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Abstract: An experimental realization of our spin-1/2 particle version of the Einstein-Podol sky-Rosen (EPR) experiment will be briefly reviewed. In
the proposed experiment, two 199Hg atoms in the ground 1S0 electronic state, each with nuclear spin 1=1/2, are generated in an entangled state with
total nuclear spin zero. Such a state can be obtained by dissociation of a 199Hg2 molecule (dimer) using a spectroscopically selective stimulated
Raman process. From symmetry considerations, the nuclear spin singlet state is guaranteed if theinitial 199Hg2 moleculeisin arotational state with
an even quantum number. Consequently, a thorough investigation and analysis of the rotational structure of the 199Hg2 molecule is required; results
of thisanalysiswill be presented.
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Einstein together with colleagues
Podolsky and Rosen:

Quantum Mechanics
is
"incomplete"

Crux of the problem:
Classical mechanics gives deterministic predictions

Quantum mechanics gives statistical predictions
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John Bell

Considered an EPR type experiment
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1.Locality
2.“Completion” QM
3.Positive Probabilities

<

LOCALITY: Two spatially separated systems can affect
each other only after a time delay greater than the time i
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John Bell Proved:

1. The statistical predictions of any local
theory that “‘completes’ quantum
mechanics in the sense of Einstein must
satisfy an inequality.

2. The statistical predictions of quantum
mechanics can violate that inequality.
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- John Bell Proved:

1. The statistical predictions of any local
' theory that “‘completes’ quantum
mechanics in the sense of Einstein must
satisfy an inequality.

- 2. The statistical predictions of quantum
mechanics can violate that inequality.

A definitive laboratory

experiment is possible #--




T Initial experiments:
perime
e P
x h 1972- Berkeley
a y
S S
i 1974- Harvard
A €
{5«’1 S 1976- TAMU
1982- Paris

exneriment feasible

violated Bell inequality
and agreed with QM
satisfied Bell inequality
and disagreed with QM
violated Bell inequality
and agreed with QM
violated Bell inequality
and agreed with QM

These initial experiments had loopholes: they
required additional assumptions in order to make an



more recent experiments (also at least one

! loophole):
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more recent experiments (also at least one

loophole):
Maryland then Rochester (1986-88) -
Two photon down conversion to test Bell inequality
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some more recent experiments (also at least one
loophole):
Maryland then Rochester (1986-88) -

Two photon down conversion to test Bell inequality
Paris (1997) -

Entanglement of atoms in high Q microwave cavity
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Some more recent experiments (also at least one

loophole):
Maryland then Rochester (1986-88) -

Two photon down conversion to test Bell inequality
Paris (1997) -

Entanglement of atoms in high Q microwave cavity

Geneva (1997) -
Tested Bell inequality with entangled photons and

a detector separation of 10.9 km
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T Some more recent experiments (also at least one

e P loophole):

g h Maryland then Rochester (1986-88) -

S )SI Two photon down conversion to test Bell inequality

i Paris (1997) -
A € Entanglement of atoms in high Q microwave cavity
& S Geneva (1997) -
Tested Bell inequality with entangled photons and

<
—

a detector separation of 10.9 km

Innsbruck (1998) -
Tested Bell inequality with entangled photons

under strict Einstein locality conditions
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T Some more recent experiments (also at least one

e P loophole):

g h Maryland then Rochester (1986-88) -

S g Two photon down conversion to test Bell inequality
i Paris (1997) -

A C Entanglement of atoms in high Q microwave cavity

& S Geneva (1997) -

M Tested Bell inequality with entangled photons and

a detector separation of 10.9 km
Innsbruck (1998) -
Tested Bell inequality with entangled photons
under strict Einstein locality conditions
Boulder (2001) -
Tested Bell inequality with atoms (massive
particles) and high (98 % ) efficiency detection
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Some more recent experiments (also at least one
loophole):
Maryland then Rochester (1986-88) -
Two photon down conversion to test Bell inequality

