Title: What does special relativity really mean? Part II continued

Date: Jul 14, 2006 01:00 PM

URL: http://pirsa.org/06070030

Abstract:

Pirsa: 06070030

Core concepts of special relativity, Part 2

© Perimeter Institute for Theoretical Physics, 2006

Pirsa: 06070030 Page 28/90

Time dilation

Light clock

 A and B are the events corresponding to a photon hitting the bottom mirror on two successive occasions.

$$\Delta t = 2L/c$$

$$\Delta t' = \frac{\text{distance}}{\text{speed}} = \frac{2\sqrt{L^2 + \left(\frac{d}{2}\right)^2}}{c}$$

$$d = vt'$$

time dilation

$$(c\Delta t')^2 = 4(L^2 + ((v\Delta t')^2 / 4))$$

$$\therefore 4L^2 = \Delta t'^2 (c^2 - v^2)$$

But
$$(c\Delta t)^2 = 4L^2$$

gives
$$(\Delta t'/\Delta t)^2 = c^2/(c^2 - v^2)$$

$$\Delta t'/\Delta t = 1/\sqrt{1-(v/c)^2}$$

$$\therefore \Delta t' = \gamma \Delta t$$

Pirsa: 06070030

Time dilation

Light clock

 A and B are the events corresponding to a photon hitting the bottom mirror on two successive occasions.

$$\Delta t = 2L/c$$

$$\Delta t' = \frac{\text{distance}}{\text{speed}} = \frac{2\sqrt{L^2 + \left(\frac{d}{2}\right)^2}}{c}$$

$$d = vt'$$

time dilation

$$(c\Delta t')^2 = 4(L^2 + ((v\Delta t')^2 / 4))$$

$$\therefore 4L^2 = \Delta t'^2 (c^2 - v^2)$$

But
$$(c\Delta t)^2 = 4L^2$$

gives
$$(\Delta t'/\Delta t)^2 = c^2/(c^2 - v^2)$$

$$\Delta t'/\Delta t = 1/\sqrt{1-(v/c)^2}$$

$$\therefore \Delta t' = \gamma \Delta t$$

Pirsa: 06070030

Core concepts of special relativity, Part 2

© Perimeter Institute for Theoretical Physics, 2006

Pirsa: 06070030 Page 45/90

Length contraction

- Analogous process for length contraction
- Consider a stick lying on the ground at rest.
- What is its length in frame S' moving at speed v relative to the stick?

Scales on time and x axes

ct' axis: Due to time dilation, it must be stretched out.

Scales on time and x axes

ct' axis: Due to time dilation, it must be stretched out.

- Consider a black spaceship travelling at 0.5c past the earth. At one point, the Klingon on it starts typing into her computer (event A).
 Some time later, she is finished (event B).
- Assuming A happens in the spaceship's frame time t=0 and x=0 and B at t=T, plot A and B on the spacetime diagram below:

- Consider a black spaceship travelling at 0.5c past the earth and physicist on Earth. The physicist starts typing into her computer (event A). Some time later, she is finishes (event B).
- Assuming A happens in Earth's frame at time t=0 and x=0 and B at t=T, plot A and B on the spacetime diagram below (showing Earth's frame):

If we did not know that \(\Delta t_{\text{ag}} \rightarrow T\), we could determine it from the graph through the following procedure:

- Consider a black spaceship travelling at 0.5c past the earth and physicist on Earth. The physicist starts typing into her computer (event A). Some time later, she is finishes (event B).
- Assuming A happens in Earth's frame at time t=0 and x=0 and B at t=T, plot A and B on the spacetime diagram below (showing Earth's frame):

Length contraction

- Analogous process for length contraction
- Consider a stick lying on the ground at rest.
- What is its length in frame S' moving at speed v relative to the stick?

- To determine its length in S graphically, consider the t axis which corresponds to the line x=0.
- Draw a line parallel to it that passes through the point x=a and then continue to draw parallel lines to the right of the first one corresponding to x=a+1,a+2,a+3 ... until we draw one that passes through the point x=b. The length L₀ is given by b-a.
- Although this process is laborious and unnecessary, it helps us to understand how to measure L' graphically.

Let us perform the analogous procedure in the frame S'

- Consider a black spaceship travelling at 0.5c past the earth and physicist on Earth. The physicist starts typing into her computer (event A). Some time later, she is finishes (event B).
- Assuming A happens in Earth's frame at time t=0 and x=0 and B at t=T, plot A and B on the spacetime diagram below (showing Earth's frame):

- Consider a black spaceship travelling at 0.5c past the earth and physicist on Earth. The physicist starts typing into her computer (event A). Some time later, she is finishes (event B).
- Assuming A happens in Earth's frame at time t=0 and x=0 and B at t=T, plot A and B on the spacetime diagram below (showing Earth's frame):

- Consider a black spaceship travelling at 0.5c past the earth and physicist on Earth. The physicist starts typing into her computer (event A). Some time later, she is finishes (event B).
- Assuming A happens in Earth's frame at time t=0 and x=0 and B at t=T, plot A and B on the spacetime diagram below (showing Earth's frame):

 If we did not know that Δt_{AB}=T, we could determine it from the graph through the following procedure:

Spaceship V=3 (-= hem

pace em

- To determine the time interval between A and B as measured in the spaceship' reference frame S. Let us follow an analogous
- 1. The x' axis corresponds to the line f=0 and so it is the first line.
- 2. Draw another line parallel to the first that corresponds to t'=1. i.e.
 one unit of time upwards.
- 3. Continue this procedure until you draw a line that intersects 8.

- This leads to $t_{\rm g} < t_{\rm p}$ (i.e. time dilation.
- We can calculate t_a without using the time dilation formula.

- · Analog
- Consid
- · What

nortestal si

- To determ
 correspon
- Oraw a lin
 continue to
 correspon
 through the
- Although to understand
- Let us perf

