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Motivation and setting

Setting:
Semiclassical QFT, no QG

Motivation:

What constrains the vacuum at high (i.e., trans-Planckian = TP)
wavenumbers? (consistency? principles? dynamics?)

Relevance:
1. Signatures in the CMBR (— Jerome’s talk)

2. Cosmological particle creation and UHECRS (Starobinsky & Tkachev,
Goldstein & Lowe)

— small deviations from the standard (Bunch-Davies) vacuum
might be observable




1. Do TP modes exist or are they created?

e "existence” «> initial state formulation
of EFT (e.g., Schalm, Shiu, van der Schaar, Greene)

alternative: creation at Planck-scale

Crossing (Jacobson; Danielsson; IN, Parentani,
Campo; Easther, Kinney, Shiu, Greene; ...)

e analogy: super-horizon modes in
inflationless cosmology

“existence”: impose perturbations on
homogeneous slice at initial time,
including super-horizon modes

“creation”: impose growing mode at
horizon entry

from Easther et al., astro-ph/0505426




1. Do TP modes exist or are they created?

e Is this a useful question at all?

e Does “existence” imply observability?
—direct probes of | < |, — bh formation — "locality bound”

—IR effects in expanding/curved spacetimes do not constrain existence
vs. creation (?)




2. If they exist, which criteria (or
“principles”) determine their state?
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1. symmetry
e e.g., dS invariance — “a-vacua” including Bunch-Davies (BD)
vacuum
e imprint of initial symmetry (cf. quantum cosmology, landscape,...)

e why is large-scale symmetry inherited by infinitesimally small
scales?
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1. symmetry
e e.g., dS invariance — “a-vacua” including Bunch-Davies (BD)
vacuum

e imprint of initial symmetry (cf. guantum cosmology, landscape,...)

» why is large-scale symmetry inherited by infinitesimally small
scales?

2. decoupling / equivalence principle
e conserved, renormalizable (T, ) <> O(4)-adiabatic vacuum ("locally
flat physics"’) (e.g., Anderson et al., hep-th/0504134)
e doesn't require exact symmetry on TP scales
e dS:1)+ 2) - BD vacuum
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e equivalentto 2) ?




2. If they exist, which criteria (or
“principles”) determine their state?

3. regularity

e qguantum cosmology: prediction of BD vacuum for broad range of
boundary conditions (Halliwell & Hawking, Wada, Vachaspati & Vilenkin,
Vachaspati, Laflamme) (?)

e equivalentto 2) ?

4. “naturalness”

e "“the deviation from BD must be small, so without fine-tuning the
state must be exactly BD”

e NH: _and A =0.




3. Does quantum cosmology really predict
a BD vacuum on TP scales?

The argument in a nutshell (cf. Vachaspati ‘89, PLB 217, 228):
—Wheeler-deWitt eq. for the wave function of the universe:
HWVY =20

—consider minimally coupled scalar field in closed dS
background+perturbations

—expand field in spherical harmonics: ¢ ~ Y foim()QL,(z)
= f 7

~WdW eq. (x=1Ina): | 9 . 82

~ ; : .F-._I.r*-'w ‘I’ w=o
92 - 5f2 (z, fn)

where 1 N | )
V(z, fn) = e*(1 - Ae®) —e** Y (n® - 1)57
T

=To(2) + X Vn(=) f7




—separate the wavefunction: W — I_l’«U(:r, fn)

— problem equivalent to n independent 2-d QM problems for each
modef, =y




-write. W = exp |—Sp(z) — = ) By (:c)fg and expand WdW eq. in 7 :

8 Yo
£ 7

(ars{])z — . (1)
(Sl 3-5n) — S~ = Vi (2)
—introduce (conformal) time via 25 == -z‘d—a
da dT
(1) yields (with T — it for a < A1/2): o _,Hl
Al/2cosTt
—define mode functionsvia 5, — _iq 2¥n . up = avn
n )
(2) becomes: Ly, [ o — | up, = 0 (3)
COS<=T1/

—matching conditions at the turning point require equal coefficients of the solution in

the classically allowed and prohibited regions

—regularity (|'¥] < <) requires Re(S,) > 0
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-write W = exp |—So(z) — - . . (:cjfE and expand WdW eq. in 7 :
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da dT
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. . 2 N
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Focus on growing under-barrier mode (t — i 1):

damping term in (3) has maximum at turning point (z = 0),
negligible for modes n > 1

asymptotic solution of (3) has the form A e™ + B e™, so that:

1 - 2AN

‘S]‘T — — [ T —
Acosh<t \ A + B exp(—2nT)

—tanh ,—)

this is only positive definite fort — « (@ — 0) if A=0
— BD vacuum

Assumptions made:

ol s

minisuperspace reduction
f_ perturbatively small

semiclassical approximation
all modes (including TP) are osdillatory
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Mode creation by quantum tunneling

Idea (not even half-baked):

Shift the turning point to n- (or k-)dependent time (or scale factor), so
that ¥_ becomes oscillatory at the Planck-scale crossing time of n.

Realization:
“Manual” implementation by introducing n-dependent term into V_0,

Vo = a’(l Mo} sa” (l — Ao )
where ) -
> 1 ‘ n > al;
Fn(a){~1 . natal,
(& 1 . n < al;l
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Example:

oy
) i o

.7_—-?1 ((I ) — p

Questions:
1. Does any of this make any sense?

2. Can this effect be produced by “reverse engineering” the
formalism, i.e. relaxing the assumptions of semiclassical
minisuperspace quantum cosmology?

3. Does regularity of |'¥| still predict the state? If yes, what is it?
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Mode creation by qu:
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Mode creation by quantum tunneling

Idea (not even half-baked):
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