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Abstract: We introduce a new top down approach to canonical quantum gravity, called Algebraic Quantum Gravity (AQG): The quantum
kinematics of AQG is determined by an abstract $*-$algebra generated by a countable set of elementary operators labelled by an algebraic graph.
The quantum dynamics of AQG is governed by a single Master Constraint operator. While AQG is inspired by Loop Quantum Gravity LQG), it
differs drastically from it because in AQG there is fundamentally no topology or differentia structure. The missing information about the topology
and differential structure of the spacetime manifold as well as about the background metric to be approximated is supplied by coherent states and is
therefore only available in the semiclassical sector of the theory. Given such data, the corresponding coherent state defines a sector in the Hilbert
space of AQG which can be identified with a usual QFT on the given manifold and background. Thus, AQG contains QFT on all curved spacetimes
at once, possibly has something to say about topology change and provides the contact with the familiar low energy physics. We will show that
AQG admits asemiclassical limit whose infinitesimal gauge symmetry generators agree with the ones of General Relativity.
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Status of the Semiclassical Limit of LQG

@ Is General Relativity contained in the semiclassical sector of
L QG?

@ Itis quite hard to answer and is the main motivation for
iIntfroducing Algebraic Quantum Gravity
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Uniqueness Theorem & finite Diffeos

@ Use GNS-Construction in order to find representations of
C*-algebra of LQG

@ Assumption of Diff -invariance leads to uniqueness of
representation of *-algebra LQG is based on LostTheorem 2005

@ Natural unitary action of Diff(¢) on ‘H qc

e

U(‘J‘:) T“ = T?;‘lf*, )

@ Action not weakly continuous

s U(p)Ty) =(T5. Tyv) VT, Ty € Hiqe

Chogse 7, — .. thenil. . I.)—0--1=\1, .
@ Consequence: Infinites. generators cannot be realised
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Anomaly-free Hamiltonian Constraint

@ Dirac Algebra ®©
(D(N).D(N")} = —xD(LgzN'), {D(N).C(N)} = —xC(LyzN)
{C(N).C(N")} = &D(N(N.N'.q))

@ No infinitesimal diff-generators — problem in representing © on
Hiqe

@ For first two exponentiated substitutes exist
U(2)U(¢)U(p)~" = U(pop’op™)  U(p)C(N)U(p)~! = C(Noy)

@ Third relation — structure functions |
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Motivation and Conceptual Setup

Anomaly-free Hamiltonian Constraint

@ Anomaly-free Hamiltonian Constraint Operator
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-

@ Solutions of Diffeo-constraint should be annihilated by
[H(N).H(N'")]
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Anomaly-free Hamiltonian Constraint

@ Anomaly-free Hamiltonian Constraint Operator

@ Dirac algebra {C(N).C(N")} = xD(N(N.N'.q))

v

Solutions of Diffeo-constraint should be annihilated by

-

(H(N).H(N')]
—— but only for graph-changing

Possibly too local action of Q(_N)

Whole dynamics of LQG Is encoded in Hamiltonian Constraint

e © ¢ ¢

One would like to check the semiclassical limit of Hamiltonian
constraint

Pirsa: 06090002 Page 28/133




Status of the Semiclassical | imit of LQG

Motrvation and Conceptual Setup Senudassnc:al Tnﬂis avallable

Semiclassical Tools available

@ Extremely difficult to define coherent state that approximate
graph changing operators well
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@ Coherent states associated to one fixed graph
Uy mH(N)US ) = 0 trivially
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Coherent states associated to one fixed graph
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Semiclassical Tools available

@ Extremely difficult to define coherent state that approximate
graph changing operators well

@ Coherent states associated to one fixed graph
Uy mH(N)Y~ m) = 0 trivially

® Shadow states Vrm = 3= vy m, (H(N)), m = “Rr e g™

@ Fluctuations of added dof are no longer suppressed
roughly speaking  (ve.m. Hete.m) hem. Pe1) |

@ More work has to be done to deal with graph changing operators
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Semiclassical Tools available

@ Semiclassical limit of LQG & verifying the quantum algebra are
very much interlinked

@ Spatially diffeom-invariance— not weakly continuous
representation of diffeos

@ Anomaly-freeness with only finite diffeos— graph-changing
Hamiltonian

@ Graph-changing Hamiltonian—no appropriate semiclassical
tools

Pirsa: 06090002 Page 39/133




@ M is weighted sum of single constraints
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The Master Constraint Programme (MCP)

@ M is weighted sum of single constraints

: kO, L oab G

(v/det(q))?

