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Abstract: Not only general relativity but also quantum theory plays important roles in current cosmology. Quantum fluctuations of matter fields are
supposed to have provided the initial seeds of all the structure of the current universe, and quantum gravity is assumed to have been essentia in the
earliest stages. Both issues are not fully understood, although several heuristic effects have been discussed. In this talk, implications of an effective
framework taking into account the coupling of matter and gravity are discussed. This touches on interpretational issues of quantum mechanics,
cosmological observations and properties of quantum gravity.
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PENNSIATE

& Inflationary structure formation

Current universe highly complex with structure on many different
scales, to emerge out of simple initial state.
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Inflationary structure formation

Current universe highly complex with structure on many different
scales, to emerge out of simple initial state.

Early universe assumed nearly homogeneous, only disturbed by
quantum fluctuations of matter fields providing initial seeds for
structure which subsequently grows by gravitational attraction.
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Inflationary structure formation

Current universe highly complex with structure on many different
scales, to emerge out of simple initial state.

Early universe assumed nearly homogeneous, only disturbed by
quantum fluctuations of matter fields providing initial seeds for
structure which subsequently grows by gravitational attraction.
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pansion in early universe. v A
=t - e ;{7‘.""‘-:-' . ML - ‘ 1%
E &3 : 4 -f.r'dh!ﬂifﬁ =

it momant (£ Page 5/69




PENNSIATE

Fﬁ Problems

— How do quantum fluctuations become classical
perturbations, and what is the precise relation?
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Problems

— How do quantum fluctuations become classical
perturbations, and what is the precise relation?

—_—

Inflation assumes classical modes ¢, = \_,-'”(ff;'f_) for non-zero

wave numbers k (in a state where (¢;) = 0).
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Problems

— How do quantum fluctuations become classical
perturbations, and what is the precise relation?

—_—

~

Inflation assumes classical modes ¢ = \f_f“(@f_) for non-zero
wave numbers k (in a state where o;i = 0).

But no conceptual justification provided.

— Really in agreement with ob-

servations?

Resulting amplitude of anisotropies
too large by orders of magnitude.
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Problems

— How do quantum fluctuations become classical
perturbations, and what is the precise relation?

Inflation assumes classical modes ¢ = \/{of) for non-zero
wave numbers k (in a state where (¢;) = 0).

But no conceptual justification provided.

— Really in agreement with ob-
servations?

Resulting amplitude of anisotropies
too large by orders of magnitude.
Suppression of power at large scales,
most strongly for odd modes.
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Problems

— How do quantum fluctuations become classical
perturbations, and what is the precise relation?

Inflation assumes classical modes ¢, = \ (of) for non-zero
wave numbers k (in a state where (¢;.) = 0).

But no conceptual justification provided.

— Really in agreement with ob-
servations?

Resulting amplitude of anisotropies
too large by orders of magnitude.
Suppression of power at large scales,
most strongly for odd modes.

L

(1+1)Ci/2m (UK?)
8

L

o

90° Angular Scale

— Models start from singular initial states in general relativity;
quantum gravity corrections expected.
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@ Matter fields and gravity

Two main implications of scalar Hamiltonian
P e R T . el o T
H;,= | &'z=N 59 7Py + 59" “Vo-Vo+q'°V(eo)

coupling scalar ¢ to metric components ¢ and N; interacting field
theory even for “free” scalar with V (¢) = sm2¢°.

b =
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Matter fields and gravity

Two main implications of scalar Hamiltonian

j . = 1 3 e £ ]_ oy Jé i o .
H{J — / ('iﬁi_‘.ﬁ (3(}_! Epgiz " = 3(;13,*3?'0 . TE) 3 q._%,fEI (Q ])

coupling scalar ¢ to metric components ¢ and N ; interacting field

theory even for “free” scalar with V(¢) = 3m?¢?.

— Coupling between matter and metric when quantized:
fluctuations automatically occur in expectation value

S

(3%) = (82 + Ag? # (9’

Multiply metric and thus enter perturbation equations.
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Matter fields and gravity

Two main implications of scalar Hamiltonian

1

coupling scalar ¢ to metric components ¢ and N ; interacting field
theory even for “free” scalar with V(¢) = %mi’gbﬂ.

