< \Lambda^{-1/2}$):

$$\frac{dS_0}{da} = i\frac{da}{d\tau}$$

$$a = \frac{1}{\Lambda^{1/2}\cos\tau}$$

-define mode functions via
$$\bar{S}_n=-ia^2\frac{\dot{v}_n}{v_n}$$
 , $u_n=av_n$ (2) becomes: $\ddot{u}_n+\left(n^2-\frac{2}{\cos^2\tau}\right)u_n=0$ (3)

(2) becomes:
$$\ddot{u}_n + \left(n^2 - \frac{2}{\cos^2 \tau}\right) u_n = 0$$
 (3)

-matching conditions at the turning point require equal coefficients of the solution in the classically allowed and prohibited regions

-regularity ($|\Psi| < \infty$) requires Re(S_n) > 0

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

this is only positive definite for τ → ∞ (a → 0) if A=0
 → BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory

Mode creation by quantum tunneling

Idea (not even half-baked):

Shift the turning point to n- (or k-)dependent time (or scale factor), so that Ψ_n becomes oscillatory at the Planck-scale crossing time of n.

Realization:

"Manual" implementation by introducing n-dependent term into V_0,

$$V_0 = a^4(1 - \Lambda a^2) \rightarrow a^4(1 - \Lambda a^2 + \mathcal{F}_n(a))$$

where

$$\mathcal{F}_n(a) egin{cases} \gg 1 & , & n \gg a \, l_p^{-1} \ pprox 1 & , & n pprox a \, l_p^{-1} \ \ll 1 & , & n \ll a \, l_p^{-1} \end{cases}$$

Pirsa: 06090025 Page 32/47

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

this is only positive definite for τ → ∞ (a → 0) if A=0
 → BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory

Mode creation by quantum tunneling

Idea (not even half-baked):

Shift the turning point to n- (or k-)dependent time (or scale factor), so that Ψ_n becomes oscillatory at the Planck-scale crossing time of n.

Realization:

"Manual" implementation by introducing n-dependent term into V_0,

$$V_0 = a^4(1 - \Lambda a^2) \rightarrow a^4(1 - \Lambda a^2 + \mathcal{F}_n(a))$$

where

$$\mathcal{F}_n(a) egin{cases} \gg 1 & , & n \gg a \, l_p^{-1} \ pprox 1 & , & n pprox a \, l_p^{-1} \ \ll 1 & , & n \ll a \, l_p^{-1} \end{cases}$$

Example:

$$\mathcal{F}_n(a) = \frac{n^2 l_p^2}{a^2}$$

Questions:

- 1. Does any of this make any sense?
- 2. Can this effect be produced by "reverse engineering" the formalism, i.e. relaxing the assumptions of semiclassical minisuperspace quantum cosmology?
- 3. Does regularity of $|\Psi|$ still predict the state? If yes, what is it?

Focus on growing u

ation by quantum tunneling

- damping term
 negligible for mo
- asymptotic solutint to n- (or k-)dependent time (or scale factor), so $S_n = \frac{1}{\Lambda \cos}$ int to n- (or k-)dependent time (or scale factor), so $S_n = \frac{1}{\Lambda \cos}$
- this is only posit tation by introducing n-dependent term into V_0,
 → BD vacuum

$$a^2) \rightarrow a^4 \left(1 - \Lambda a^2 + \mathcal{F}_n(a)\right)$$

Assumptions made:

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

this is only positive definite for τ → ∞ (a → 0) if A=0
 → BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory

-write
$$\Psi = \exp\left[-S_0(x) - \frac{1}{2}\sum_n S_n(x)f_n^2\right]$$
 and expand WdW eq. in \hbar :

$$(\partial_x S_0)^2 = V_0 \tag{1}$$

$$(\partial_x S_0)(\partial_x S_n) - S_n^2 = V_n \tag{2}$$

(1) yields (with
$$\tau \to i\tau$$
 for a $< \Lambda^{-1/2}$):

$$\frac{dS_0}{da} = i\frac{da}{d\tau}$$

$$a = \frac{1}{\Lambda^{1/2}\cos\tau}$$

-define mode functions via
$$\ \, \bar{S}_n = -ia^2 \frac{\dot{v}_n}{v_n} \ \, , \quad u_n = av_n \ \,$$
 (2) becomes: $\ \, \ddot{u}_n + \left(n^2 - \frac{2}{\cos^2 \tau}\right)u_n = 0 \,$ (3)

 matching conditions at the turning point require equal coefficients of the solution in the classically allowed and prohibited regions

-regularity ($|\Psi| < \infty$) requires Re(S_n) > 0

2. If they exist, which y really predict "principles") determine scales?

3. regularity

LB 217, 228):

- quantum cosmology: prediction of BD vacthe universe: boundary conditions (Halliwell & Hawking, Wada— ()
 Vachaspati, Laflamme) (?)
- equivalent to 2)?