Paris (1997) -
Entanglement of atoms in high Q microwave cavity

Geneva (1997) -

Tested Bell inequality with entangled photons and
a detector separation of 10.9 km

Innsbruck (1998) -
Tested Bell inequality with entangled photons
under strict Einstein locality conditions

Boulder (2001) -
Tested Bell inequality with atoms (massive

particles) and high (98 % ) efficiency detection

Austria (2003) -
Tested Bell inequality with space and spin  rue
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Note:

Results of Bell inequality
experiments require any hidden
variable theory to be non-local

(In order to explain the data).
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Note:

Results of Bell inequality
experiments require any hidden
variable theory to be non-local

(in order to explain the data).

But, results of Bell inequality
experiments do NOT require
quantum mechanics to be non-
local.
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An experimental realization of Bohm’s classic

version of the Einstein-Podolsky-Rosen
gedankenexperiment
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Features

When testing a fundamental concept. it 1s vital to
do the study over as wide a range of the
parameters as possible.

Our experiment with ""Hg dimers dramatically
extends the parameter range over which
Bell inequalities are tested:
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Features

When testing a fundamental concept. it 1s vital to
do the study over as wide a range of the
parameters as possible.
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Our experiment with '""Hg dimers dramatically
extends the parameter range over which
Bell inequalities are tested:
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1) Efficient detectors:
Detection efficiency of =100% closes the
efficiency loophole.
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Features

When testing a fundamental concept. it 1s vital to
do the study over as wide a range of the
parameters as possible.

Our experiment with ""Hg dimers dramatically
extends the parameter range over which
Bell inequalities are tested:

1) Efficient detectors:
Detection efficiency of =100% closes the
efficiency loophole.

2) Einstein locality:
Locality can be strictly enforced.
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3) Spin one-half fermions rather than bosons:
A '""Hg atom is a fermion.
The first test of a Bell inequality with
entangled termions. The particles obey
completely different quantum statistics than
in all previous bell inequality tests.
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3) Spin one-half fermions rather than bosons:
A '"""Hg atom is a fermion.
The first test of a Bell inequality with
entangled termions. The particles obey
completely ditferent quantum statistics than
in all previous bell inequality tests.

4) Massive particles vs. massless photons:
Nonrelativistic massive particles obey the
non-relativistic Schrodinger equation:
photons are very different.
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3) Spin one-half fermions rather than bosons:
A '""Hg atom is a fermion.
The first test of a Bell inequality with
entangled termions. The particles obey
completely different quantum statistics than
in all previous bell inequality tests.

4) Massive particles vs. massless photons:
Nonrelativistic massive particles obey the
non-relativistic Schrodinger equation:
photons are very different.
A test of a Bell inequality with massive
particles 1s 1n a regime very different
from tests with photons.
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S) Inside the light cone rather than on it:
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5) Inside the light cone rather than on it:
Massive particles must have a velocity less
than ¢ and trace out a world line 1nside
the light cone.
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S) Inside the light cone rather than on it:
Massive particles must have a velocity less
than ¢ and trace out a world line 1nside
the light cone.

Photons (velocity ¢) must always be on the
light cone.

Page 26/100



RO A D
W O melnte T

A
&
M

S) Inside the light cone rather than on it:

Massive particles must have a velocity less
than ¢ and trace out a world line inside
the light cone.

Photons (velocity ¢) must always be on the
light cone.

Since Einstein locality plays a crucial role
in the Bell inequalities. experimental
tests well inside the light cone are
especially important in comparison to
the photon tests done on the light cone.
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S) Inside the light cone rather than on it:

Massive particles must have a velocity less
than ¢ and trace out a world line 1nside
the light cone.

Photons (velocity ¢) must always be on the
light cone.

Since Einstein locality plays a crucial role
in the Bell inequalities, experimental
tests well inside the light cone are
especially important in comparison to
the photon tests done on the light cone.