@ M=isequivalenttoC; =0 A C(C;=0 A C=0

@ M is spatially diffeo-invariant
@ Weak Dirac Observables {O.{O.M}} = 0
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@ M is weighted sum of single constraints

w SkC.CL L qab -
R e - )

(v/det(q))’

@ M=isequivalenttoC; =0 ~ C;=0 ~» C=0
@ M is spatially diffeo-invariant

@ Weak Dirac Observables {O.{O.M}} = 0

@ Constraint algebra 91 trivial {M. M} =

@ Various examples: DID to get Hypys, finite systems, SL(2. R),
free & interacting field theory itrich. Thismann]
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The Master Constraint Programme (MCP)

@ M is weighted sum of single constraints

i fh.a':k - =1 5 ab - -
M:{/ dSX ) CCR’ q Cacb C (X}}

(v/det(q))

@ M=isequivalenttoC; =0 A~ C;=0 ~ C=0

@ M is spatially diffeo-invariant
@ Weak Dirac Observables {O.{O.M}} = 0O

@ Constraint algebra 91 trivial {M.M} =0

——
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The Master Constraint Programme (MCP)

Ll W F L

@ M=isequivalenttoC; =0 A C;=0 A C=0
@ M is spatially diffeo-invariant

@ Weak Dirac Observables {O.{O.M}} = 0

@ Constraint algebra 971 trivial {M.M} =

@ Various examples: DID to get Hppys, finite systems, SL(2. R),
free & interacting field theory mitricn, Thismann]
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@ Two possible ways of quantising M:
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@ Two possible ways of quantising M:
@ 1.) Graph-changing: M spatially diff’ -invariant

@ Has to be defined on Hpis
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Master Constraint Programme: Quantisa;cion

@ Two possible ways of quantising M:
@ 1.) Graph-changing: M spatially diff’ -invariant
@ Has to be defined on Hpis

@ On Hg4# no semiclassical tools available today

[work in progress Bahr. Meusburger, Thiemann]
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@ Two possible ways of quantising M:
@ 1.) Graph-changing: M spatially diff’ -invariant
@ Has to be defined on Hp;s

@ On Hg4# no semiclassical tools available today

lwork in progress Bahr. Meusburger, Thiemann]

@ Semiclassical limit cannot be investigated
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@ 2.) Graph-non-changing:

Pirsa: 06090002 Page 55/133




Motrvation and Conceptual Setup

Master Constraint Programme: Quantisation |

@ 2.) Graph-non-changing:
@ Can be defined on H,qc

@ Anomalous Hamiltonian in naive discretisation. zero not in o(M)
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Master Constraint Programme: Quantisation

@ 2.) Graph-non-changing:
@ Can be defined on H,q¢

@ Anomalous Hamiltonian in naive discretisation. zero not in n(M)

o~

@ M =M -7A\,, 'normal ordered’ mitrich, Thiemann]
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@ 2.) Graph-non-changing:
@ Can be defined on H,qc

@ Anomalous Hamiltonian in naive discretisation. zero not in o(M)

- f

oM =M —ﬁ,\mm 'normal ordered’ [Dittrich, Thiemann]

@ Improve discretisation by lattice QF T techniques already
developed
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Master Constraint Programme: Quantisa;tion =

@ 2.) Graph-non-changing:
@ Can be defined on H,q¢

@ Anomalous Hamiltonian in naive discretisation, zero not in (M)

- f

@ M =M %)\, normal ordered’ itrich, Thieman]

