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Abstract: Entanglement is one of the most studied features of quantum mechanics and in particular quantum information. Y et its role in quantum
information is still not clearly understood. Results such as (R. Josza and N. Linden, Proc. Roy. Soc. Lond. A 459, 2011 (2003)) show that
entanglement is necessary, but stabilizer states and the Gottesman-Knill theorem (for example) imply that it is far from sufficient. | will discuss
three aspects of entanglement. First, a quantum circuit with a "vanishingly small" amount of entanglement that admits an apparent exponential
speed-up over the classical case. Second, | will discuss techniques for lower-bounding the amount of entanglement in bipartite quantum states.
Finally, I will discuss the role of entanglement in quantum metrology. Specifically, | will show that entangling ancillas can make no difference to
the accuracy of a quantum parameter estimation, regardless of the nature of the coupling Hamiltonian. | will conclude by discussing strategies for
improving the scaling of quantum parameter estimation.
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Entanglement:
What is it good for?
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Global entanglement as
a necessary resource

@ We'd like to understand the role of entanglement in a
quantum information.

® Global entanglement is necessary, but not sufficient,
to achieve advantages over classical protocols.

@ T'll discuss two systems where entanglement matters,
but in vastly different ways.

@ Power of One Qubit - "Multum ex Parvo”

@ Quantum Metrology - "Parvo ex Multum”

R Jozsa and N landen Proe R Soc Tond A 459 2003
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What can one qubit do?

polarization Measure in some basis
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What can one qubit do?

Problem:

Let U be a unitary operator on . qubits
that can be implemented efficiently in
terms of elementary gates. Estimate

Tr (U) /2" with fixed accuracy .
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What can one qubit do?

Problem:

Let U be a unitary operator on n qubits
that can be implemented efficiently in
terms of elementary gates. Estimate

Tr (U) /2" with fixed accuracy .

Seems artificial: Is this useful?

Applications to testing integrability of chaotic
systems and estimating density of states.

E. Knill. R. Laflamme. Phvs. Rev. Lett. 81. 5672. 1998.
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What can one qubit do?
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What can one qubi’r do?
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What can one qubit do?

Some Alternatives:

@ There exists an efficient classical algorithm.

@ There is no efficient classical algorithm.

@ The state of the computer is separable
during the computation.
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What can one qubit do?
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What can one qubit do?
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What can one qubit do?

Some Alternatives:

@ There exists an efficient classical algorithm.

@ There is no efficient classical algorithm.

@ The state of the computer is separable
during the computation.
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Where's the entanglement?
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Where's the entanglement?
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Where's the entanglement?
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Where's the entanglement?
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Is this typical?

We would like to construct a pseudo-random unitary
that is efficiently implementable and calculate the
resulting state's negativity.

Probably hard to do analytically.

Quite easy numerically.

J]. Emerson. Y. S. Weinstein. M. Saraceno. S. Llovd. D. GG. Corv. Science 302. 2003
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Is this typical?

We would like to construct a pseudo-random unitary
that is efficiently implementable and calculate the
resulting state's negativity.

Probably hard to do analytically.

Quite easy numerically.
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Is this typical?
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Average negafivity

Is this typical?

Negazivity v. Bipariie Spitting Number for 2 3+1 Qubir DQC1 Siate

Global entanglement!
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Is this typical?

MNegatvity v. Biparie Spitting Number for 2 3+1 Qubir DQC1 Siate

Global entanglement!

The negativity
achieves a
maximum when the
bipartite splitting
is done half/half.

Average negafivity

Bipartite splitting
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Is this typical?

4} random U

Generate lots of statistics and
see what the negativity is....




Average negafivity
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Is this typical?

Average Negativity v. Number of Qubits

Number of qubits



Is this typical?
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Standard deviation

Standard Daviation i the Negativily

Is this typical?

Standard Deviation v. Number of Qubits
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Is this typical?

Standard Deviation v. Number of Qubits

| Standard deviation
| decreases
exponentially.

| Almost all unitaries
|  have the same
negativity

STandard_deviqTion

Number of qubits




Bounding the negativity

i A Y
Recall the form of rho: w—-:T(M-. f)

Strategy: find trace
invariants of P to
constrain the eigenvalues.

Trace invariants:

rrys=123. .




Bounding the negativity
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Choose an arbitrary but fixed bipartite
splitting and take the partial transpose.
Denote this by p.

Strategy: find trace
invariants of P to
constrain the eigenvalues.

Trace invariants:
mrye=123, .




Bounding the negativity

1

I ol
Recall the form of rho: ¢ = I ( Ut )

Choose an arbitrary but fixed bipartite
splitting and take the partial transpose.
Denote this by p.

Strategy: find trace
invariants of P to
constrain the eigenvalues.

Trace invariants:
grye=123 ..

Then maximize the negativity
subiect to these constraints.
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Bounding the negativity
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When k is odd, C* is block of f-diagonal, so the trace vanishes.




Bounding the negativity
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k=0
When k is odd, C* is block off-diagonal, so the trace vanishes.

