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Abstract: In this talk | will discuss the question of how to characterize, in an operationally meaningful way, the inevitable A“disturbanceA” of a
guantum system in a measurement. | will review some well-known limitations of quantum measurements (facts), and give precise formulations of
trade-off relations between information gain and A“disturbanceA”. Famous examples among these limitations are the uncertainty principle, the
complementarity principle, and WignerA’s theorem on limitations on measurements imposed by conservation laws. The universal validity of each of
these has been challenged repeatedly, and no conclusive resolution seems to have been reached.

I will analyze some long-standing conflations and misconceptions (myths) concerning these quantum limitations, such as the reduction of the
uncertainty principle to the idea of mechanical disturbance (momentum kicks), the claim that the uncertainty principle has nothing to do with (the
impossibility of) simultaneous measurements of noncommuting quantities, and some alleged violations of the uncertainty and complementarity
principles. Recent rigorous work has led to apparently contradictory conclusions on these issues. | will show that the contradictions dissolve if due
attention is paid to the choice of operationally meaningful notions of measurement accuracy and disturbance.
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Dedication...

Abner was here...

o quantum mechanical worldview

e foundational physics as “experimental metaphysics”

o quantum measurement: actualization of potentialities

“what would Abner say?”
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Encounters with Abner...

e Limitations on measurements due to conservation laws
(WAY Theorem) —

o quantum measurement problem: Insolubility T heorem
(AS&PEB, Insolubility of the gquantum measurement problem for unsharp observ-

ables, SHPMP, 1996)

{(not an advert — out of print)

Pirsa: 06070060 Page 3/60



Quest (Arthurtan? Quixotian?):
make sense of unsharp quantum reality (which Hellman box)

“Can quantum mechanical reality be considered sharp?”
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T heme and Plan of Talk:

Limitations on Quantum Measurements

¢ old myths in the light of recent developments
old and new challenges to complementarity and uncertainty principles:
Popper, Scully-Englert-Walther, Arshar, Ozawa

* review some disputed no-go claims and trade-off relations

e give operational definitions of (in)accuracy and “disturbance”

¢ Make precise: trade-off between information gain and disturbance
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Report some very recent developments, closing important,
long-standing gaps

On quantum weirdness......
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...... about the minds of quite a few among those concerned with
quantum mechanics:

persistence of myths/misconceptions, e.g. about complementarity, un-
certainty,...

— demonstrates need for clarification (new theory needs new words/intuitions)
— Should S Glashow work on it?7 Maybe not!

— But somebody has to do it (I think).
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Joint work with:

Pekka Lahti
Teiko Heinonen
Jukka Kiukas
Kari Ylinen

(all at University of Turku)
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Preliminaries

(The devil is in the detail.)
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Quantum Measurement T heory - Basic Concepts

S, 1 : =4 .
\\\ I f{:/ X
rely ——> I'® T,
2T i ':fa:

interaction registration

M=(H,1.T4.U Z;, measurement scheme

Hilbert space of apparatus (probe)

1A
'y = initial probe state

= U (tg.to+ 4At) . H o Hi— H o Hi measurement evolution (coupling)
[ IS Ta) =UTF&T )
Z . X —Z(X) (X CZR) pointer (output) observable
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measured observable — POVM E : X — E(X):
tIriUT @ TAU* TR Z(X)] = ¥ [T E(X)] = p%(.\.’)

state change (*“disturbance”)
— instrument X — 7Z(X), Z(X) : T — (X )(T) =Tx

tr [UT @ T4U* B® Z(X)] =: tr[Z(X)(T) B] = tr [Tx B]
tr [Z(X)(T)] = tr [Tx] = tr [T E(X)]

THEOREM: (Neumark, Stinespring, Ludwig, Kraus, Davies,

Ozawa)
(equivalence class of) M —— induced cp
(equivalence class of (¢cp)) I — E
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“No Information Gain Without Disturbance”
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THEOREM: No measurement without state change
I(R)(T) =T (for all T) = measured observable E is trivial