Since photons travel with the velocity of
light 1n any reference trame, they
cannot be strictly localized.
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6) Entangled state exists for milliseconds:
In photon experiments. the entangled state
typically exists a few nanoseconds
before annihilation at the detectors.
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6) Entangled state exists for milliseconds:

In photon experiments. the entangled state
typically exists a few nanoseconds
betore annihilation at the detectors.

Even in the 1997 expenment of Gisin, et
al. (Geneva) it only existed for 30 ys.
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6) Entangled state exists for milliseconds:

In photon experiments, the entangled state
typically exists a few nanoseconds
betore annihilation at the detectors.

Even in the 1997 expenment of Gisin. et
al. (Geneva) it only existed for 30 ys.

The '""Hg atoms travel slow compared to c:
the two atom entangled state must
continue to exist at large spatial
separations for milliseconds.
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6) Entangled state exists for milliseconds:

In photon expernnments. the entangled state
typically exists a few nanoseconds
betore annihilation at the detectors.

Even in the 1997 expennment of Gisin. et
al. (Geneva) it only existed for 30 ys.

The '""Hg atoms travel slow compared to c:
the two atom entangled state must
continue to exist at large spatial
separations for milliseconds.

7) Spatially separated and independent storage of
the two components of the entangled state:

Frozen neon matrices ofter the capability to
store the two components of the entangled
state in separate and movable locations for
relatively long periods of time. it
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T Dimer Source
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Analyzers determine component

of F 1n a specific direction.

Measure correlations between
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Hg Isotopes

(natural abundance)

9 He  0.15%
%Hs  10.1%
9Hs  16.84%
MHe  23.1%
0iHe  13.22%
0He  29.65%
204Hg 6.8 %

I1=0
I=0
=2
I=0
=52
I=0
I1=0

In a mercury dimer source, we have

199 ng

with 2 R4, abiimnmdance
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Potential energy curves for the dimer Hg,
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We require ""Hg, in a nuclear spin singlet
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We require "?Hg, in a nuclear spin singlet
%9Hg has total spin 1/2 = fermion

Thus, the Pauli Principle = P¥Y=-Y¥
where P is the particle exchange operator
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We require '"Hg, in a nuclear spin singlet
%9Hg has total spin 1/2 = fermion

Thus, the Pauli Principle = P¥Y=-Y¥
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where P is the particle exchange operator

P¥=(0_i, Pe) W (C, W) (p, . Pr)
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. 1 +
he '""Hg, molecular ground state is X IZE
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We require ""Hg, in a nuclear spin singlet

99Hg has total spin 1/2 = fermion
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Thus, the Pauli Principle = P¥Y=-Y¥

where P is the particle exchange operator

P‘P:(Gciiclqjd) Yvib {C':l{lml) (pnucl{muc]
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.. < +
he '"Hg, molecular ground state is X IZE

g — reflection symmetry, G . of the e~ wave function
+ = inversion symmetry, 1. of the e~ wave function

Ue!“P':[: +_\Pcl: icll{_!c1:+q.lc1: C:Lymt:(_l ]J \Pml :

Page 42/100



We require '"Hg, in a nuclear spin singlet
%9Hg has total spin 1/2 = fermion

Thus. the Pauli Principle = P¥Y=-%¥
where P is the particle exchange operator
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. Iw+
> 1%Hg, molecular ground stateis X X2,
g — reflection symmetry. 6. of the e~ wave function
+ = inversion symmetry, 1, of the e~ wave function

O PeI=Pe i W=t CPR(— ) PR

P¥Y=(-1)’ p,..W
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PY=(-1)’ Poue ¥
juclear spin singlet:

nuc L g
¥ =—‘T)1‘\L)3_“L)1‘T>g} v p““L‘=_l

A

N AD A D e

W O et T

< o>



P¥Y=(-1)! p,,. ¥
duclear spin singlet:

nuc 11 *
¥ . E“‘T)l‘\l’)g _“L>1‘T>g} = Pnuc =1

Thus, J must be an even integer.
In the nuclear spin singlet state, the rotational states
must have even J:

J=0,2,4,...
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P ‘P=(—1)J pnuc‘P
luclear spin singlet:

nuc L g
£ =E*‘T)[‘\L)g_‘\l’)l"r>g} = pﬂ“¢'=_l

Thus, J must be an even integer.
In the nuclear spin singlet state, the rotational states
must have even J:

J=0,2,4,...
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P¥Y=(-1)’ p,,.¥
duclear spin singlet:
1

lPIll.IE — ;

ﬁ‘T)l|i>2—‘i>1‘T)g} =  Pnuc =1

Thus, J must be an even integer.
In the nuclear spin singlet state, the rotational states
must have even J:

J=0,2,4,...