— Coupling between matter and metric when quantized:
fluctuations automatically occur in expectation value

-~

(0%) = (0)* + A¢” # (9)°
Multiply metric and thus enter perturbation equations.

— Metric components ¢ to be quantized as well as scalar field.
Quantum gravity required, may modify coefficients. page 1369
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& Effective theory

Difficult to quantize gravity, but many issues can be analyzed in
effective theory. Well known from low energy effective actions
(perturbations around vacuum state), but need to be generalized

for matter fields on dynamical geometry:.
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Matter fields and gravity

Two main implications of scalar Hamiltonian

B= / FEIN (Eq—.};z%z +=¢%2V$- Vo + g3/ (@])

coupling scalar ¢ to metric components ¢ and N; interacting field

theory even for “free” scalar with V (¢) = %mquﬂ.

— Coupling between matter and metric when quantized:
fluctuations automatically occur in expectation value

-~

(9%) = (0)* + A¢” # (9)°
Multiply metric and thus enter perturbation equations.

— Metric components ¢ to be quantized as well as scalar field.
Quantum gravity required, may modify coefficients. page 15/69
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Fﬁ Effective theory

Difficult to quantize gravity, but many issues can be analyzed in
effective theory. Well known from low energy effective actions
(perturbations around vacuum state), but need o be generalized

for matter fields on dynamical geomeitry:.
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T Effective theory

Difficult to quantize gravity, but many issues can be analyzed in
effective theory. Well known from low energy effective actions
(perturbations around vacuum state), but need to be generalized
for matter fields on dynamical geomeiry:.

Generalization available from geometrical formulation of
guantum mechanics: View Hilbert space of quantum system as
infinite-dimensional phase space, Poisson brackets given by
imaginary part of inner product.
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Effective theory

Difficult to quantize gravity, but many issues can be analyzed in
effective theory. Well known from low energy effective actions
(perturbations around vacuum state), but need o be generalized
for matter fields on dynamical geomeitry:.

Generalization available from geometrical formulation of
guantum mechanics: View Hilbert space of quantum system as
infinite-dimensional phase space, Poisson brackets given by
imaginary part of inner product.

Choose expansion coefficients in 1)) = } _. ¢;|¢;) as coordinates
on phase space, then

L.

{Rec;,Imey } = ‘?_hojk
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W Quantum Hamiltonian

Schrédinger equation for [¢) equivalent to Hamiltonian

equations of motion from quantum Hamiltonian Hg(c;) = H ) for
expectation value taken in state with expansion coefficients c;:

choose eigenbasis |y;) of H, then Hg(c;) = > ;i Ej c;|* and

d Ej

ERCC} = {Reg;, Hg} = ?Imq

d E;

Elmcj = {lme;. Hal —— EJ Rec;
which implies ¢; = —ih ' Ejc;.
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Quantum Hamiltonian

Schrédinger equation for [¢) equivalent to Hamiltonian

equations of motion from quantum Hamiltonian Hg(c;) = H ) for
expectation value taken in state with expansion coefficients c;:
choose eigenbasis |y;) of H, then Ho(c Z E;|c;|* and
| E.
;1 Rec; = {Rec;, Hg} = ?:’Ihncj
| E;
éImqj = {lme.. Hal —— > Reuc:r
which implies ¢; = —ih ' Ejc;.

Quantum mechanics formally much closer to classical

mechanics, relation through effective equations becomes
possible in suitable approximations, including a truncation to
finitely many variables.
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Quantum variables

More useful set of coordinates: classical variables ¢ = (¢) and
p = (p) and quantum variables (n > 2,a =0,.... n)

Gril.n s <{q - :@} .;n—ﬂ (1{) _ iﬁ))” _}ﬁ'ﬁ}’l

st [MB. A. Skirzewski: math-ph/0511043, hep-th/0606232] Page 21/69
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Quantum variables

More useful set of coordinates: classical variables ¢ = (¢) and
= (p) and quantum variables (n > 2,a =0, .. .. n)

G‘L” L= <("J _ {:qnx)-}n_d (P - {f}>)ﬂ;}1¥93'1

Poisson relations related to commutators: {q.p} = 1,
{rL Gﬂ.*ﬂ.} — = {p G’ﬂ‘”’}, {Gn.._n_ Gb.m} e

fee [MB, A. Skirzewski: math-ph/0511043, hep-th/0606232] Page 22/69
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Quantum variables

More useful set of coordinates: classical variables ¢ = (¢) and
p = (p) and quantum variables (n > 2,a =0, ..., n)

G*™ = (G — (@)™ (h — (B)*) ey

Poisson relations related to commutators: {¢.p} =1,
{q1 Gn.;n.} — () = {.p_ Ga‘n}! {Gn.._n_ Gb.m} Sl

Quantum variables dynamical just as classical variables: change
In time if wave packet spreads and deforms; back-reacts on
classical variables which determine peak position of wave
packet.