I' = Ple] — I(R)(Ple]) = Z(X)(Plp]) + I(R \ X)(Ple]) = Ply]
= I(X)(Ple]) = MX)Ply]

linearity of Z(X) = A(X) independent of
measured observable E:

pE(X) = tr [Z(X)(P[¢])] = M(X) — independent of ¢
E(X)=XX)I — trivial POVM

no state change = no information gain
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“No Information Gain Without Disturbance”
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THEOREM: No measurement without state change
I(R)(T) =T (for all T) = measured observable E is trivial

I = Plg] — IR)(Ple]) = Z(X)(Pe]) + Z(R\ X)(P[¢]) = Ply]
= T(X)(Plg]) = MX)Ply]

linearity of 7(X) = XA(X) independent ofr .
measured observable £

p-f{(.\"} = tr [Z(X)(Ple])] = A(X) — independent of ¢
E(X)=A(X)I — trivial POVM

no state change = no information gain
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THEOREM:
No measurement without (some transient) entanglement

Let [ : Hy & H> — Hi = H> be a non-entangling unitary mapping such
that for all vectors o = ' H;, o = H>, the Image of H; & H> under U is of
the form U(o = o) = 2 ¢'. Then [ i1s of one of the following types:
(@) U=VaWw where V : H1 — H, and W : Hz — Hz are unitary;

(b) U(g 2 0) = Vo100 Wiap, where V5, : Ho — H; and Wys : H;y — H, are

surjective i1Isometries.
The latter case can only occur If H; and H- are Hilbert spaces of equal
dimensions. (PB, IJTP 2003)
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GOAL: quantify/optimize trade-off between information
gain and disturbance.

(Quantum information theory: Fuchs, Peres, ...)
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Two “classic” quantum limitations of

measurements:

Complementarity and Uncertainty
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Complementarity Principle:

mutual exclusivity of setups for definition (preparation) and observation

(measurement) of canonically conjugate quantities (r;}. P)
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Complementarity: Formalizations

(C-1.) Preparation Complementarity

Qr(X)=1 = 0<Pr(Y)<1 (X,Y bounded intervals)
Popular variant of preparation complementarity:

(C-1a.) Value complementarity

Q sharply defined = P uniformly distributed (and vice versa)
(C-2.) Measurement Complementarity

Q(X) "P(Y) =0 (X.Y bounded intervals)
(no joint measurement (probability))
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(C-3.) Complementarity for sequential measurements

Sharp measurement of position destroys all prior information about
momentum (and vice versa).

tr [T9X)(T)P(Y)] = pr(X < Y) defines a joint probability distribution

mardginals:

pr(X < R) = tr [TQ(X)]

P(Y) are functions of Q!
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Uncertainty Principle:

quantifying limitations of preparations and
measurements...

(... and a little more ...)
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Uncertainty — the halfr-... glass
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Uncertainty

Complex of ideas:

¢ measurement “disturbs’” the observed system
— information trade-off

“classical” momentum kicks; reduction or wave rfunction; entanglement

¢ limitation of joint preparations and measurements
e cloud chamber tracks: approximate/fuzzy phase space trajectories

e possibility of unsharp joint preparations and measurements of (). P
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Myths and Facts about Complementarity and Uncertainty

Myth 1: Uncertainty relations are formal expression of complementarity.
(Bohr 1928)

Fact: They are more than that. (See above, and Bohr 1928).
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Bohr 1928:

“In the language of the relativity theory, the content of the relations
(2) [the uncertainty relations] may be summarized in the statement
that according to the quantum theory a general reciprocal relation
exists between the maximum sharpness of definition of the space-time
and energyv-momentum vectors associated with the individuals. This
circumstance may be regarded as a simple symbolical expression for
the complementary nature of the space-time description and claims
of causality. At the same time, however, the general character of
this relation makes 1t possible to a certain extent to reconcile the
conservation laws with the space-time co-ordination of observations,
the idea of a concidence of well-defined events In a space-time point
being replaced by that of unsharply defined individuals within finite

space-time regions.”
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Myth2: T he position-momentum uncertainty relation is due to *‘classical”
momentum Kkicks.
(Heisenberg 1927)

Fact: Wrong! (Heisenberg 1927)

Myth 3: The principle of complementarity iIs much deeper than the uncer-
tainty relation. (Scully, Englert, Walther 1995)

Fact: ... it ain’'t that simple. (See above, and PB&C. Shilladay, forth-
coming.)