Juclear spin triplet:
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P¥Y=(-1)’ p,,.. ¥

duclear spin singlet:
1
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Thus, ] must be an even integer.
In the nuclear spin singlet state, the rotational states
must have even J:

J=0,2,4,...

Juclear spin triplet:
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'q""HEﬁ 1s a homonuclear molecule, each leg of the
Raman transition can only have AJ=+1: AJ cannot be 0.
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Since '"°Hg, is a homonuclear molecule, each leg of the
Raman transition can only have AJ==1; AJ cannot be 0.
for the overall Raman transition, AJ=0.£2: thus if the
molecule starts in an even J, it ends up in an even J
dissociating state in the ground state.
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Simulated Dimer Spectra
X'z, « D17°x;, v=60
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Since '"°Hg, is a homonuclear molecule, each leg of the
Raman transition can only have AJ==1; AJ cannot be 0.
“or the overall Raman transition, AJ=0.+2: thus if the
molecule starts in an even J, it ends up in an even J
dissociating state in the ground state.

P
h
),
5
)
C
B

excianon
266 nm
Al==1

:
\\l.

L

energy (cm ')

S000 =

y 3

j_ 3 4 5 P(Pe 53/100

mumcrlanr camararian B @A



Simulated Dimer Spectra
X'E <« DL’s.  v=60
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Simulated Dimer Spectra
X'E < DLE.  v=60

=
.[

W AD A €D e

P(9) P(10) P(11)

Pi5)
Pi6)
Lyl
P(8)

W O m=elnte T

h—
R(0)
e —
» Ril)
)
~  R(2)
e
= L]
e ————————
—— R(4)
e

Zep

P()
b
=1
=
hn,

—
S
"

"7
P(8)

P(s)

= < P(h)

Ril)
—————t—

Ril)
"

R(2)
= R(3)
——
d R(4)
p———

Pa
() 8 l
Frmi:nﬂ iGHz)



Preliminary Dimer Spectra Data
Mass 398 isotopomer X [Z; «— D1/°z, v=a
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Preliminary Dimer Spectra Data
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Dimer Dissociating
Laser Beam: 355 nm

Dimer Excitation
Laser Beam: 266 nm

—

Hg = (Dimers)

Detection Planes
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Preliminary Dimer Spectra Data
Mass 398 isotopomer X ‘T, ¢ D1/°%]  v=e
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Preliminary Dimer Spectra Data
Mass 398 isotopomer X [Z; «— D 1u32:r1 v =6(
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Simulated Dimer Spectra
X'z, « D17z, v=60
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Preliminary Dimer Spectra Data
Mass 398 isotopomer X [Z; «— D1/°x] v = 6(
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Dimer Dissociating
Laser Beam: 355 nm

Dimer Excitation
Laser Beam: 266 nm
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Dissociation Lasers

263 — 269 nm System

Alexandrite Laser

150 ns FWHM pulses

4 MHz linewidth

40 mJ fundamental
Developed high voltage ramp/Q-switch
combination to cancel chirp. Narrowest
linewidth of existing pulsed lasers?
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Dissociation Lasers

263 — 269 nm System

Alexandrite Laser

150 ns FWHM pulses

4 MHz linewidth

40 mJ fundamental
Developed high voltage ramp/Q-switch
combination to cancel chirp. Narrowest
linewidth of existing pulsed lasers?