@ Improve discretisation by lattice QF T techniques already
developed

@ Due to weight function infinitesimal Diffeos can be implemented

Pirsa: 06090002 Page 59/133




i LQG
Motivation and Conceptual Setup

Gr Dependenne of Smmclﬂsmcal States

from 1 OG

SUIMMary ol ices between LOQG and AQG

Graph-dependence of Semiclassical States

@ Existing semiclassical tools in LQG

Pirsa: 06090002 Page 60/133




onstraint Programme

Dependence of Semiclassical States

ure from LQG

@ Existing semiclassical tools in LQG

@ Pure state over single graph

Pirsa: 06090002 Page 61/133




Motrvation and Conceptual Setup DO
Maste raint Prog
Graph endence of

B =

SEIMMmaEanry or |
A0 LENE R Y

Graph-dependence of Semiclassical Stafes

@ Existing semiclassical tools in LQG

@ Pure state over single graph
@ Mixed states based on certain class of graphs sombeii. winkier]
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Graph-dependence of Semiclassical Stafes

@ Existing semiclassical tools in LQG

@ Pure state over single graph
@ Mixed states based on certain class of graphs sombeli. winkier]

@ Semiclassical states cannot be semiclassical for all dof of LQG

@ Summation over all graphs is not possible— non-normalisable
states
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@ Existing semiclassical tools in LQG

@ Pure state over single graph
@ Mixed states based on certain class of graphs sombeli. winkier]

@ Semiclassical states cannot be semiclassical for all dof of LQG

@ Summation over all graphs is not possible— non-normalisable
states

@ Existing semiclassical tools are heavily graph dependent
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Departure from LQG to AQG

@ Discard notion of embedded graphs— one fundamental infinite
(orientated) algebraic graph
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iInform. how many abstract arrows (edges) between points
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@ Lost of information about topology & differential structure of
spatial manifold o

Pirsa: 06090002 Page 68/133




Motrvation and Conceptual Setup

Departure from LQG to AQG

@ Discard notion of embedded graphs— one fundamental infinite
(orientated) algebraic graph

@ labelling set consisting of abstract points (vertices) &
iInform. how many abstract arrows (edges) between points

@ Lost of information about topology & differential structure of
spatial manifold o

@ Algebraic graph can be embedded in all possible ways into

r

Pirsa: 06090002 Page 69/133




Motivation and Conceptual Setup

Departure from LQG to AQG

@ Discard notion of embedded graphs— one fundamental infinite
(orientated) algebraic graph

@ labelling set consisting of abstract points (vertices) &
inform. how many abstract arrows (edges) between points

@ Lost of information about topology & differential structure of
spatial manifold o

@ Algebraic graph can be embedded in all possible ways into

O
@ Embedding arbitrarily dense —— continuum limit built in
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@ All physical (diff-invariant) LQG-operators can be lifted to AQG
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Motrvation and Conceptual Setup

Departure from LQG to AQG

@ Discard notion of embedded graphs— one fundamental infinite
(orientated) algebraic graph

@ labelling set consisting of abstract points (vertices) &
iInform. how many abstract arrows (edges) between points

@ Lost of information about topology & differential structure of
spatial manifold o

@ Algebraic graph can be embedded in all possible ways into

a
@ Embedding arbitrarily dense —— continuum limit built in

@ All physical (diff-invariant) LQG-operators can be lifted to AQG

@ Lost graph dependence: Chosen algebraic graph is fundamental
or maximal
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Motrvation and Conceptual Setup

Depariure from LQG
Quantum Kinematics of AQG

Summary of Differences between

Quantum Kinematics of AQG

@ Given an algebraic graph o we associate with each of its edges
e an element A(e) of a compact, connected semisimple Lie
group G and an element E(e) of its Lie algebra Lie(G)
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Motivation and Conceptual Setup

Depariure

Quantmn Iﬁnemahcs of AQG

Ssummary of Differences between L QG and AQG

Quantum Kinematics of AQG

@ Given an algebraic graph o we associate with each of its edges
e an element A(e) of a compact, connected semisimple Lie
group G and an element E(e) of its Lie algebra Lie(G)

@ O plays role of coupling constant

[A(e).A(e')] = O
[Ei(e).A(e')] = ihQ%5, . 17/2A(e)
:Ejli-EJ.E;.‘-ef )] = kK de o T Ei(e )
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Motrvation and Conceptual Setup
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Quantum Kinematics of AQG

@ Given an algebraic graph o we associate with each of its edges
e an element A(e) of a compact, connected semisimple Lie
group G and an element E(e) of Its Lie algebra Lie(G)

@ O plays role of coupling constant

[A(e).A(e')] = O

[Ei(e).A(e’)] ihQ?5, o 7/ 2A(e)

[Ei(e).Ex(e')]