Myth 4: The uncertainty principle has no bearings on possibilities or limi-
tations of joint measurements. (Popper, Margenau, Ballentine)

Fact: T hat’s wrong!
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Myth 5: Quantum mechanics does not allow any joint measurements of
). P whatsoever. (Folklore)

Fact: Wigner function 1932; von Neumann 1932: impossibility of sharp
Joint measurements.
Husimi 1939: positive phase space probability distribution for each
quantum state
Arthurs& Kelly 1965: model of joint unsharp measurement.
Since 1970s: notion of phase space observables.
Since 1980s: quantum optical realizations.

Myth 5: Quantum mechanics does allow arbitrarily accurate joint measure-
ments of . P. (Popper, Margenau, Ozawa (7))

Fact: Werner 2004, Cassinelli et al 2004: uncertainty relations are nec-
essary for joint measurability. (Or you have a weird notion of joint
measurement.)

Myth 6: The accuracy-disturbance uncertainty relation i1s not universally
valid. (Ozawa)

Fact: That's wrong.
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Myth 7: Bohr’'s complementarity principle is wrong. (Popper, Afshar)

Fact: That's wrong (as far as I can tell).
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On a rfailed attack on the Complementarity Principle

(nice experiment, not-so-good interpretation)
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Afshar’s experiment

|*
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THEOREM: (PB & P Lahti, 1986)
Q(XP(Y) =PF(Y))Q(X) <

N. Y are periodic sets with minimal periods o, 7 > 0 satisfying

Efﬁ

S— ¥

(815

2(q). 2(p) In two-slit experiment satisfy this periodicity with n = 1
- 1s approximate simultaneous eigenstate of the above Q(X,) and P(};)

Afshar’s experiment is an approximate simultaneous measurement of
Q(X.) and P(Y3)
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Afshar’s experiment

_
e
——
——— - e
— T —
- ————
e
e A
ey
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THEOREM: (PB & P Lahti, 1986)
Q(X)P(Y) =P(Y)Q(X) <

A, Y are periodic sets with minimal periods o, 7 > 0 satisfying

E.Tf'.l

S— ¥

3

>(q). 2(p) In two-slit experiment satisfy this periodicity with n = 1
- Is approximate simultaneous eigenstate of the above Q(Y,) and P(Y)

Afshar’s experiment is an approximate simultaneous measurement of
Q(X.) and P(Y3)
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Uncertainty principle: 3 Taces

. h
(U-1.) AQ-ApP _% preparation UR

_—

(U-2.) dq - dp > C'h joint measurement inaccuracy trade-off

(U-3.) dq - DP > C'h accuracy-disturbance trade-off

( Formalizations to follow shortly....)
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EXAMPLE: single slit diffraction (Heisenberg)

Confirmation: neutron interferometry, atom interferometry
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Case studies:

Inaccuracy and disturbance In measurements
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A. Some “classic” examples

1. Heisenberg: shit diffraction

2. Heisenberg: ~-microscope
inaccuracy — wavelength; disturbance — Compton scattering

3. Heisenberg: momentum measurement via Doppler er-
fect

iInaccuracy — 1/frequency, disturbance — ..... collapse

Note emphasis on (approximate) repeatability!
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B. Sharp observables — repeatable measurements
repeatability: tr [I(X) (Z(X)(T))] =tr [Z(X)(T)]

THEOREM: (Davies, Ozawa, Luczak)
.M repeatable = measured observable E' is discrete.

EXAMPLE: UOI‘I Neumann measurement
L = Y rapPi, I (T) = ¢ Plogd T Plegel (Ze Ploged = Pe)

EXAMPLE: Luders measurement

_—i: (ir ) = I_DL_.I— F}I;

Consequence of ideality: Vi, T (tr[TF)] =1 = Z;(T)
(QND property)

|
I--._-l
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LUDERS THEOREM:

& — Y apbh. B—5 b

VT, £tr [3 ff"'{(f’)f--?—} =tr[7TQy] = PQp= Qb

INTERPRETATION:
A Luders measurement of 4 disturbs all observables B that do not

commute with .