4. "naturalness"

 $\sum f_{nlm}(t)Q_{lm}^n(x)$

- "the deviation from BD must be small, so v^{n,l,m} state must be exactly BD"
- NB: ...and $\Lambda = 0...$

$$x,f_n)$$
 $\Psi=0$

$$egin{aligned} \wedge e^{2x} & -e^{4x} \sum_n (n^2-1) f_n^2 \ & \sum_n V_n(x) f_n^2 \end{aligned}$$

1. Do TP modes exist or are they created?

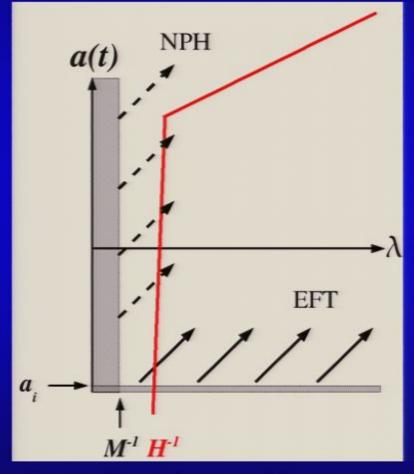
- Is this a useful question at all?
- Does "existence" imply observability?
 - –direct probes of I < $I_p \rightarrow$ bh formation \rightarrow "locality bound"
 - -IR effects in expanding/curved spacetimes do not constrain existence vs. creation (?)

Pirsa: 06090025 Page 41/47

1. Do TP modes exist or are they created?

- "existence" ↔ initial state formulation
 of EFT (e.g., Schalm, Shiu, van der Schaar, Greene)
 alternative: creation at Planck-scale
 crossing (Jacobson; Danielsson; JN, Parentani, Campo; Easther, Kinney, Shiu, Greene; ...)
- analogy: super-horizon modes in inflationless cosmology

"existence": impose perturbations on homogeneous slice at initial time, including super-horizon modes "creation": impose growing mode at horizon entry



from Easther et al., astro-ph/0505426

Motivation and setting

Setting:

Semiclassical QFT, no QG

Motivation:

What constrains the vacuum at high (i.e., trans-Planckian = TP) wavenumbers? (consistency? principles? dynamics?)

Relevance:

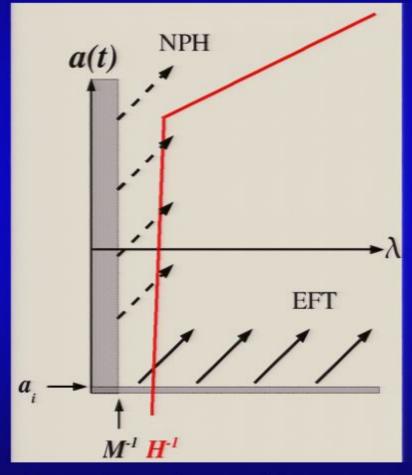
- 1. Signatures in the CMBR (\rightarrow Jerome's talk)
- Cosmological particle creation and UHECRs (Starobinsky & Tkachev, Goldstein & Lowe)
- → small deviations from the standard (Bunch-Davies) vacuum might be observable

Pirsa: 06090025 Page 43/47

1. Do TP modes exist or are they created?

- "existence" ↔ initial state formulation
 of EFT (e.g., Schalm, Shiu, van der Schaar, Greene)
 alternative: creation at Planck-scale
 crossing (Jacobson; Danielsson; JN, Parentani, Campo; Easther, Kinney, Shiu, Greene; ...)
- analogy: super-horizon modes in inflationless cosmology

"existence": impose perturbations on homogeneous slice at initial time, including super-horizon modes "creation": impose growing mode at horizon entry



from Easther et al., astro-ph/0505426

Mode creation by qui

Idea (not even half-baked):

Shift the turning point to n- (or k-)de that Ψ_n becomes oscillatory at the Pk

Realization:

"Manual" implementation by introduciptions of semiclassical

$$V_0=a^4(1-\Lambda a^2)
ightarrow a^4\left(1$$
 the state? If yes, what is it?

where

$$\mathcal{F}_n(a) egin{cases} \gg 1 & & , \ pprox 1 & & , \ \ll 1 & & , \end{cases}$$

Mode creation by quantum tunneling

Idea (not even half-baked):

Shift the turning point to n- (or k-)dependent time (or scale factor), so that Ψ_n becomes oscillatory at the Planck-scale crossing time of n.

Realization:

"Manual" implementation by introducing n-dependent term into V_0,

$$V_0 = a^4(1 - \Lambda a^2) \rightarrow a^4(1 - \Lambda a^2 + \mathcal{F}_n(a))$$

where

$$\mathcal{F}_n(a) egin{cases} \gg 1 & , & n \gg a \, l_p^{-1} \ pprox 1 & , & n pprox a \, l_p^{-1} \ \ll 1 & , & n \ll a \, l_p^{-1} \end{cases}$$

Focus on growing under-barrier mode ($\tau \rightarrow i \tau$):

- damping term in (3) has maximum at turning point (τ = 0), negligible for modes n > 1
- asymptotic solution of (3) has the form A e^{-nτ} + B e^{nτ}, so that:

$$S_n = \frac{1}{\Lambda \cosh^2 \tau} \left(n - \frac{2An}{A + B \exp(-2n\tau)} - \tanh \tau \right)$$

this is only positive definite for τ → ∞ (a → 0) if A=0
 → BD vacuum

Assumptions made:

- 1. minisuperspace reduction
- 2. f_n perturbatively small
- 3. semiclassical approximation
- 4. all modes (including TP) are oscillatory