—ihQ%5, o fEi(e’)

@ Natural representation: infinite tensor product (I TP) Hilbert
space
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Moitrvation and Concepiual Setup
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Quantum Kinematics of AQG

Summary of Differences between

L

Quantum Kinematics of AQG

@ Given an algebraic graph o we associate with each of its edges
e an element A(e) of a compact, connected semisimple Lie
group G and an element E(e) of its Lie algebra Lie(G)

@ Q plays role of coupling constant
[A(e).A(e')] = O
[Ei(e).A(e')] = ihQ%5, . 1/2A(e)
[Ei(e).Ex(e")]

—ihQ%5, o Ei(e”)

@ Natural representation: infinite tensor product (I TP) Hilbert
space

9 H 1 = eJHe, JHE = LE(G d;_r'H). dpuy Haar measure on G
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Motivation and Conceptual Setup

Lepariurs iroim L

Quantum Kinematics of AQG

Summary of Differences between L QG ane

Quantum Kinematics of AQG

@ Given an algebraic graph o we associate with each of its edges
e an element A(e) of a compact, connected semisimple Lie
group G and an element E(e) of its Lie algebra Lie(G)

@ O plays role of coupling constant

[A(e)A(e')] = O
Ej(e).Ex(¢')] = —ihQ5, o fuEi(e”)

@ Natural representation: infinite tensor product (ITP) Hilbert
space

@ HY = eHe, He=L15(G.duy), duyHaarmeasureonG

@ A(e) multiplication and E(e) derivation operator
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Motrvation and Conceptual Setup

Summary of Differences between L QG and AQG

Quantum Kinematics of AQG: ITP Hilbert space

@ Properties of ITP:
H® = span} “efs; 0 < e fnl| =1l |falle < o<}
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@ Properties of ITP:

H= = span{ “efe;0 < efn | = He Inlle = 22}

@ Decomposes into uncountably infinitely sum over separable Hq
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Motivation and Conceptual Setup
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Quantum Kinematics of AQG: ITP Hilbert space

@ Properties of ITP:
H® —span{@.1.0 < || 8. K| =TL.IIGlle < o<}

@ Decomposes into uncountably infinitely sum over separable Hq

@ Q =x2.f, withwlg ||f,|| = 1 and therefore ||Q2|| =1
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Motivation and Conceptual Setup
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Summary of Differences between L(

Quantum Kinematics of AQG: ITP Hilbert space

@ Properties of ITP:
/7 Spaﬂ{ efe; 0 < = fﬂ — HE fﬁ e~ % :

@ Decomposes into uncountably infinitely sum over separable Hq
@ Q= =2 ,f, withwig ||f;|| =1 and therefore | (2| =1
@ « = Poly(A(e). E(e))2 dense in Hg
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@ Properties of ITP:

H® = span{R@ele; 0 < || ®efnl| =[], |/fnlle < oo}
@ Decomposes into uncountably infinitely sum over separable Hq
@ Q =x.f, withwig ||f,|| = 1 and therefore ||Q2|| =1
@ » = Poly(A(e). E(e))f) dense in Hq
@ Hige — L=02,1
9

Dynamics: One single graph non-changing Master Constraint
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Motrvation and Conceptual Setup
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Quantum Kinematics of AQG: ITP H|Ibert space

@ Properties of ITP:
HY = span| Qele: 0 < e fnll .= [lallfnlle < ¢}
@ Decomposes into uncountably infinitely sum over separable Hq
@ Q =x2.f, withwig ||f,|| = 1 and therefore ||Q2|| = 1
@ v = Poly(A(e). E(e)){2 dense In Hq
® Hige — Q=041
@ Dynamics: One single graph non-changing Master Constraint
@ Infinitesimal Diffeos and Hamiltonian treated democratically, act
by simply label changing




Motivation and Conceptual Setup

Lianium Kinematics ol

Summary of Differences between LQG and AQG

Summary of Differences between LQG and AQG

Object LQG AQG

Topology must be provided | absent
Differentiable structure must be provided | absent

Hilbert space Hiae := HaiL Hios — H*®
Separability non — separable non — separable
graphs embedded algebraic

= graphs uncountably infinite | one

Structure of graphs finite countably infinite
Generating set of “—algebra 21 | uncountably infinite | countably infinite
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Semiclassical Analysis of M in AQG