[MB, A. Skirzewski: math-ph/0511043, hep-th/0606232] Page 23/69
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Quantum variables

More useful set of coordinates: classical variables ¢ = (¢) and
p = (p) and quantum variables (n > 2,a =0,.. .. n)

GH" = ((@— ()" " (®— (P)" ) wey

Poisson relations related to commutators: {¢.p} = 1,
{_i}, Ga*n.} — {,p_ Gra.n,}! {Gﬂ"”. Gbm} ==

Quantum variables dynamical just as classical variables: change
in time if wave packet spreads and deforms; back-reacts on
classical variables which determine peak position of wave
packet.

Exact behavior determined by Schrédinger equation, or by
quantum Hamiltonian which couples classical and quantum
variables.

[MB, A. Skirzewski: math-ph/0511043, hep-th/0606232] Page 24169
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& Quantum Hamiltonian

Consider an-harmonic oscillator with classical Hamiltonian
H = 5—p* + ymw?q* + U(q); introduce dimensionless

G:a,n. — K" 2(_3??:&})nf?—n.Gfa._n.:
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Quantum Hamiltonian

Consider an harmonio oscillator with classical Hamiltonian
H==p>+ i”!w g°> + U(q): introduce dimensionless

2m

Ctl . 11 . h e/ _(n?w:lﬂ,f_ f]C:} .TI.

Quantum Hamiltonian with coupling terms

Hg = (H(q,p))=(H(g+(G—q),p+(»—p)))
1 1 hw , ~ ~
= —p‘—i——nmzfr—I—U(q]—l—?_—(Gﬂz—FGH]
2m 2 2
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@ Quantum Hamiltonian

Consider an-harmonic oscillator with classical Hamiltonian
9

H = —p® + ~mw?q®> + U(q); introduce dimensionless

2m 9
Ga,n - ﬁ—n.f-2“??:&])n_,r’i—aGa._nr

Quantum Hamiltonian with coupling terms

Hg = (H(¢,p)) = (H(g+(§d—a),p+(D—p)))
| - 1 e I6d , ~aa e
= —p? + zmw?e® + U(g) + —(G°2 + G>?)
2m 2 2
I f B k
U(ﬂ} GD.TI
—i_; n! (m.;u) (9)

[half-integer powers > 3/2 of Ak in correction terms]
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Equations of motion

Hg generates Hamiltonian equations of motion f = {f, Hp}

P )
m
,- 1 A n/2 i
T ; 2 I ( r(n+1) /s _\~0.n
= —mw q—U'(q) — [ ()G
. : 2 ; n! (mu:) (9)
éfl.n _ —{I.;JGM_LH s (-n. - ﬂ)wGa_i_l n Q) Gﬂ 1.n
mw
T\/—GUW Ga-1n—-1G02 haU (q )Gﬂ 1n—130.3
3! (mw)?

2(mw)>2 2

_; (\/EU’W )éa—l.n:—1+ WU (g )G“ 1n+1‘) T

3(mw)?

mlw

(mw):
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Equations of motion

Hg generates Hamiltonian equations of motion f= {f.Hg}:

g = 4
m
1_ ; 1 P n/2 , "_
'l[:) — _,.mwlq - LI[(}) - Z ' ( { ‘) [ [rl—l](q)GlJ.n
= T M
éﬂ'n —. —ﬂ.wéﬂ_l*” g (n - ﬂ) Cfﬂ—l—l nao (Q) G-:‘l 1.n
m

VhaU" (q) haU"

e PR T "(q)
S s Ga 1.n lGﬂ, Gﬂ En— IGH

2(mw)? 3!(mw)?
_E \/ﬁ[’ﬂ” (3 )éf]—l.ﬂ—!—l S ﬁ[;””( ‘))Ga 1.7n+2 = SR
2 (mw)?= 3(mw)*

ocly many coupled equations for ocly many variables.