355 nm System

Excimer pumped dye laser
5 ns FWHM pulses
6 GHz linewidth
3 Page 66100
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F=3/2
Level 2

. F=1/2
(125 nsec)

253.7 nm
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Z A lonizing Laser
Beam: 197.3 nm
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Analyzing Laser
Beam: 253.7 nm
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Beam: 253.7 nm

Page 69/100




Auto-ionizing transition:

Linewidth (6p2)°P,;
=9 cm~'=270 GHz
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Oscillator Strength (calculated):
f=0.362
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Absorption Cross-section:
=2 3x10" ¥ cm®

Radiative lifetime:
1,=0.5 nanosec

Non-radiative lifetime:

T,=3.7 picosec

Pulse energy to saturate transition: ...
E=100 ]
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F=3/2
Level 2

F=1/2
(125 nsec)

253.7 nm
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= A lonizing Laser
Beam: 197.3 nm

Analyzing Laser
Beam: 253.7 nm
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Auto-ionizing transition:

Linewidth (6p2)°P,;
'=9 cm~'=270 GHz

Oscillator Strength (calculated):
f=0.362
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Absorption Cross-section:
6=23x10" cm?

Radiative lifetime:
1,=0.5 nanosec

Non-radiative lifetime:
T,=3.7 picosec

Pulse energy to saturate transition: -
E=100 ]
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Excitation/Ionization Lasers

253.7 nm: 3rd harmonic of 761.1 nm;

197.3 nm: 4th harmonic of 789.2 nm

761.1 nm and 789.2 nm are produced
simultaneously by a tlashlamp pumped
Ti:Sapphire laser.
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Dual frequency Ti:Sapphire Laser

v Secondary Output
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-24.7 kV
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M Jm 1043 eV

F=3/2 66p) 6°P,

Level 2

Level 1

F=12 653 6'S,
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Analyzing Laser
Beam: 253.7 nm

(Circular Polanzation}

lomizing Laser
Beam: 197.3 nm
(Case I: Linear
Polanzation
in X-Y Plane)

OriZing Laser

Baam: 167 2 fni

OEalr. o F A

(Lase ll: Linear
™ - - - n -
Polarization

in X-Z Plane)
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M) Jm ~ 1043eV

F=3/2 6s6p) 6P,

Level 2

Level 1

F=12 69 6'S,
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Analyzing Laser
Beam: 253.7 nm

(Circular Polanzation}

lonizing Laser
Beam: 197.3 nm
(Case I: Linear
Polanzation
in X-Y Plane)

onizing Lase
- P ) -y 3
Beam: 197.3 nm
(Case ll: Linear
Polarization

Page 88/100



W O m—elnte T

Lo LMo

QUANTUM
MECHANICAL

PREDICTIONS



S apKo-

W O melnte

One may choose various quantities for the
correlation measurement.

Consider the case of measuring the
component MF=+1/2 of both atoms in
various directions.

Quantum Predictions

R..(9,,60,)= gfIzN[i- iCOS(Gl -0, )]

The strong Bell Inequality is

R..(8,.8,)—R..(8,,07)+R..(6],8,)+R . (8,.87) _

P B’y A )



Taking
91 — 45'“, i — 1351:!, 92 - 270!3, ’2 =§"

The LHS is
1207 ne
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In order for the quantum mechanical predictions to
violate the inequality. we must have

1
> —0.828
N2=1507

We expect
N=0.98, g=0.97

ng = 0.95
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various directions.

Quantum Predictions
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> —0.828
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We expect
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One may choose various quantities for the
correlation measurement.
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component MF=+1/2 of both atoms in
various directions.

Quantum Predictions
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Enforcing locality

Pockel's cell

Mercury atom
to be detected

AN

1
I
|
1
1
|
1
Laser Beam |
i
|
1
1
:

W O m=elnte T

Polarizer

T
e
X
a
E
A
&
M

Page 97/100




THE END

Bl e ) W1

VUM R RS



PERIMETER INSTITUTE FOR THEORETICAL PHYSICS




INSTITUTE FOR THEORETICAL PHYSICS

PERIMETER