Semiclassical States in AQG

semiciassical Analysis of M

Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data
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Semiciassical Analysis of M in AQG

Semiclassical States in AQG

Semiciassical Analysis of M

Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data

@ A 3-manifold o
@ Initial data m (or equivalently a point in phase space)
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Semiclassical Analysis of M in AQG

Semiclassical States in AQG

semiciassical Analysis of M

Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data

@ A 3-manifold o
@ Initial data m (or equivalently a point in phase space)
@ An embedding of the graph (and a graph dual to it) into &

@ Out of these data coherent states can be constructed
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Semiciassical Analysis of M in AQG

Semiclassical States in AQG
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Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data

@ A 3-manifold o
@ Initial data m (or equivalently a point in phase space)
@ An embedding of the graph (and a graph dual to it) into &

@ Out of these data coherent states can be constructed

@ Coherent states are defined on the algebraic level only
coefficients of SNF contain given data,
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Semiclassical Analysis of M in AQG

Semiclassical States in AQG

semiciassical Analysis of M

Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data

@ A 3-manifold o
@ Initial data m (or equivalently a point in phase space)
@ An embedding of the graph (and a graph dual to it) into &

@ Out of these data coherent states can be constructed

@ Coherent states are defined on the algebraic level only
coefficients of SNF contain given data,
@ Difference to LQG, SNF defined on embedded graph
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Semiciassical Analysis of M in AQG

Semiclassical States in AQG

Semiciassical Analysis of M

Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data

@ A 3-manifold o
@ Initial data m (or equivalently a point in phase space)
@ An embedding of the graph (and a graph dual to it) into &

@ Out of these data coherent states can be constructed

@ Coherent states are defined on the algebraic level only
coefficients of SNF contain given data,

@ Difference to LQG, SNF defined on embedded graph

@ AQG: Lost inform about topology, differential structure of o
and background metric to approximate are encoded Iin
semiclassical states
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Semiciassical Analysis of M in AQG

semiciassical States m AQG

Semiclassical Analysis of M

Semiclassical Analysis of M

@ We investigated the semiclassical limit of M wrt coherent states
associated to a cubic graph
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Semiciassical Analysis of M in AQG

Semiclassical States in AQG

semiciassical Analysis of M

Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data

@ A 3-manifold o
@ Initial data m (or equivalently a point in phase space)
@ An embedding of the graph (and a graph dual to it) into &

@ Out of these data coherent states can be constructed

@ Coherent states are defined on the algebraic level only
coefficients of SNF contain given data,

@ Difference to LQG, SNF defined on embedded graph

@ AQG: Lost inform about topology, differential structure of o
and background metric to approximate are encoded Iin
semiclassical states
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Semiciassical Analysis of M in AQG

Semiclassical States in AQG

Semiclassical Analysis of M

Semiclassical Analysis of M

@ We investigated the semiclassical limit of M wrt coherent states
associated to a cubic graph
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Semiciassical Analysis of M in AQG

Semiclassical States in AQG
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Semiclassical States in AQG

@ In order to derive semiclassical limit we must provide following
data

@ A 3-manifold o
@ Initial data m (or equivalently a point in phase space)
@ An embedding of the graph (and a graph dual to it) into &

@ Out of these data coherent states can be constructed

@ Coherent states are defined on the algebraic level only
coefficients of SNF contain given data,

@ Difference to LQG, SNF defined on embedded graph

@ AQG: Lost inform about topology, differential structure of o
and background metric to approximate are encoded in
semiclassical states
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Semiciassical Analysis of M in AQG
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Semiclassical Analysis of M

Semiclassical Analysis of M

@ We investigated the semiclassical limit of M wrt coherent states
associated to a cubic graph
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Semiciassical Analysis of M in AQG

Semiclassical States in AQG

Semiclassical Analysis of M

Semiclassical Analysis of M

@ We investigated the semiclassical limit of M wrt coherent states
associated to a cubic graph

@ Substitution of U(1)> for SU(2)
— semiclassical perturbation theory
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Semiclassical Analysis of M in AQG
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Semiclassical Analysis of M

Semiclassical Analysis of M

@ We investigated the semiclassical limit of M wrt coherent states
associated to a cubic graph