When k is even, we need the following lemma:

Proof is simple; just pick
A and B and write it out.

Lemma 1: Tr (AB) = Tr (AB).




Bounding the negativity
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k=0
When k is odd, C* is block off-diagonal, so the trace vanishes.
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Bounding the negativity
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k=0
When k is odd, C* is block off-diagonal, so the trace vanishes.

When k is even, we need the following lemma:

Proof is simple; just pick
A and B and write it out.

Lemma 1: TY (AB) = Tr (AB).

Tr (C%) = 2T [(TTh)k2] when k=2,

e I (C") = 2N
. . the lemma implies

when k>4, the lemma can't help us!
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Bounding the negativity
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Bounding the negativity
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k=0

When k is odd, C* is block off-diagonal, so the trace vanishes.
When k is even, we need the following lemma:

Proof is simple; just pick
A and B and write it out.

Lemma 1: Tr (AB) = Tr (AB).




Bounding the negativity
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Bounding the negativity
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Bounding the negativity
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Can be done
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exactly for

small n, or
approximately
for large n.
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Bounding the negativity

MNegativity v. Number of Qubits

e
n

&
T

Hard to solve. Asymptote
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Bounding the negativity

Best known U
achieves the

upper bound
for n=3. Is
this optimal?

Negativity v. Number of Qubits

Asymptote

Upper bound

Bes‘r known U

Random U

| <= s=1.2 bound

| —— s=1.2.3 bound
—#— Random unitary, (n.1) splitting
- Random u rlar",r (nf2+1,n2) um‘Ing|

—— Best known unitary

10 15 20
Number of Qubits
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Global entanglement as
a necessary resource

@ We'd like to understand the role of entanglement in a
quantum information.

@ Global entanglement is necessary, but not sufficient,
to achieve advantages over classical protocols.

@ T'll discuss two systems where entanglement matters,
but in vastly different ways.

@ Power of One Qubit - "Multum ex Parvo”

@ Quantum Metrology - "Parvo ex Multum”
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Bounding the negativity

Negativity v. Number of Qubits

Hard to solve. N Asymptote
Can be done '
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Bounding the negativity
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Bounding the negativity
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Bounding the negativity

Best known U
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upper bound
for n=3. Is
this optimal?

Negativity v. Number of Qubits

Asymptote
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a necessary resource

@ We'd like to understand the role of entanglement in a
quantum information.

@ Global entanglement is necessary, but not sufficient,
to achieve advantages over classical protocols.

@ T'll discuss two systems where entanglement matters,
but in vastly different ways.

@ Power of One Qubit - "Multum ex Parvo”

@ Quantum Metrology - "Parvo ex Multum”
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Quantum Metrology

Goal: Take a one-parameter Hamiltonian H., = ~vhg
and estimate the coupling constant.

‘_.\I."
Usually the Hamiltonian has the form /g = Z h;
—1

For separable input states, the shot-noise limit says
the optimal scaling of the standard deviation is

1

Y ~ —
tVIN(Apy — Ay




Use Entanglement

If we are allowed to input a "cat” state,
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This was shown to be optimal for
Hamiltonians of the form ho =) h;

<

tti. S. Lloyd, and L. Maccone, Physical Review Letters 96, 010401 (200¢



Quantum Metrology

Goal: Take a one-parameter Hamiltonian H., = ~vhg
and estimate the coupling constant.

N
Usually the Hamiltonian has the form /g = Z h;

7=1

For separable input states, the shot-noise limit says
the optimal scaling of the standard deviation is
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Use Entanglement

If we are allowed to input a "cat” state,

1
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Quadratic Improvement!
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This was shown to be optimal for
Hamiltonians of the form ho =) h;
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tti. S. Llovd, and L. Maccone, Physical Review Letters 96, 010401 (200



Can we do better?

These limits were derived under assumptions about
@ the nature of the coupling Hamiltonian
@ the role of ancillas
@ discrete-time dynamics

@ no auxiliary Hamiltonians while evolving
under the coupling Hamiltonian



Can we do better?

These limits were derived under assumptions about
@ the nature of the coupling Hamiltonian
@ the role of ancillas
@ discrete-time dynamics

@ no auxiliary Hamiltonians while evolving
under the coupling Hamiltonian

I we violate these assumptions, can we do better?




Can we do better?

Now consider the Hamiltonian

H,(t) =vho + H(t), ho= » k3

The superscript k denotes k-body coupling terms.

Arbitrary coupling to ancillas and within the probe
systems are allowed by the auxiliary Hamiltonian.

First derive a bound for arbitrary hg, then plug in
the special form to see the scaling with N.



Generalized Metrological
Precision Bounds

Begin with an intial state Q0.

