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1. Discreteness can respect Lorentz-transformations
(Kinematic randomness plays a role — Poisson processes)
2_ But locality must be abandoned

Implies radical nonlocality at fundamental level ( micro-scale [

3. One can recover locality approximately at large scales | macro-scale)

4. But residual nonlocality survives at intermediate length-scales
(meso-scale. below A;)
3. An effective meso-theory would be continuous but nonloecal

Hlustrate these claims with scalar field ¢ on a fired causet C-

Recovery of Od¢.

(0A is also a nonlocal effect of discreteness: I'll not discuss it)
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1. Discreteness can respect Lorentz-transformations

( Kinematic randomness plays a role — Poisson processes)

2. But locality must be abandoned

Implies radical nonlocality at fundamental level ( micro-scale [)

3. One can recover locality approximately at large scales ( macro-seale)

4. But residual nonlocality survives at intermediate lensth-scales
( meso-scale, below Ag)

3. An effective meso-theory would be continuous but nonlocal

Mlustrate these claims with scalar feld ¢ on a fired causet C-

Recovery of Te¢.

(dA is also a nonlocal effect of discreteness: I'll not discuss it)




amt - - 4
o B - : -
i Net'] - = - =i - - =
ol BV l"{:_;'l'-“-‘.- o i g"ﬁ" Rt e Tt i . |
e T e, WIS e o = 71 . - -
R o b g e A5 L - S
=y = e EL I e = L e s 3 - 2 . -
— :_-'"!‘ T"-.H;’..p—":" 1."_'.;""_:_1:: =& amlp - - - i
l":""'- Rt e 2 g P i Sy I - -
-~ ‘T"‘\Tr#‘."r e R ey ~AnE ask S et = =
as : o J - o e
= . ; Y = =
3 ; amb . - e
et ot = = = I - :
s Yy P T e oI o e, | ] = - - ]
1 23 amfp = N aend
- " - - S
L —m i = -

iy LS LN L B8 % B o o e

Red squares are. in same coordinate location.
(Boos( 1s an active transformation. )
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A theorem on Poisson Processes

) = space of all sprinklings of K% sample space)

Poisson process induces a measure B on ©)

Let f be a rule for deducing a direction from
S =02 — H — unit vectors in M

a sprinkling

Require f equivarignt (FA=Af, A € Lorentz)

Assume that f is measurable (hardly an assumption)

THEOREM No such f exists

(not even on a partial domain of positive measure)

(So with probability 1. a sprinkling will not determine a frame. )
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Whence the nonlocality? -
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These ideas lead to expressions like

2 5 £ L
=] = Il ce=lFr

ie.
Opl1) < z Bii, Elo(k)
A.

where
J
| ]

e
tﬂ“-‘f‘-’.;= lif i <kisalink (NN) [ <i,k>|=0
5 —2if i <k and (NNN) |<ik>|=1

1if i < k and (NNNN) | <i.k> ==

Can prove that. as [—0

SEEZBLH:J;: — O¢(x;)

using e.g.

[ dudy A =
S—expy—ur/l~} d(u.v)
[

Problem: AS — oc (Auctuations) as [ — 0!
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IDEA: Our averaged sum is a confinuuwm expression.
J/ B(z - z') ¢(z") "1’ ,

where
B(z) =8(zx) (—2Kd(z) + 4K* plE) ¢ "'Et

- _— i 1 -7 - = =
with p(f)=1—-2£+35£°, £=Kuv., and K =1/

But can decouple K from [©. We get a nonlocal continnum analoe of

the D alembertian! Call it [].
K

Umkehren: approximate [ by 3~ over sprinkled points!

This produces the causet expression,

4= Bl -
—— —;J[y —:‘Sp-.':'r--"‘ olx)

where { =« |(z,y)] and ==PK

L}

The “trick™ drives down the fluctuations. but nonlocality survives at

the intermediate scale \; = 1/ \,'_;'{:.

The effective [J of this expression is just [ itself
R
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Remarks and applications

¢ Analogous expressions exist in other di

mensions. In d = 4
p(§) =1 —3€+(3/2)€* — (1/6)3
—';;—ii ; —-.'Is - ;
I Ir Iri IV

» Can now study propagation on sprinkled causet (Rideout)
cf. swerves

e The continuum theory’s free field is stable (ker O = kerO)

But response to sources differs

e Quantum Field Theory version? New approach to renormalization?
Our nonlocality does not remove ~c’s. but perhaps it will allow an
invariant (Lorentzian) cutoff.

e How big is Aq? Must balance fluct

L — Hubble™!. [ = Planck leneth.

uations vs. nonlocality:

A (PE)/3

(A"

if want Og pointwise accurate. = nuclear size!!




