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Dark stars

Rev. John Mighell (1783)

A British born "natural philesopher” dared to combine the
corpuscular description of light with Newton’s gravitation laws to
predict what large compact stars should look like.

He showed that a star,t#hat has the same density of the sun, but
500 time as big, would hawve such a gravity, that "All light emitted
from such a body would be made to return towards it". He said we
wouldn't be able talsee such a body, but we sure will feel it's
gravitational pull.

We could fly close to this "Dark star” and look around and
describe the features of the object.

A novelty, world lost interest when light was shown to be waves in
1803 by Thomas Young.
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Einstein’s Equivalence Principle

There is no experiment that you can perform that will
distinguish these two diagrams
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Gravity as a curvature of Spacetime

The early 1900°s changed the
way gravity 1s looked at.
Einstein didn’t think of gravity
as a force between objects, but
as a curving of “straight lines™
due to mass. Light always
follows straight lines, but
these may look curved near
masses. [1me also slows down
near masses (space and time
are different parts of
“spacetime’, which 1s what
gets bent).
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Earth Revolving Around Sun
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Newton's "Universal Time”

A (at rest) B (slow) B (fast)

“Time” 0

0
L»"space" Problem: This is wrong!
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The Geometry of Space
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The Geometry of Space
Ya
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R = Vg = ? Mathematically...
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The Geometry of Space

Problem 2: Curves
bend down not up
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Experimental Data:

A (at rest) B (slow),..-‘-""':: B (fast)
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Tg
Try hyperbolas
instead of circles:

2
4
- (cta)® = ( 4 =
2
1
0




The Geometry of Space

Tg
Try hyperbolas
instead of circles:

5
4
- S — (et )" = ¢
2
1
0




The Geometry of Space

Tg
Try hyperbolas
instead of circles:

3
4
= ( TE): = ( TA)Z R XAZ
2
1
0




The Geometry of Space

Ta 4= —(Cha) — 2y

-
*a
s
".'*

(c1p)? = (ct,)? - x,2



The Geometry of Space
Ta ¢ —(Cha ) ~ X4

Tg /

(ctp)? = (ct,)? - x,2




The Geometry of Space
Ta A5 —(chp) — 26"

Tg -/

-

CT.A.A,
- (ctg)? = (ctp)? - x,°
2
1 (ctp)? =—(ct,)? + x,2
0




The Geometry of Space

Ta 1= = (Cha) — %5°

LT (ctp)? = (cha)? - X4

(cTp)? =—(cty)? + x,42




The Geometry of Space




Einstein’s Spacetime

-Define a metric that handles both Space and Time P(t, x. y, z)

- Example two dimensional Euclidean Space

=

(—\“‘5 _]_ = ' lﬂ{')_‘ T ( —\"‘") Cartesian coordinates

—

( AX) ]: = ‘ _\}'): +F ( \@)) Polar coordinates

- Example of two dimensional Minkowski Space
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( \S): = —( \f ): —.‘—( \x )- Usual representation

(As) =—(At) +F° ( AP)  Milne representation
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Einstein’s Spacetime

-Define a metric that handles both Space and Time P(t, x. y, z)

- Example two dimensional Euclidean Space

(—\“5 ]_ = ‘ —\T)_ i ( —\'31"1)_ Cartesian coordinates

(As) =(ar)

+ 7 ( \@ )_ Polar coordinates
- Example of two dimensional Minkowski Space

= ( \/ ): —,l—( \x ): Usual representation

(As) =

(A.S ")_ = —( AV )_ +F ( —“-(5’ '_ Milne representation




The Einstein field equation (EFE) is usually
written in the form

R o SEEEL

ao ;-) 2 adp | an

CI‘

Here is the Ricci tensor. is the Ricci scalar, Is
the metric tensor, Tab is the stress-energy tensor, and
the constants are , (the gravitational constant) and
¢ (the speed of light). The EFE is a tensor eguation
relating a set of symmetric 4 x 4 fensors. It is written
here using the abstract index notation. Each tensor has
10 independent components. Given the freedom of
choice of the four spacetime coordinates, the
independent equations reduce fo 6 in number
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Curvature in 2D. ..

« In a curved space, Euclidean geometry does not apply:

- circumference # 2t R

- tnangles # 180°
- parallel lines don’t stay parallel




Working with a Curved Geometry
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1919 Verification

The final proof: the
small red line shows
how far the position of
the star has been

P -r_u.m—u—p-."-'- .
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gravity.
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