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The invitation to this meeting asks:

The question of how to describe a natural ultraviolet cutoff

in an expanding space-time is of significance in several respects.
First, it concems the fate of general covariance n the presence of a
natural UV cutoft. Second, it concerns the continued generating of
degrees of freedom through expansion, which carries with it the
possibility of an associated generating of vacuum energy. Finally,
through inflation, a natural ultraviolet cutoff may have left
observable imprints in the CMB.

Do background independent approaches to quantum
gravity have something to say about this question?

Comments by Thomas Thiemann, Fotini Markopoulou, Olaf Dreyer, Is
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Three principles:
1) The Gauge principle: All forces are described by gauge fields

*Gauge fields: Aa valued in an algebra G
*Gravity: A, valued in the lorentz group of SU(2) subgroup

*p form gauge fields
*Supergravity: W is a component of a connection.

2) Duality: equivalence of gauge and loopy (stringy) descriptions

observables of gauge degrees of freedom are non-local:
described by measuring parallel transport around loops

Wilson loop T[y,A] = Tr exp J-‘;,A Q

3) Diffeomosrphism invariance and background independence
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he fundamental theorem: Consider a background independent
gauge theory, compact Lie group G on a spatial manifold X of dim
>1. No metric!! (G=SU(2) for 3+1 gravity)

There is a unique representation of the loop/surface algebra in
which the Hilbert space carries a unitary rep of the
diffeomorphism group of X, called H%".

Lewandowski, Okolo, Sahlmann, Thiemann+ Fleishhack (LOST theorem)

This means that there i1s a unique diffeomorphism invariant quantum
quantum theory for each G and X.

The Hilbert space of diffeo invariant states, H, is a subspace of H*""
Ashtekar: GR 1s a diffeomorphism invariant gauge theory!!

The dynamics of GR have been expressed in closed form in terms of
finite operatars and evolution amplitudes on H.
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Area= hG Zj\ j(j+1)
Volume= I’lql Zjvj







Basic results:

1. Diffeomorphsim invariance plus quantum
theory leads to discreteness for geometry and matter
and a uv cutoff.

2. The volume of space is represented by a positive
Hermitian operator with a discrete spectrum.

3. The dynamics leads to transitions between states
with different volumes.
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The problem of non-locality (F. Markopoulou, hep-th/0604120 )
Two kinds of locality:

Microlocality: connectivity of a single spin net graph
causal structure of a single spin foam history.

Macrolocality: nearby in the classical metric that emerges

Issues: Semiclassical states may involve superpositions
of large numbers of graphs. In addition being
semiclassical 1s a coarse grained, low energy property.

Could there not be mismatches between micro and
macrolocality?

»  What if these are rare, but characterized by the
cosmological rather than the Planck scale? ™
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If locality is an emergent property of graphs, it is unstable:

I'": a graph with N nodes that has only links local in an

embedding (or whose dual is a good manifold triangulation)
iIn d dimensions.

1

Lets add one more link randomly. |

/J
2
*

Does it conflict with the locality of the embedding? \

d N ways that don't.

N? ways that do.

Thus, if the low energy definition of locality
comes from a coarse graining of a combinatorial
graph, it will be easily violated in fluctuations.

3
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I': a graph with N nodes that has only links local in an

embedding (or whose dual is a good manifold triangulation)
iIn d dimensions.

Lets add one more link randomly. |

.-'f.
e
’{J"

Does it conflict with the locality of the embedding? =

d N ways that don't. |

N? ways that do.

Thus, if the low energy definition of locality
comes from a coarse graining of a combinatorial
graph, it will be easily violated in fluctuations.

h
Mig¥it there then be dislocations or disordering of locality? ™™



Hypothesis: the low energy limit of QG 1s charactenzed by a
small worlds network
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Dislocations in locality are scale mvariant up to the Hubble scale
Numerical studies of evolving spin networks by H. Finkel

(hep-th/0601163) Show that this is a generic outcome of evolution of
random initial graphs by local moves.
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suppose the ground state is contaminated by a small proportion of
wn-local links (locality defects)??