Page 29/69




PENNSITATE

Low energy effective action

Consistent truncations to finitely many variables possible in,
e.g., adiabatic approximation: solve approximately for leading
G*" and insert into equations of motion for ¢ and p.
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) Low energy effective action

Consistent truncations to finitely many variables possible in,
e.g., adiabatic approximation: solve approximately for leading
G*"™ and insert into equations of motion for g and p.

To first order in A and second in adiabatic approximation:

m + ' ' - | g

(g [

—|_ £
128mie” (1 + Z9)°
i }_EDTF”
+mw?q+ U'(q) + @) —=0.
Amw (1 + {;’i‘%’) ;
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& Effective systems

Agrees with result from low energy effective action, but more
generally applicable beyond adiabatic approximation. For
instance, some quantum variables can be kept independent.
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Effective systems

Agrees with result from low energy effective action, but more
generally applicable beyond adiabatic approximation. For
iInstance, some quantum variables can be kept independent.

Cosmology: Quantum Hamiltonian

. sl e i ot s
Hg = /d"a:r (\ <;@_3X'Pfﬁ T3 2V ¢ -V + ¢ % (ﬁﬂ_}>>

couples metric modes to quantum fluctuations of matter modes;
to be expanded in quantum variables.

[Canonically, only the spatial metric components g are quantized, not V]
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Effective systems

Agrees with result from low energy effective action, but more
generally applicable beyond adiabatic approximation. For
instance, some quantum variables can be kept independent.

Cosmology: Quantum Hamiltonian

Hg = / d’z (\ <5@—3ﬁ’p"§}+ 502V - Vo + g% (q-f)_)>)

couples metric modes to quantum fluctuations of matter modes;
to be expanded in quantum variables.

[Canonically, only the spatial metric components g are quantized, not NV ]

Generates equations of motion which can be linearized and
modify classical perturbation equations by fluctuation terms.
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& Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

1
qHkin = 3Zpaz.x-1ﬂf:;.—a ——Z 3q—k—k' — 2N _k—k' )Pp kDo K
24

k.k'

__Z{i' k— h(;t.,tlr‘r ZT k—k’ ii =3

k.E' N
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& Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

Hyiw = = E Pp kDb —k — Z{-BQ—L:—A-* — 2N _k_ k' )Py kDo K
e
3 _ 20 B G2 |
—IE q—k—kGyy + E N G e +--
k.’ 2 F

Contains fluctuations Ca ks which are non-zero for k£ = k' thanks
to uncertainty relations

Gﬂ,QGl :2 + (GIE)

contributing terms such as N_o.G’;
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Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

1 1 - :
quill — E priﬁ:ﬁ{f)uﬁ:.—k = 1 Z{:S[}—fﬁ—k“ e 2;\—k—ﬂ")fjﬁi.ﬁl‘p{_ﬁnﬁ"

= ;‘F_l_ i
—anaﬂu(};ﬁ Z\aa

k.E' N

2
L e

?"'h..'

Contains fluctuations Ga i which are non-zero for k£ = k' thanks
to uncertainty relations

3

P h~ i
Gﬂ?EGZ.E :2 T 4+ (GI.EJE

- e T y .2
contributing terms such as f\'_ngfi 5

Energy density modes given by p;. o« 0H/ON_;, contain term

B /29 k/2 which must be non-zero; source metric modes ;.
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- Perturbation equations

When added to gravitational Hamiltonian, perturbation equations
are generated:

i

Gi

I\JII—‘

- v2,2 L —6
kg —3L g3z =pt=ta "Gy + MG ++a °G

|._.|:r ~_..

b b
"

&
’2

+0.2 2

= —6 42,2 0.
—n—324p—2( £ ) Y —3Ex=PF=1q FG;L o— 1 GA e - ;,u_ 6(’_ —;m G’_

@ .

!gl.‘-‘ﬂ

a g 1,2
Uk —I——Lg = V&l + G5

o
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Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

Hyin = _mekf)r}—k__z 3q—k—k' — 2N_k—k' )P kP k-
K,k
- " 22
_IZQ’—J:—&" ;“gr Z\ kG T
k.k

Contains fluctuations Ca o which are non-zero for k£ = k' thanks
to uncertainty relations

Gﬂ,QG'Z,_ﬂ :2

Energy density modes given by p;. o« 0H/ON_;, contain term

G /2,) k/2 which must be non-zero; source metric modes ;.
Page 39/69




PENNSIATE

Effective systems

Agrees with result from low energy effective action, but more
generally applicable beyond adiabatic approximation. For
iInstance, some quantum variables can be kept independent.