OBSERVATION:
This extends to some pairs of POVMs (PB, J Singh 1998),
but not all! (Arias, Gheondea, Gudder, JMP 2002)

Ei,....En>0, Sy Ep =TI THE(T) =tr {E‘,ﬁ:{'ﬁﬂj*
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Myth: All measurements are repeatable.
(Underlying the Projection Postulate)

Myth: Repeatable measurements are “bad”. (E.g. unrealistic)

Fact: Repeatable measurements are good for some purposes,
bad for others.

Fact: Repeatable measurements can be pretty well approximated.
(E.g. QND, quantum Zeno)
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C. Von Neumann model of unsharp position measurement

“Standard Model of Quantum Measurement Theory”

H = L%(R) H 4 = L%(R) Ty = P[o]
U = exp(—iAQ @ By) Z =P,

measured observable:

E—=Q X—Q.lX)=xx»e(Q) = ][: yx *e(q) Q(dg)

el g ) = Alo{ —AQ )| <

instrument:

V(X)) = ,It K,TK;dq (Kg2)(z) = X6 (A(g— =z )) p(x)

von Neumann (1932) did not discover the POVM Q. but noted that this

iIs an approximately repeatable measurement of position (correlation

with pointer values).
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Myth: All measurements are repeatable.
(Underlying the Projection Postulate)

Myth: Repeatable measurements are “bad”. (E.g. unrealistic)

Fact: Repeatable measurements are good for some purposes,
bad for others.

Fact: Repeatable measurements can be pretty well approximated.
(E.g. QND, quantum Zeno)
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C. Von Neumann model of unsharp position measurement

( “Standard Model of Quantum Measurement Theory”

H = L*(R) Hi = L%(R) T4 = P[¢]

U = expl —E,‘u;} Pi) 7z =Py

measured observable:

E=Q.: X Q(X)=vxxe(D) = ,l_ xx *e(q) Q(dqg)

e(q) = Ao(—2q)|>

instrument:

IV(X)(T) = [y K,TK; dg (Kg2)(2) = Vg (Mg — z)) p(z)

von Neumann (1932) did not discover the POVM Q. but noted that this
iIs an approximately repeatable measurement of position (correlation

with pointer values).
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D. Ozawa’s model of a sharp position measurement
(E.g., Phys. Lett. A 299 (2002) 1-7)

-

U = exp {— (20 P1—2P2Q s+ QP —Q4P,)|

3/3h |
— exp(——O 2 P, ) exp (=P 2O )
P (728 F4) op(zP8Q4
'y = Plo], pointer: Q ,

measured observable: Q (sharp position!)

instrument:

N —,%f'{p||-_ { B £qP

Z(X)(PleD) = [ (#IQ(da)
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C. Von Neumann model of unsharp position measurement

( “Standard Model of Quantum Measurement Theory”

H = L%(R) H.o=I15R) Iy = P[¢]

U = exp(—xA\Q = Py) =P

measured observable:

BE=Q X i Q.bX)—nx» el Q) = ][; yx *e(q) Q(dg)

e(g) = A|o(—Aq) -

instrument:

(XN Ty=1I: K, TK;dq (K 2)(z2) = VAo (Mg —z)) ¢(z)

A

von Neumann (1932) did not discover the POVM Q. but noted that this
is an approximately repeatable measurement of position (correlation

with pointer values).
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C. Von Neumann model of unsharp position measurement

( “Standard Model of Quantum Measurement Theory”

H—1"{R) Hi = L*(R) T4 = Plo]
[T = exp(—iA\Q & Py) = =Py

measured observable:

E=Q: X —Q(X)=xx+*e(Q) = [ xx xe(q) Qldg)

el g ) = Ao —AqQ )|~
instrument:

__'-*'J[ XWE)= |It ff,_,ftri”' dg ( fx—__.. wi(E) = Ao ( AMg—x)) p(x)

von Neumann (1932) did not discover the POVM Q. but noted that this

Is an approximately repeatable measurement of position (correlation

with pointer values).
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D. Ozawa’'s model of a sharp position measurement
(E.g., Phys. Lett. A 299 (2002) 1-7)

U = exp {— —— {20 Py 2P0 QP € sFP4)

3v/3h |
— i Qe P,) exp (—P2Q )
(_ EE - A \7 s
I'y = Pleo], pointer: Q4

measured observable: Q (sharp position!)