Nhat is the effect of a small proportion of non-local edges
n a regular lattice field theory?

f this room had a small proportion of non-local link, with no two
1odes in the room connected, but instead connecting
o nodes at cosmological distances, could we tell?

| =3 456 7 8 910111213141516171819 20

. - 21 L 40

Yidun Wan studied the Ising 41
. . 6l R0

nodel on a lattice contaminated by _ 100
- 10] - o — 120

andom non-local links. 121 | 140
141 71T 1 60

161 Iép" et F 180

. 5 181 3+t - 200

R=non-local links/local links 201 Bz SSHENERE N 220
221 =<t ' = . 4 240

= 20/800=1/40 o SR TR T T
261 =TI . + 280

2581 - 300

» 301 1 320
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Cosmology with disordered locality: a simple model

Start with standard flat FRW 42 = 202 4 o200 dods”

Disorder locality by choosing a random distribution of
pairs of points in the spatial manifold that are identified.

Microscopically these are nodes in an underlying spin-network
which are connected by a single link.

P(x.y,a) is the probability that there is a non-local-connection
between a point in a unit physical volume around x and a point
in a unit physical volume around y, as a function of scale a.

Scale invariant plus random implies P(x,y,a) = N, (a) /V>

—

Ny = [ .‘f:?'_r \,-";I'I \ I ) / rf:'i;,'v‘ qly \Plx,y.a)
. JE .

-

"Ny (a)= the number of non-local links in a co-moving volumie V=a?
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Solving the Problem of Time
In GR and Cosmology

Thomas Thiemann'-2

! Albert Einstein Institut, Z Perimeter institute for Theoretical Physics

astro-ph/0607380
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@ The Puzzle
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The Puzzie

The Puzzle

GR Is a gauge theory

@ E.g. canonically described by phase space coordinates
Qan. PPonM =R x S
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The Puzzie

The Puzzle

GR is a gauge theory

@ E.g. canonically described by phase space coordinates
Qan. PPonM =R x S

@ subject to spatial Diffeomorphism constraints
D(U) = / dSX uaDa. Da = *2prbcqca
JS
@ and Hamiltonian constraints

C(N) := / d3x NC.
JS

[JacObd — %QaDQCd]PaDPCd

v/ det(q)

C = — \/det(q)R®)[q]
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The Puzzie

Constraints generate diff(M)
@ Define v* := Nn* + X'3u?
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The Puzzie

Constraints generate diff(M)
@ Define v¥* := Nn* + X';u?
@ Let G(v) := D(u) + C(N) then

{G(v). G(V')}eom = G([v.v])
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The Puzzie

Constraints generate diff(M)
@ Define v¥* := Nn* + X';u?
@ Let G(v) := D(u) + C(N) then

{G(v). G(V')}eom = G([v.v])

@ = Constraints generate gauge transformations
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The Puzzie

Constraints generate diff(M)
@ Define v* := Nn# + X'3u?
@ Let G(v) := D(u) + C(N) then

{G(v). G(V')}eom = G([v.V])
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@ = observable quantities must be gauge invariant

(F.D(u)} = {F.C(N)} =0 ¥ u. N
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The Puzzie

The Puzzie

Constraints generate diff(M)
@ Define v* := Nn* + X'3u?
@ Let G(v) := D(u) + C(N) then

{G(v). G(V')}eom = G([v.V])

@ = Constraints generate gauge transformations
@ = observable quantities must be gauge invariant

{F.D(u)} ={F.C(N)} =0 ¥V u, N
@ = “Equations of motion”

dqap/dt == {G(V).qsp ). dP3/dt:= {G(v), P3P}
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The Puzzie

The Puzzie

Constraints generate diff(M)
@ Define v* := Nn* + X'3u?
@ Let G(v) := D(u) + C(N) then

{G(v). G(V')}eom = G([v.V])

@ = Constraints generate gauge transformations
@ = observable quantities must be gauge invariant

{(F.D(u)} = {F.C(N)} =0 ¥ u. N
@ = “Equations of motion”
dqgp/dt -= {G(V).qgp}. dP3/dt:= {G(v). P3P}

@ do not describe physical time evolution of observable
quantities but reparametrisations of unphysical objects.
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The Puzzie

Why is it that the FRW eqns. describe the observed cosmic
evolution?

@ Hamiltonian constraint for k=0 FRW
p2

S-S, L 3
C= -5+ (A+pma
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The Puzzie

Why is it that the FRW egns. describe the observed cosmic
evolution?

@ Hamiltonian constraint for k=0 FRW

C= P (A + pm)a’
~ " 12a .