Cosmology: Quantum Hamiltonian

F . D SR 1.. / g f 3/2v7( 4
Hg = / d’z (\ <3Q "V"Pi 4 5‘}3* Vo -Vo+ ¢V (@fj.)>>

e

couples metric modes to quantum fluctuations of matter modes;
to be expanded in quantum variables.
[Canonically, only the spatial metric components g are quantized, not V]

Generates equations of motion which can be linearized and
modify classical perturbation equations by fluctuation terms.
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¢ Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

1 1 d :
qHyn = 3 Z PokPd—k — 7 Z‘i&}—k—w — 2N_§_ 1k )Po kP K
k k.

3 > 22
_IZQ—.&—&“ g ;Lr Z N_p G k. k' fi=e
k.k! ~ kk

Contains fluctuations (’A 7 which are non-zero for k£ = k' thanks
to uncertainty relations
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2 Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

1 1 e :
qHyin, = 5 Z Pé.kPop,—k — I Z[ 3¢ kg —2N_ ) )Pé kP k'
2=

k.’
3 29 1 ) 2.2
= E kG + 5 E N_jp— G + -+
kK’ e
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~  Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

1 1 e
g, = 3 ZP@J{P@L—A: == Zl:gi}—k—k* — 2N_ gk )P kP K
k k. k!

3 . 22
_EZQ’—&—&“ g ;lr Z N_ G kK’ 4=
k.k! -~ k,k!

Contains fluctuations (“’k 7 which are non-zero for k£ = k' thanks
to uncertainty relations

Gﬂ,ﬂ GE.Q 2
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5 Fluctuation-metric coupling

For instance, kinetic term in Fourier modes:

1
qHyin = 52 P@-.kfﬂf:}—k—— E (3¢—k—kr — 2N _k k' )P kP K’
k kK’

_%ZQ’—E—&“ e+ Z N_pwG

k. k! =k

2
g

.?"'I\.J

Contains fluctuations Ck L which are non-zero for k£ = k' thanks
to uncertainty relations

Gﬂ,QGQ.Q 2

Energy density modes given by p;. o« 0H/ON_;, contain term

& /,2,) k/2 which must be non-zero; source metric modes .
0061 Page 44/69
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Perturbation equations
When added to gravitational Hamiltonian, perturbation equations
are generated:
- .2 B 2.2 g — v2.2 2 ~0.2
—k*Yr—32¢x — 355 Yk =p; = +0a g rA g T G&ﬂ ' . Ty i#—%m.z(:i &
- : e 2 — ¥ — 2 y().2
— Y —3=Y I._}[.i) L-"J,-—S%:'.:' e — FCT‘;L g—m Gﬁt 0T 2 hG%_ i—%ﬂlz(,r{}_ k
i S 1,2
Yk + —L,q — e e
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Perturbation equations

When added to gravitational Hamiltonian, perturbation equations
are generated:

| 4622 L 1,-6022 | 12002
—k2 L;—._f—Lg—3—-.-L,{,—p CA[]—'—”I C;L“ Ti #_FE'”? Gii
. | _ 10,2 6422 2 0,2
— P —3L4—2( L) Yy —3iz =P +a 6GA il GA 0" 3 ﬁGi' i_%m Gex

W % + —L E = VF]W + Gii
together with equations for quanfum variables such as

51,2 ~2,, = 22 |, 42 4, 02
Gyo = —2a *Y_xGolg — 20 *Y_axGyg + 4m’a*y_kGyy
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Quantum fluctuations

Complicated system of coupled differential equations, but shows
how guantum fluctuations source classical inhomogeneities:
G /2. 1 /2 @appear on right hand side and must be non-zero by

uncertainty relations.
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@ Quantum fluctuations

Complicated system of coupled differential equations, but shows
how guantum fluctuations source classical inhomogeneities:
G /2.1/2 @appear on right hand side and must be non-zero by

uncertainty relations.

