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Abstract: Traditional quantum state tomography requires a number of measurements that grows exponentially with the number of qubits n. But
using ideas from computational learning theory, I'll show that "for most practica purposes’ one can learn a quantum state using a number of
measurements that grows only linearly with n. I'll discuss applications of this result in experimental physics and quantum computing theory, as well
as possible implications for the foundations of quantum mechanics. quant-ph/0608142
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Quantum State Tomography

Suppose we have a physical process that produces as
many copies as we like of a quantum state p

To each copy, we can apply a two-outcome measurement
E. which yields ‘1" with probability Tr(Ep) and ‘0" otherwise

Our goal is to learn an approximate description of p, by
combining the various measurement outcomes

EXPERIMENTALISTS
ACTUALLY DO THIS

To learn about chemical reactions (Skovsen et al.
2003), test equipment (D’Ariano et al. 2002), study
oot Jacoherence mechanisms (Resch et al. 2005), ... [
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But there’s a problem... S

To do tomography on an entangled state of n qubits,
we need €2(4") measurements

The current record: 8 qubits (Haffner et al. 2005),
requiring 656,100 experiments (!)

Does this mean that a generic state of (say) 10,000

particles can never be “learned” within the lifetime of
the universe?

If so, this Is certainly a practical problem—but to me,
It's a conceptual problem as well
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What is a quantum state?

A “state of the world™? A “state of knowledge™?

Whatever else It Is, should at least be a useful
hypothesis that encapsulates previous observations
and lets us predict future ones

How “useful” is a hypothesis that takes 10°°°° bits even
to write down? (E.g., “generic’ many-particle entangled states)

Seems to bolster the arguments of quantum
computing skeptics (Goldreich, Levin, ‘t Hooft,
Wolfram, Penrose?), who think quantum mechanics
will break down in the “large N Iimit’
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Really we’re talking about the
Humean Problem of Induction...

You see 500 ravens. Every one is black. Why does
that give you any grounds whatsoever for expecting
the next raven to be black?
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Really we’re talking about the
Humean Problem of Induction...

You see 500 ravens. Every one is black. Why does
that give you any grounds whatsoever for expecting
the next raven to be black?

RARPLRAR
ALPP

The answer, according to computational learning
theory: In practice, we always restrict attention to some
class of hypotheses vastly smaller than the class of all
|dgitally concelvable hypotheses




Probably Approximately Correct
(PAC) Learning

Set S called the sample space
Probability distribution D over S
Class C of hypotheses: functions from S to {0,1}

Unknown function feC

Goal: Given x,,...,X., drawn independently from D,
together with f(x,),...,f(x.,), output a hypothesis heC

such that
Prla(x)=f(x)]21-.

-\with probability at least 1-6 over x,,... X



Occam’s Razor Theorem

Valiant 1984: If the hypothesis class C is finite, then any
hypothesis consistent with

m :O(ilog |(‘IJ

g O

random samples will also be consistent with a 1-¢
fraction of future data, with probability at least 1-6 over
the choice of samples
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of quantum
states is infinite!

And even If we
discretize, it's still
doubly exponential in
the number of qubits!

random samples will al{
fraction of future data, w.
the choice of samples
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My Result: A Quantum
Occam’s Razor Theorem

Let p be an n-qubit state. Let D be a distribution over
two-outcome measurements. Suppose we draw m
measurements E,,... |E_ Independently from D, and
then output a “hypothesis state” o such that
|Tr(E.c)-Tr(E,p)|sn for all 1. Then provided n<ye/10 and

K n 1 1
m=——1——log— i los—
& \Nyes ve o,

(for some constant K), we'll have

Pr [Tr(Ec)-Tr(Ep)<y]|z1-¢

-ith probability at least 1-6 over E,,... E

m



Some Examples

If the distribution D over measurements is uniform
(l.e., Is the Haar measure), then the maximally mixed

state works perfectly well as an “explanatory
hypothesis”
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Some Examples

If the distribution D over measurements Is uniform
(l.e., Is the Haar measure), then the maximally mixed
state works perfectly well as an “explanatory
hypothesis”

If the distribution is concentrated on 1- and 2-qubit
measurements, then we don't see much training data
about many-particle entanglement, but we don't need
It either
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How do we actually find ¢?

Here's one way: let b,,... ,b_ be the binary outcomes of
measurements E,,... E

m

Then choose a hypothesis state o to minimize

m

S (Te(E,0)-b,)

I=
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How do we actually find ¢?