@ Solve da/dt = P =: {a.C} and resubstitute

d?a/dt?
a

3

=A — [pm + 3pm]
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The Puzzie

Why is it that the FRW egns. describe the observed cosmic
evolution?

@ Hamiltonian constraint for k=0 FRW

C= P (A + pm)a’
~ " 12a I

@ Solve da/dt = P =: {a.C} and resubstitute

d?a/dt?
a

3

=N — [pm + 3Pm|

@ These are gauge transformations of unobservables,
otherwise we would have {a.C} = 0O!!!
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The Puzzie

Why is it that the FRW egns. describe the observed cosmic
evolution?

@ Hamiltonian constraint for k=0 FRW

C= P (A + pm)a’
~ " 12a i

@ Solve da/dt = P =: {a.C} and resubstitute

d?a/dt?
a

3

=A — [pm + 3pm]

@ These are gauge transformations of unobservables,
otherwise we would have {a.C} = 0O!ll

@ What is going on?
@ This is precisely the problem of time
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Solution

Phantom Fields

Phantom Fields

Suggestion: Physical time evolution driven by unobservable
matter component (physical clock)
@ Phantom DBI action (Brown — Kuchaf Deparam.)

[ w
Spranom = $ | &*X [@eN@)] \/1+ ¢ [V,,9] [V, 9]
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Phantom Fields

Solution

Phantom Fields

Suggestion: Physical time evolution driven by unobservable
matter component (physical clock)
@ Phantom DBI action (Brown — Kuchaf Deparam.)

;'III L
Sphantom = S /M d*X \/[det(g)] \/1+g" [V,.¢] [V, ®]

@ LetQ = det(q). D :=qg3®DsDy. C¥ @ —7x + H where

H(x) = \/CQ - D -s?Q + \/"[CQ — D —s?2Q)?2 — 4s?DQ (x)
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Phantom Fields

Solution

Phantom Fields

Suggestion: Physical time evolution driven by unobservable
matter component (physical clock)
@ Phantom DBI action (Brown — Kuchaf Deparam.)

"’ {
Spranom =S | &*X /[@eN@)] \/1+ ¢ [V,,0] [V, 9]

@ LetQ = det(q). D :=qg3®DsDy. C®@ —7x + H where

H(x) = \/ C2_-D-s2Q+ v»"‘r'[c2 — D — s2QJ2 — 4s2DQ (x)

@ Physical Hamiltonian (Dirac Obs.): H= |_ d®x H(x)
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Phantom Fields

Solution

Phantom Fields

Suggestion: Physical time evolution driven by unobservable
matter component (physical clock)
@ Phantom DBI action (Brown — Kuchaf Deparam.)

/ 1
Spranom = $ | &*X [@eN@)] \/1+ ¢ [V,,0] [V, 9]

@ LetQ = det(q). D :=qg3®DsDy. C®@ —7x + H where

H(x) = \/02 ~D —52Q+4/[C2 — D - s?QJ2 - 4s2DQ ()

@ Physical Hamiltonian (Dirac Obs.): H= |_ d®x H(x)
@ Phys. time evol. (f: spat. diff. inv.,, H, = | d3x(r—¢>)H)

d -
=-0i(7) = {H.O((7)}. Ox(7) := 3
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Solution Specialisation to FRW

Specialisation to FRW

@ Deviation parameter (E = = const. of. motion)
E2

K =
52(33(T)6
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< s Phantom Fields
Solution mialicating tn TO

Phantom Fields

Suggestion: Physical time evolution driven by unobservable
matter component (physical clock)
@ Phantom DBI action (Brown — Kuchaf Deparam.)

[ .
Spranom = $ | &*X /[@eN@)] \/1+ ¢ [V,,0] [V, 9]

@ LetQ = det(q). D :=qg3®DsDy. C¥ @ —7x + H where

[ /
=1/C? - D -s%Q+/[C? - D - s?QJ? - 4s?DQ ()

@ Physical Hamiltonian (Dirac Obs.): H= |_ d®x H(x)
@ Phys. time evol. (f: spat. diff. inv.,, H, = | d3x(r—¢>)H)

d -
3-01(7) = {H.O(7)}, Of(7) := p 3
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Solution Specialisation to FRW

Specialisation to FRW

@ Deviation parameter (E = = const. of. motion)
E2

X 20a(r)°
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Solution S salisation to ERW