@ Substitution of U(1)> for SU(2)
— semiclassical perturbation theory

@ For the considered algebraic graph of cubic symmetry

3|
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Semiciassical Analysis of M in AQG Semiciassical States in AQC
SEIMIGASSICH] SIaleS I Ao

Semiclassical Analysis of M

Semiclassical Analysis of M

@ Result in leading order

v M
1Llr:'--. AT

o €

o AT Wm oo M., W e — ol -
— 2 K- = lim Mcumc[m] lim M[m]

veV(a ) —1a e—0
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Semiclassical Analysis of M in AQG
Semiciassical Analysis of M

Semiclassical Analysis of M

@ Result in leading order

(R ¥ T il e [ i) bi i
W ml 2 n ; X? m. o X r— lim M=~ [m| lim. M[m]|
veVie) —0 =i

@ LO: correct infinitesimal generators of GR
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Semiciassical Analysis of M in AQG

Semiclassical Analysis of M

Pirsa: 06090002

@ Result in leading order

Pl T ]

semiclassical States in AQG

Semiclassical Analysis of M

v o

M

a0 i

W,

i

) j:—l_

¥

el
velV (o)

d Enﬂ

M{m]|

@ LO: correct infinitesimal generators of GR

@ NLO: quantum fluctuations are finite
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Part IlI- Semiclassical Perturbation Theory

Problem

@ Semiclassical Calculations in SU(2):
We want {o calculate
. M, W) = h,-lh[h_ql* V_]f hqf'l[h_1 o T]f

v,
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Part IlI- Semiclassical Perturbation Theory

Problem

@ Semiclassical Calculations in SU(2):
We want {o calculate
v, My ¥) = (hohlh=, /V, . hohlh—, /V, J)

@ formally (v. p1(h)F(V, )p2(h)F(V, )p3(h)e) here

Fi( Ve )=F (V)= v_f
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Part IlI- Semiclassical Perturbation Theory

Problem

@ Semiclassical Calculations in SU(2):

We jgfant to calculate
0w, My YY) = h,.th[h—’. V_'_]:_f. hmh[h—? T,.-]:_-_'::-

@ formally (v. p1(h)F1(V, )p2(h)F(V, )ps(h)v) here
Fi( Ve )=F (V)= V_f

@ Volume operator

Page 103/133
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Part IlI- Semiclassical Perturbation Theory

Problem

@ Semiclassical Calculations in SU(2):

We jgfant to calculate
v, My Y = h,lh[h—ﬂ V__]:_f. hﬂh[h—ﬂ \ T,.]:_-_ﬁ:-

@ formally (v. py(h)F(V, ) p2(h)F(V, )p3(h)e) here
Fi(Ve)=F2(Ve)=VVy

@ Volume operator

V, = fg\ = Z e (1. €2.83)eiE;(e4)E;(e2)Ex(&3)
' e

1 _EQ_E'SZ'I.-"'

@ V, = /Q2 and thus V'V, = (Q?)% general F;(V,) = (Q2)%

Page 104/133
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Part IlI- Semiclassical Perturbation Theory

Problem

@ Semiclassical Calculations in SU(2):

We jf_afant to calculate
. MV W) = hr_.lh[h_i. V_]J hﬂ h[h_1 SR V_]f

@ formally (v. p4(h)F(V, )p2(h)F2(V, )ps(h)w) here
Fi(Ve)=Fa(Vy)=Vv'Vy

@ Volume operator

™7
V, :ﬁg\ = Z e, (1. €2, 83)eiE;(e4)E;(e2)Ex(&3)

e, e 7 8=V

@ V, = /Q2 and thus V'V, = (Q2?)% general F;(V,) = (Q2)%

@ Problem: We cannot calculate («-(Q2)% v} analytically
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Part Ill- Semiclassical Perturbation Theory

Naive Ildea for a Solution

@ The naive idea:
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s Argument

Part Ill- Semiclassical Perturbation Theory

Naive ldea for a Solution

@ The naive idea:

= _' ,_—‘I

@ The operator ¥, iIs bounded from below, x;, > —1
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Part IlI- Semiclassical Perturbation Theory

Naive ldea for a Solution

@ The naive idea:

= _' ,_—‘I

@ The operator ¥, Is bounded from below, x;, > —1
@ < v. U, v > can be computed exactly [Winkier, Thiemann]
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Part IlI- Semiclassical Perturbation Theory

Naive ldea for a Solution

@ The naive idea:

@ The operator ¥, iIs bounded from below,

@ < v, U, v > can be computed exactly

@ Functions of volume operator

Fi(V,) 29 £(x,).