Here's one way: let b,,... ,.b_ be the binary outcomes of
measurements E,,... E_

Then choose a hypothesis state o to minimize
m
2
Z (Tr(Eio-)_bz' )
i=]

This Is a convex programming problem, which can be
solved In time polynomial in N=2" (probably good
enough In practice for n<15 or so)
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Quantum State Tomography
(Buzek et al.)
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Previous Approach to “Pretty Good”

Quantum State Tomography
(Buzek et al.)

(1) Assume a uniform prior over pure states
(2) Perform measurements

(3) Update the prior using Bayes’ rule

Disadvantages:
- Staggering computational complexity
- Sensitive to choice of prior

In the learning approach, we don't need a prior over
~states—just a prior over measurements "



To prove the theorem, we need a notion
introduced by Kearns and Schapire called

Fat-Shattering Dimension
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To prove the theorem, we need a notion
introduced by Kearns and Schapire called

Fat-Shattering Dimension

Let C be a class of functions from S to [0,1]. We say a set
{X4,..-,. X3S Is y-shattered by C if there existreals a,,...,a,
such that, for all 2% possible statements of the form

f(xy)<a,-y A f(X5)=za,+y A ... A (X )< -7,

there's some feC that satisfies the statement.

Then fat.(y), the y-fat-shattering dimension of C, is the
8iZ€"of the largest set y-shattered by C. °



Small Fat-Shattering Dimension
Implies Small Sample Complexity

Let C be a class of functions from S to [0,1], and let feC.
Suppose we draw m elements x,,..., X, Independently from
some distribution D, and then output a hypothesis heC
such that |h(x)-f(x;)|<n for all i. Then provided n<ys/7 and

m:Q( I (tat (/{i)log:L+log%H.
y'e d Ve o

we’'ll have
Pr [[a(x)- f(x) < 7]z 1-2

with probability at least 1-6 over x,,..., X
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Let C be a class of functions from S to [0,1], and let feC.
Suppose we draw m elements x,,..., X, Independently from
some distribution D, and then output a hypothesis heC
such that |h(x)-f(x;)|<n for all i. Then provided n<ys/7 and
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it 35 vE o

we’'ll have
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Proof uses a 1996 result of Bartlett and Long, bmldmg on
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Upper-Bounding the Fat-Shattering
Dimension of Quantum States
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with probability 1-p, then we need n>(1-H(p))k
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Upper-Bounding the Fat-Shattering
Dimension of Quantum States

Nayak 1999: If we want to “encode” k classical bits into
n qubits, in such a way that any bit can be recovered
with probability 1-p, then we need n>(1-H(p))k

Corollary (“turning Nayak’s result on its head”):
Let C_ be functions that map an n-qubit

meas” No needto °). forsome p. Then

(\ thank me! 00:0(:—2}

Quantum Occam’s Razor Theorem
follows easily...
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Simulating Quantum One-Way Protocols

Alice has an N-bit string x. Bob has a M-bit string y.
Together they want to evaluate a Boolean function f(x.y).
Only one-way communication from Alice to Bob is allowed.

Theorem: The number of bits Alice needs to send Bob in a
classical probabilistic protocol, is (up to a constant) at most M
times the number of qubits she needs to send quantumly
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Application to Quantum Computing:
Simulating Quantum One-Way Protocols

Alice has an N-bit string x. Bob has a M-bit string .
Together they want to evaluate a Boolean function f(x.y).
Only one-way communication from Alice to Bob is allowed.

Theorem: The number of bits Alice needs to send Bob in a
classical probabilistic protocol, is (up to a constant) at most M
times the number of qubits she needs to send quantumly

Intuition: In the classical protocol, first Alice sends random
Inputs y,,...,y . together with f(x,y,).....f(x,y;). Then Bob
searches for a quantum message p from Alice consistent with
those f(x,y;) values. By the Quantum Occam's Razor
Theorem, such a p (once he finds it) will probably yield the
right outputs for most other y's as well
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Application to Quantum Computing:

Using Trusted Classical Data to Verify an
Untrusted Quantum State

At the quantum software store, you buy an n-qubit
quantum program |y) to give your quantum computer new

functionality
But you don't trust the software to work as expected

Theorem: There exists a set of “benchmark inputs”
X4,---, X1, Where T=poly(n), such that if |\y) works on the
benchmark inputs, it will work on most other inputs as well

Intuition: Again the Quantum Occam’s Razor Theorem

Technical part: How to test [\yy) on the benchmark inputs
Witff8ut destroying it?
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Valiant 1984: If the hypothesis class C is finite, then any
hypothesis consistent with

1 ‘C"|
= 0| —log
mn (5 0g ‘J

random samples will also be consistent with a 1-¢
fraction of future data, with probability at least 1-6 over
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