Instrument:

I(X)(Plg]) = /'R_ (2|Q(dq) |2 e 7|6 ) ( pleRIE
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Limitations due to conservation laws
THEOREM (W.A.Y.)

If a sharp observable admits a repeatable measurement then it com-
mutes with any bounded additive conserved observable of the object-
apparatus system.

Shimony and Stein:
— dropped repeatability — raised question about continuous/unbounded
(conserved) quantities

EXAMPLE:

measurement of @, conserved quantity: P+~ P, =P I+ T Py

use modified von Neumann coupling I = exp {—.a'%[[r;l — QA)Ps+ Pa(Q —Q4)|)

— satisfies momentum conservation

— get measured observable Q. = e+ Q. e(q) = (e — 1) |o(—(e* — 1)q)

— unsharp pointer Q,, gives measured observable Q..

Abner: good enough?
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Accuracy and Disturbance — Operational Measures

I. General Idea
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aCCLIracy

disturbance

I — = A F\} ~

M(Q)

P

' =T¥(R)(T)

"]I. [ 1 '::3 :} - 1

— < M(@Q) > Qf

Pr

—— [

Ew.rf L ,‘kItP) ':-;?I" e '-.-

P — g & ORY(T)

=t -\\/I{Pf e (_:?T' . PE_I
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Accuracy and Disturbance — Operational Measures

II. Intrinsic Noise Operator
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— unsharp joint measurement! (Davies 1976) IHRP) = on

by
-

g -

0 =

Can also do: Q,., followed by P,
Gives joint observable for Q.. P,
Inaccuracy relation i1s automatically satisfied:

: fi
,ﬁn'-‘,}&'f',} - ;

Equivalent to Arthurs-Kelly model.

Necessity of this uncertainty relation for joint measurability:
Werner 2004; Cassinelll et al 2004.

Page 53/60




Pirsa: 06070060

Ozawa model of sharp position measurement
[-“w

accuracy: N(Q) =0, g —1=0

recall instrument:

T(X)(Ple) = [ (¢lQ(da)l¢) e3¢

J "'-_

find “distorted” momentum:

o Z(BHP(Y)] =tr [TIE’[‘J.' J} =

P(Y) = (o|P(Y)|o) I — trivial POVM

still find noise operator N(P) = (A,P)21

disturbance: D(P) = N|{ P)? NO! Need judicious choice.
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Accuracy and Disturbance — Operational Measures

[II. Ozawa’s (non-operational!) measures
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Ozawa’s noise operator: N (Q)=U 1@ ZU —Q & I

Ozawa noise: Q) = (N(Q)AV 2= ||U' IR Z2Up R0 —Q @ I ® ¢

L v d u

Ozawa’'s disturbance operator: D" (P)=0"PaIU —P a1

5

Ozawa’s disturbance: n(P) = (D(P))Y2=|U—"Po IUp oo — P o Iy

(D) - n™(P) +="(Q) - AP+ AQ - n*°(P) > T

von Neumann model: ="(Q) = A(e). n™(P) = A(f). Q) -n™(P) = h/2

Ozawa model: ="?(Q) =0, n™(P) =777 < x

“no” = not operational
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)

Accuracy and Disturbance — Operational Measures

IV. Werner’'s measures
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distance between two POVMs E and F (both on R):

(some definitions beforehand:)
L(g.E) := [z 9(z)E(dx)

A={g:BE—R : g bounded, |g(z) —g(y) < |z — y|]

d(E.F) :=sup{||L(g.E) —L(g.F)|| : g €A}

sequential “phase space” measurement with marginals £. F
position measurement accuracy Jig = d(E.Q)

momentum accuracy/disturbance D(P) =d(F.P)

5q - D(P) > Ch

Ch = E5/4ab is the smallest eigenvalue (> 0!) of a|Q| 4+ b|P|, a,b >0

(W8]

optimal value: ' = 0.
— applies to von Neumann model AND Ozawa model
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Conclusion & Summary

Things to remember
¢ Why it makes sense to use 7" or I to denote state operators

¢ THE THREE FACES of the complementarity and uncertainty prin-
ciples

¢ Caution with non-operational measures of accuracy and distur-
bance, and with classical intuition

¢ Userul operational measures of accuracy and disturbance
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