Time evolve under the Hamiltonian to
- (t) = U, (t)poUl(2)
The equation of motion for the unitary is

OU, (t)
z _
ot

— I AE)EE &)




Generalized Metrological

Precision Bounds

Quantum Cramér-Rao bound:

Quantum Fisher
Information

| dp- = - | r &7, T o
—)ﬂ Py f)ﬁl_iln ) = ;( — —?h[‘L‘_i{L_df ot —1 A = t9
2 o

For no auxiliary Hamiltonian, K_ (t) = thg

.-1"1. - ]—[.. &EYO, _"""J iabuizstic and statistical aspects ]
o 1 = = 1 - Y I I J ¥ i &
W. Helstrom. Quantum detection and estimation theory
—~ 3 P N q %1 % T e — i i ) i
S . Braunstein and (! M (laves Phvs Rev [.e 72 31430 (19




Generalized Metrological
Precision Bounds

For pure states,

_dp-(t) S k.
e () :2”_} — 2K (t), p (2)]
o ok

The Fisher Information now relates to the
variance of K and its operator semi-norm

— < \/I,(t) < 2AK,(t) < [|K,(t)

(inequalities hold for mixed states; for pure states, the first two are tight)

The operator semi-norm just means || H|| = Mg —myg
where M and m are the largest and smallest eigenvalues of H
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Quantum Cramér-Rao bound:  §+2 >

Quantum Fisher
Information

7.

L (t) = miplfliclt)) — (£

| dp- T e L),
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For no auxiliary Hamiltonian, K_ (t) = thg
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Generalized Metrological
Precision Bounds

For pure states,

3. (1)
EH [” = _—)f.);_h_. I,r’L,.

| o

The Fisher Information now relates to the

variance of K and its operator semi-norm
— < \/I,(t) < 20K, (¢) < || K, (t)

.r?;‘

= —2i[K.(t), p~(t)]

(inequalities hold for mixed states; for pure states, the first two are tight)

The operator semi-norm just means || H|| = Mg —myg
where M and m are the largest and smallest eigenvalues of H



Generalized Metrological

Precision Bounds
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Quantum Fisher
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Generalized Metrological
Precision Bounds

For pure states,

_dp- (1) 2 |
e.4t) = 2L _ _NiKC (1), p- (8)]
o L
The Fisher Information now relates to the
variance of K and its operator semi-norm

1
.r_‘l_‘

< \I (1) < ZAK. (1) < K, (P)|
(inequalities hold for mixed states; for pure states, the first two are tight)

The operator semi-norm just means | H| = Mg —mg
where M and m are the largest and smallest eigenvalues of H
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Quantum Cramér-Rao bound: §+2 >

Quantum Fisher
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Generalized Metrological
Precision Bounds

For pure states,

| dp~(t) P el
Sekt) = 2 f_ — —jf_[’s.j,.li.f,].;_},wf_.J

!,.-?'l.-
The Fisher Information now relates to the
variance of K and its operator semi-norm

— < \/I,(t) < 2AK,(t) < ||K,(t)

.r_\Jh‘

(inequalities hold for mixed states; for pure states, the first two are tight)

The operator semi-norm just means | H| = Mg —mg
where M and m are the largest and smallest eigenvalues of H



Generalized Metrological
Precision Bounds

Introduce a new operator F

ri - . 3. AL
F, (t) = US(®) K, (t)U, (t) = iU (¢): : ")
o

F satisfies the equation
AF. (t)

— — Ul (tYhoU- (t)
ot ,

Integrating and putting back in terms
of K, we get K as a function of h,

K. () = / ds U (U (s hoU-(s)U (¢)
of 1)




Generalized Metrological
Precision Bounds

Now the triangle inequality and unitary invariance yield
-

1K (2)] ;;/ ds ||U, (t)U (s)hoU., (s)UI (2)|| = || kol

()

Recall that for the case of no auxiliary Hamiltonian,
K. (t) = thg
so this bound is achievable.

To summarize, what has been shown is that for
arbitrary dynamics with arbitrary ancillas, the
precision is limited by év > 1/t||hgl| .



Is there an improvement?

Fully general bound: &+ > 1/¢||hg|

Now we can plug in specific forms for h, and
see what optimal precisions we can obtain.

Assume the Hamiltonian is (k)
k-body, symmetric and separable. ~Jt:---:Jk

‘N _ N*
roll < 30 IR = () In®~ Tt
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Assume the Hamiltonian is (k)
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But is it physical?

For the case of 2-body couplings, we get another
quadratic speed-up to obtain a new metrological limit:

: 2 |
.—"] w > ~

S IN(N - 103, —22) N0, — X2)

2-body couplings are certainly physical, but I've
assumed a spatially non-local Hamiltonian!

\begin{speculation}
Cornish et. al., PRL 85 1795 (2000)

\end{speculation}



Summary

Vanishingly small amounts of entanglement can still lead to an
exponential speed-up.

There appears to be a discontinuity between what is possible
with zero entanglement, and what is possible with non-zero
entanglement.

But...

Even highly entangled ancillas won't buy you gnything in quantum
metrology, though a cat state is still necessary to beat the
standard quantum limit.

Non-(nearest neighbor) Hamiltonians lead to quadratic (or
better) improvements in metrological precision. It remains to
be seen how physical this is, but current theory is not
pessimistic and some (namely me and JM) might say optimistic.
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