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Energy, Spin, Qubits

Entanglement

Major Problems

Self-Healing Memory

Possible Solutfions

Quest for 3-D and Control of Entanglement Patterns

Future of Quantum Memory



Classical Memory




Classical Memory

o Lifetime: roughly 50 years

@ Examples include magnetic tape, hard disk
drives, CDs, DVDs
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Energy and Spin

@ Hamiltonian Equation for the energy of a
state:

E = Eo o (# of nearest neighbors)
@ Spin states: up or down
@ Uses millions of spins to represent one bit.

@ Spins tend to follow their neighbors.
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Dimensions and the Ising Model

@ 0-D: spins isolated
@ 1-D: spins connected in a line

@ 2-D: spins aligned in a grid

@ co-D: all spins inferconnected
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Decay

@ All memory systems undergo decay over
tfime, mainly due to collisions with external
particles.

® This decay can be modeled mathematically,
as will be demonstrated momentarily.
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Canonical Ensemble

@ Determines the probability of a system
being In a certfain state at a certain
temperature and energy.




Canonical Ensemble

@ Determines the probability of a system
being In a certfain state at a certain
temperature and energy.

@ Therefore, the lower the energy of a
state, the more likely it is fo exist in
that state, potentially causing an error.
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Quantum Memory

@ Standard unit of memory: qubit.

@ Qubit is based on the quantum state of one
particle, e.g. the polarization of a photon,
the spin of an electron, efc.

® Current quanfum memory sysfems hold
information for about 1 second.

® One goal of quantum information is to
achieve reliable and high capacity memory
systems.
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Entanglement

® The key to faster computations with quantum
memory.

@ Allows for teleportation, superdense coding,
solving “hard® mathematical problems
(Factoring), efc.

@ Without entanglement, the qubit would be
equivalent to classical bits.
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® The key to faster computations with quantum
memory.

@ Allows for teleportation, superdense coding,
solving “hard® mathematical problems
(Factoring), etc.

® Without entanglement, the qubit would be
equivalent to classical bits.
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® The genuinely random nature of subatomic
particles creates many possibilities for error.

@ X Error
@Y Error
@ Z Error

@ Difficulty in defining meaningful
entanglement patterns.
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Self-Healing Memory

@ Passive vs. Active error correction: using
nature or man-made algorithms

@ Current passive healing rate is much slower
than the rate of errors

@ If we can raise the energy required to
maintain erratic states, the probability of
errors decreases.
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than the rate of errors

@ If we can raise the energy required to
maintain erratic states, the probability of
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Current Progress

® 9-Qubit Code
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Quest for 3-D Toric Code and
Deterministic Entfanglement

@ Flaws in 2-D Toric code

® 4-D Toric code is equivalent to 2-D Ising
Model

@ Is there a 3-D Toric Code?

® Can we create and maintain useful
entanglement patterns?
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Future of Quantum
Men ory

o Effective quantum cc >mputers will probably
be available within 3tha0 to 50 years.

oS |
@ The final frontier of ..., computing
» Limitations:

@ Graph coloring

» Traveling salesman
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Major props to
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