Specialisation to FRW

@ Deviation parameter (E = = const. of. motion)

E2
X 20a(7 )0
@ Results in modified FRW eqgns.
dOg/dr 1
(=5, )" = N+ Opm + Oppraon(1 + 3)
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Solution Specialisation to FRW

Specialisation to FRW

@ Deviation parameter (E = = const. of. motion)
E2
xR =
5203(?')6

@ Results in modified FRW eqgns.

dO,/dr 1

2 .
3( Oa ) = [A + Oprn w OPnnantr::-m](1 - ;)
o)
d?0, /d7? 4 1 5
3 Sa — A(1 2 ;) = E {[Oﬁ'ﬂ B Opphant{:m](1 ol ;)
1
*S[Opm L3 (:)P:Jhanmrn]('1 L] ;)}
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Solution Specialisation to FRW

Specialisation to FRW

@ Deviation parameter (E = = const. of. motion)
E2
X 20a(7 )
@ Results in modified FRW eqgns.
dO5/dr 1
(=5, )" = N+ Opm + Oppmaen(1 + 3)
Q
d?0, /dr? 4 1 5
35— A1+ )~ 5{[Om + Ol - )
1
‘S[Opm i Opnhant::m](1 i ;)}

@ For suff. small s, deviation unobservable today but
= ynavoidably predicts recollapse.

Page 63/107




Invariant cosmological perturbation theory
Future Work

Invariant cosmological perturbation theory

Observable cosmological pert. to all orders!

[Giesel, Hofmann, T T., Winkler 06-] (work in progress)

@ Redo class. cosmol. pert. theory in terms of invariants
[Mukhancv, Brandenberger, Feldmann 93]
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Solution Specialisation to FRW

Specialisation to FRW

@ Deviation parameter (E = m const. of. motion)
E2
X 20.(r)
@ Results in modified FRW eqgns.
dOg/dr 1
(=5, = N+ Opm + Oppmaen(1 + 3)
9
d?0,/d72 4 1 5
3 Sa - A(1 " ;) — E {[OPI'TI il OPphantcm](.I n ;)
1
*S[Opm L Opuhant:m](1 &2 ;)}

@ For suff. small s, deviation unobservable today but
= ynavoidably predicts recollapse.
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Phantom Fields

Solution

Phantom Fields

Suggestion: Physical time evolution driven by unobservable
matter component (physical clock)
@ Phantom DBI action (Brown — Kuchaf Deparam.)

/ =
Sphantom = S /M d*X /[ det(g)[ \/1+g* [V,¢] [V, 9]

@ LetQ = det(q). D :=qg3®DsDy. C®@ —x + H where

H(x) = /CQ —D—s2Q+ v"’rr[C2 — D —s%QJ? — 4s°DQ (x)

@ Physical Hamiltonian (Dirac Obs.): H= |_ d®x H(x)
@ Phys. time evol. (f: spat. diff. inv.,, H, = | d3x(r—¢)H)

Z0y(r) = {H.0(")}. Ox(r) =3
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invariant cosmological perturbation theory
Future Work

Invariant cosmological perturbation theory

Observable cosmological pert. to all orders!

[Giesel, Hofmann, T T., Winkier 06-] (work in progress)

@ Redo class. cosmol. pert. theory in terms of invariants
[Mukhanov, Brandenberger, Feldmann 93]
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Invariant cosmological perturbation theory
Future Work

Invariant cosmological perturbation theory

Observable cosmological pert. to all orders!

[Giesel, Hofmann, TT., Winkier 06-] (work in progress)

@ Redo class. cosmol. pert. theory in terms of invariants
[Mukhanov, Brandenberger, Feldmann 93]

@ Solve vacuum problem in cosmology:
Ground state = minimum energy eigenstate of physical
Hamiltonian H.
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invariant cosmological perturbation theory
Future Work

Invariant cosmological perturbation theory

Observable cosmological pert. to all orders!

[Giesel, Hofmann, T T., Winkler 06-] (work in progress)

@ Redo class. cosmol. pert. theory in terms of invariants
[Mukhancv, Brandenberger, Feldmann 93]

@ Solve vacuum problem in cosmology:

Ground state = minimum energy eigenstate of physical
Hamiltonian H.

@ No debate “at which time” to choose ground state since
physical states are annihilated by Ham. constraint op.
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invariant cosmological perturbation theory
Future Work

Invariant cosmological perturbation theory

Observable cosmological pert. to all orders!

