Title: Enrichment presentation on Special Relativity continued

Date: Jul 07, 2006 11:00 AM

URL: http://pirsa.org/06070012

Abstract:

- If we did not know that Δt_s=T, then we could determine it from the graph through the following procedure:
- Start at A and draw a line of constant time (t=0). Continue to draw lines of constant time (t=1,2,3...) these are parallel to the x axis until we draw one that intersects with B. The time for this line is T.

- To determine the time interval between A and B as measured in Earth's reference frame E. Let us follow an analogous procedure.
- 1. The x' axis corresponds to the line t'=0 and so it is the first line.
- 2. Draw another line parallel to the first that corresponds to t'=1. i.e. one unit of time upwards.
- 3. Continue this procedure until you draw a line that intersects B.

Pirsa: 06070012 Page 3/67

Core concepts of special relativity, Part 2

© Perimeter Institute for Theoretical Physics, 2006

Pirsa: 06070012 Page 4/67

Time dilation

Light clock

 A and B are the events corresponding to a photon hitting the bottom mirror on two successive occasions.

$$\Delta t = 2L/c$$

$$\Delta t' = \frac{\text{distance}}{\text{speed}} = \frac{2\sqrt{L^2 + \left(\frac{d}{2}\right)^2}}{c}$$

$$d = vt'$$

- If we did not know that Δt_s=T, then we could determine it from the graph through the following procedure:
- Start at A and draw a line of constant time (t=0). Continue to draw lines of constant time (t=1,2,3...) these are parallel to the x axis until we draw one that intersects with B. The time for this line is T.

- To determine the time interval between A and B as measured in Earth's reference frame E. Let us follow an analogous procedure.
- 1. The x' axis corresponds to the line t'=0 and so it is the first line.
- 2. Draw another line parallel to the first that corresponds to t'=1. i.e. one unit of time upwards.
- 3. Continue this procedure until you draw a line that intersects B.

Pirsa: 06070012 Page 7/67

- If we did not know that Δt_s=T, then we could determine it from the graph through the following procedure:
- Start at A and draw a line of constant time (t=0). Continue to draw lines of constant time (t=1,2,3...) these are parallel to the x axis until we draw one that intersects with B. The time for this line is T.

7x Earth At spaceshipe 3

から

- If we did not know that Δt_s=T, then we could determine it from the graph through the following procedure:
- Start at A and draw a line of constant time (t=0). Continue to draw lines of constant time (t=1,2,3...) these are parallel to the x axis until we draw one that intersects with B. The time for this line is T.

Page 20/67

- Question: How are the units of time marked out on the t'axis? Are they
 the same distance apart as for the t axis? No.
- To see this, consider again the hyperbolae corresponding to s=1,2,3...
- Consider point C where the curve s intersects the t' axis. At C', x'=0 and so we have t'=s=1. i.e. C corresponds to t'=1.
- Where the curve s=2, intersects denotes t'=2 etc.
- Counterintuitively, the distance between time marks on the t' axis is greater than for the t axis.

This leads to t_E > t_S, i.e. time dilation.

Can calculate t_E without using the time dilation formula.

Pirsa: 06070012 Page 22/67

Pirsa: 06070012 Page 23/67

Pirsa: 06070012 Page 24/67

Sat AM · Howard Burton address 4 pm today · paraphernalia PI

Sat AM · Howard Burton address 4 pm today · para pher

Length contraction

- Analogous process for length contraction
- Consider a stick lying on the ground at rest.
- What is its length in frame S' moving at speed v relative to the stick?

- To determine its length in S graphically, consider the t axis which corresponds to the line x=0.
- Draw a line parallel to it that passes through the point x=a and then continue to draw parallel lines to the right of the first one corresponding to x=a+1,a+2,a+3 ... until we draw one that passes through the point x=b. The length L₀ is given by b-a.
- Although this process is laborious and unnecessary, it helps us to understand how to measure L' graphically.
- Let us perform the analogous procedure in the frame S'

Pirsa: 06070012 Page 49/67

Length contraction

- Analogous process for length contraction
- Consider a stick lying on the ground at rest.
- What is its length in frame S' moving at speed v relative to the stick?

First draw the axes for S'

Next, draw a line parallel with the t' axis that passes through point C and then draw lines parallel to it and to the right of it that correspond to t'=t_c+1, t_c+2, t_c+3... until we draw one that passes though point D with time t_D.

The length of the stick in S' is t_D- t_C

Page 55/67

Pirsa: 0607001

Page 65/67

First draw the axes for S'

Next, draw a line parallel with the t' axis that passes through point C and then draw lines parallel to it and to the right of it that correspond to t'=t_c+1, t_c+2, t_c+3... until we draw one that passes though point D with time t_D.

The length of the stick in S' is t_D- t_C