Pirsa: 06090002
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[Winkler, Thiemann]

|

i) = (1 +x)7
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Part Ill- Semiclassical Perturbation Theory

Naive Ildea for a Solution

@ The naive idea:

= al e

@ The operator ¥, Is bounded from below, x;, > —1
@ < v, v > can be computed exactly [Winkler, Thiemann]

@ Functions of volume operator

|

Fi(Vy) = : 24 h0a). i) =(1+x)?

@ Power expansionoft — f(t) = (1 +-t)9. —1 <t < x

i

Page 110/133
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Froblem
Maive ldea

Higorous Argument

Part Ill- Semiclassical Perturbation Theory

Spectral Theorem

Fx) _/:m_r)da(r) :'/:[1 _Z_j( i )rn] dE (t)
- 0-E ()

n—i

where E; is the projection valued measure associated with

Pirsa: 06090002 Page 111/133




Froblem
Naive ldea

Rigorous Argument

Part Ill- Semiclassical Perturbation Theory

Spectral Theorem

Fix) — _/:n(_r)da(r) :/_:[1 _Z( : )rn] dE) (t)
o _i( : ) ]

=
where E; is the projection valued measure associated with

@ Coherent state matrix elements of are computable

[Winkler. Thiemann]
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Part Ill- Semiclassical Perturbation Theory

Spectral Theorem

flx) = _/:f;(r)dE;(t):'/:[1—2( ﬁ )rn] dE; ()
g (5)-

n—i

where E; is the projection valued measure associated with

@ Coherent state matrix elements of are computable
[Winkler. Thiemann]
@ Of course, the second equality iswrong if t £ (—1.1) |
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Naive Idea
Part Ill- Semiclassical Perturbation Theory e

Spectral Theorem

fi(xi) = _/:ff(f)dE;(f)Z'/:U—Z( i )f”} =
- CE(3)-

r—i

where E; is the projection valued measure associated with

@ Coherent state matrix elements of - are computable

[Winkler. Thiemann]
@ Of course, the second equality iswrong if t € (—1.1) |

@ Naive idea false, must be substituted by a rigorous argument.

Pirsa: 06090002
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Part Ill- Semiclassical Perturbation Theory

Rigorous Argument

@ For each k > 0 there exists 0 < 3, < x such that
S i—Figlt) — Gt S S () S Bia(t) = T

where 7. () denotes the partial Taylor series of 7(f) = (1 )7,
0 < g < 7 up to to order t*.
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Part Ill- Semiclassical Perturbation Theory

Rigorous Argument

@ For each k > 0 there exists 0 < 3, < ~x such that

Bl — B < () < (D) =TT

where 7. () denotes the partial Taylor series of 7(f) = (1 )7,
0 < g < 7 up to to order t*.

@ Polarisation identity

1. . .
R({¥1, 1)) = Z( (W1 +a, Hy ) — (b1 — 2, 11 —a))
Ny st <

L7 i

N

Pirsa: 06090002
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Part Ill- Semiclassical Perturbation Theory

#
Rigorous Argument

@ For each k > 0 there exists 0 < 3, < ~ such that

"= Fauera () — Gt < F(E) < Faea(t) =

where 7. () denotes the partial Taylor series of (f) = (1 )7,
0 < g < 7 up to to order t*.
@ Polarisation identity

1. . .
Bl frea)) =l Heo. hvs ) — (e, oy — )

N
e

L

@ Estimation (f— are combﬂtable!)