[Giesel, Hofmann, T.T., Winkier 06-] (work in progress)

@ Redo class. cosmol. pert. theory in terms of invariants
[Mukhanocv, Brandenberger, Feldmann 93]

@ Solve vacuum problem in cosmology:

Ground state = minimum energy eigenstate of physical
Hamiltonian H.

@ No debate “at which time” to choose ground state since
physical states are annihilated by Ham. constraint op.

@ LQG model calculations already indicate resolution of
Initial singularity
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Invarant coemological parturbation theory
Future Work

Invariant cosmological perturbation theory

| .

Observable cosmological pert. to all orders!
[Gisssd, Hofmann. T.T.. Winkisr 06-] (work n progress)

@ Redo class. cosmol. pert. theory in terms of invarianis
[Mukhanow, Brandsnberges. Feldmann 3]

@ Solve vacuum problem in cosmology:
Ground state = minimum energy eigenstate of physical
Hamiltonian H.

- E reysa

No debate “at which time™ to choose ground state since
physical states are annihilated by Ham. constraint op.

@ LQG model calculations already indicate resolution of
initial singularity
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Definition: Quantum Causal History

" - Directed graph, no cycles.
A
\ / <Y related
\

C U‘-f"’”ﬂ\ T ~ Yy unrelated

4
:-/ ,/ \. T — H(z) finite dimensional

( ~y) — H(z) ® H(y)
TSy—¢:A[H(z)] — A [H(y)]

¢ completely positive map

[ linear ¢ - B(H.) — B(H,) such that
dr @ ¢ : M. ® B(H,) — My ® B (H,)

M. |
is _ﬂgﬂﬁfﬂ-ﬂ[ﬁ E}: 1 and tm'CE"P'rESErVing, Hawkins, FM & Sahlimann




complete future

complete pair
complete past




Axiom | (extension).

Al 2 4
S There exists op(€,y) : .

such that, for each = £
P(x, y) ep(E, uy)

Ate

Axiom 2 (commutativfty of unrelated elements).
Aly Alz)

PPla(z) Iso(x,y).

= E I'I- f
Pr(E, y) i a) The images of op (&

in A(£) commute.
R

: y} and @'P(‘Er :J



e There exists ¢p(&,y) - A(y) — A(§)
such that, for each =
oplacz) ISO(T.Y).-

The images of ¢p(&,y)and ¢p (&, 2)
in A(£) commute.

Axiom 3 (composition). op(E.y)

< >  #z,y) =or(z.8) o9e(& V)

Al = E
orlz,E)

<

o0




Unltary maps from compfere!y posrtwe rnaps

Theorem 2. Fﬂr.mq acausal sets £, c @ iflis a compiete fuature ofEor &

Isa complete
past of { then there exists a 3 unigue map

(& 0 - AlL) — A(E)
such that
1. For anyx € Eand z €  the reduction of (&, ) te A(z) — Alx) is @(x. z).
2. If & is a complete pastof {, then @(£,0) isa homomorphism.
3. Iflisa complete future of £, then P'(E.)isa homomorphism.
4 FE<lisa complete pair, then el L) isan isomorphism

IfE < v < then (&, v) o (v, &) = e(E, )

Ln

Not every choice of unitary maps for complete pairs can be
€Xpressed in terms of CP maps (micro- -Causality).

























|. QCHs as discrete quantum field theory

Algebraic Quantum Field Theory:
Causal nets of algebras of local observables.

-

causally complete region von Neumann
of{fixed |continuous spacetime algebra

Quantum Causal Histories: Discrete version for|fixed|spacetime.
A(xz) inz — A(xz) means matter degrees of freedom onz

Can use to address unitarity issues in discrete expanding space.

It is of interest to extend to infinite-dimensional algebras on locally
finite graph.













I. QCHis as discrete quantum field theory

Algebraic Quantum Field Theory:
| Causal nets of algebras of local observables.

causally complete region : von Neumann
cflﬁxed continuous spacetime algebra

| Quantum Causal Histories: Discret
A(z) inz — A(z) means m

e version for{fixed|spacetime.
atter degrees of freedom on =

Can use to address unitari

It is of interest to extend
finite graph.

Uy issues in discrete expanding space.
to infinite-dimensional algebras on locally
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