1
— . 2 A It (55 )
4 k
q-u( £ ) 1 ( )
R( {1 W) = —fiab, ) — W
Pirsa: 06090002 . 1 i 4
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Part Ill- Semiclassical Perturbation Theory

lteration & Error Control

@ Start with (. P1 (h)F( V']pg(h)F:_ V pg(h]f
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Part Ill- Semiclassical Perturbation Theory

lteration & Error Control

@ Start with (v, p1(h)F: (V)pa(h)Fa(V)ps(h)e)

@ Expansion

. p1(h)(1=Ff)p2(h)(1—Ff)ps(h)v) = (v, p1(h)p2(h)ps(h)v ) —R(fi. )
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Part Illl- Semiclassical Perturbation Theory

Iteration & Error Control

@ Start with (v. P1 [h]F f V]pz(h)F: V pg(h]f

@ Expansion
v, p1 (M) (A=F)pa(h)(1=F)ps(h)e) = (w0, pr(h)p2(M)ps () )~R(f. f)
@ Define 7 := £(f~ — ) We can show that

R(fi.f) = (¥,pifipa(h)aps(h)w) + O(R*)
= (b, p1f; pa(h)fs pa(h)w) ~ O(R)
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Part IlI- Semiclassical Perturbation Theory

Iteration & Error Control

@ Start with (v'. p1(h)F; (V)p2(h)Fa(V)ps(h)w)

@ Expansion
v, p1(h)(1+-f1)p2(h)(1+-2)ps(h)v) = . pi(h)p2(h)ps(h)v)+~R(f . f2)
@ Define f := Z(f~ — ) We can show that

R(fi.f) = (@.pifipa(h)iaps(h)e) + O(RF)
= (. p1f; p2(h) pa(h)w) + O(F*)

@ We can compute reexpress R(f. f2) in terms of computable
quantities 7~ 7, + corrections of higher order than 7"
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Part IlI- Semiclassical Perturbation Theory

Justification U(1)® — SU(2)

@ (v.p1(h)F~(V)p2(h)F2(V)ps(h)v
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Part Ill- Semiclassical Perturbation Theory

Justification U(1)® — SU(2)

@ (v.pi(h)F(V)pa(h)F(V)ps(h)v)

@ By using the expansion for (V) we can replace (. V29 by
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Part Ill- Semiclassical Perturbation Theory

Justification U(1)® — SU(2)

@ (v.pr(hFH(V)pa(h)F(V)ps(h)w)
@ By using the expansion for (V) we can replace (. V.f:’;_- by

e

@ Results of pinker miemann) INdicate that lowest order also for correct
for SU(2)
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Part Ill- Semiclassical Perturbation Theory

Justification U(1)® — SU(2)

@ (v.pi(h)F(V)p2(h)F2(V)ps(h)e)
@ By using the expansion for (V) we can replace (. V29 by

— =

@ Results of pwinker iemann) INdicate that lowest order also for correct

for SU(2)
@ Roughly speaking (true for SU(2) and U(1)>, corrections differ)
P4 (h)FT (h)f = / dv /9 (U p1 ':.."-'T F1 (h)f

—  (p¢(h) — o mo*ﬂ) o(R)) = p§'(h)QS — o(h)
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Conciusions and Outlook

Conclusions and QOutlook

Conclusions and Outlook

@ AQG provides a platform to analyse the dynamics of the theory
semiclassically
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Conclusions and QOutlook

Conclusions and Outlook

@ AQG provides a platform to analyse the dynamics of the theory
semiclassically

oM reproduces in LO the correct infinitesimal generators of GR
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Conciusions and Cutlook

Conclusions and QOutlook

Conclusions and Outlook

@ AQG provides a platform to analyse the dynamics of the theory
semiclassically

oM reproduces in LO the correct infinitesimal generators of GR

@ Quantum fluctuation are finite, semiclassical perturbation theory

i

[SU(2): J. Brunnemann work in progressj
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Conciusions and Outlook

Conclusions and QOutlook

Conclusions and Outlook

@ AQG provides a platform to analyse the dynamics of the theory
semiclassically

oM reproduces in LO the correct infinitesimal generators of GR

@ Quantum fluctuation are finite, semiclassical perturbation theory

i

[SU(2): J. Brunnemann work in progressj

@ Open questions:
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Conciusions and Cutlook
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@ Quantum fluctuation are finite, semiclassical perturbation theory

[SU(2): J. Brunnemann work in progressj
@ Open questions:

o Exact solution of M should be related to exact solutions of
Diffeo in LQG when embedded

@ Exact kernel of M could be empty:
Substract \.,;;, Iimprove discretisation

@ More Investigation on infinitesimal Operators and graph
non-changing nature
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Thank you

@ Thank you for your attention!
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