Metric modes v, thus grow even Iif all expectation values of
modes initially zero; with v, also correlations such as Gy ;. grow.
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& Perturbation equations

When added to gravitational Hamiltonian, perturbation equations
are generated:

_ . —i 2,2 i7'

a ass —6 —6 1{-]
) ¥k —3izp=Pg*=ta C’Au m GM} :,( C - 1mC

i@ .

38 :
—L'.JR__;‘;:'E; I.-—E[ ,._ E k
¥ |

a TS 1.2
tk_l__LL_'[/f‘laﬁ —i_Gk*ﬂ

together with equations for quantum variables such as

2 2

1,2 = 2.2 = 2.2 9 4 0,2
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& Quantum fluctuations

Complicated system of coupled differential equations, but shows
how guantum fluctuations source classical inhomogeneities:
G /212 @appear on right hand side and must be non-zero by

uncertainty relations.

Metric modes ¥, thus grow even if all expectation values of
modes initially zero; with v, also correlations such as Gy ;. grow.
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Quantum fluctuations

Complicated system of coupled differential equations, but shows
how guantum fluctuations source classical inhomogeneities:
G /2.2 @appear on right hand side and must be non-zero by

uncertainty relations.

Metric modes v, thus grow even if all expectation values of
modes initially zero; with v, also correlations such as G ;. grow.

Coupling of quantum matter to gravity crucial, taken into account
In effective equations. Transition from quantum fluctuation to
classical perturbation by gravity: fluctuation sources metric
modes v, which then are magnified by gravitational attraction.
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Quantum fluctuations

Complicated system of coupled differential equations, but shows
how guantum fluctuations source classical inhomogeneities:
G /2.2 @appear on right hand side and must be non-zero by

uncertainty relations.

Metric modes v, thus grow even if all expectation values of
modes initially zero; with v, also correlations such as G grow.

Coupling of quantum matter to gravity crucial, taken into account
In effective equations. Transition from quantum fluctuation to
classical perturbation by gravity: fluctuation sources metric
modes v, which then are magnified by gravitational attraction.

Usual identification ¢ = 4/ (fjﬂi) results only if correlations have

the form (cfbkﬁgb) =~ \/(&i)(ﬁfb) ~ pg\/ (1) which is incompatible
with uncertainty.
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% Consequences

— Indirect process from quantum fluctuations to correlations:
perturbations grow more slowly, possibly giving smaller total
amplitude.
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> Consequences

— Indirect process from quantum fluctuations to correlations:
perturbations grow more slowly, possibly giving smaller total

amplitude.

— Correlations as necessary consequence,
non-Gaussianities: 1. couples to 19 through Gy, g
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Perturbation equations

When added to gravitational Hamiltonian, perturbation equations
are gentrated:

= 1,622 2 ~0,2
k3L e —3dpf=pi 6Gr,;L[]Tm Cm -2a PG +amPG
— v0.2 —6 o 2 0.2
—n—324—2( ) Y —3Er P =PF=1a 6GA g— 1R C’A 5 %{I ’E’G'ii—%-m.'(}‘ii

i. 'k —|_ _LIL - "/r!."lﬂ'-r'-"- —|_ G}t-.i—_:
together with equations for quantum variables such as

.19 o 2.2 2, 0,2
G.o=—2a B i) S L_);LG 0+—l’m a* P kG
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Consequences

— Indirect process from quantum fluctuations to correlations:
perturbations grow more slowly, possibly giving smaller total
amplitude.

— Correlations as necessary consequence,
non-Gaussianities: ;. couples to ¥4 through Gy g

— 9y, sourced by Gy /5 /2 since matter Hamiltonian quadratic.

For compact space, wave vectors &k are on a lattice such that
k /2 does not exist for all k.

In particular, odd modes are suppressed (as observed [K. Land,
J. Magueijo: PRD 72 (2005) 101302]) without parity violation.

Complete framework for classical perturbations together with
quantum fluctuations, to be detailed by numerical studies.
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& Perturbation equations

.,

When added to gravitational Hamiltonian, perturbation equations
are generated:

2 e a2 e B2 0,2 | —6 2,2 e |
—k2 g —3L g3z d=pt=ta "G +m Gy + 54 °GYY +5m*G,

— v0.2 — 4 0.2
—k—324—2( ) Y —3Ez e =PF=1a FGM} m G'A o . 6G£ }m G’_

t 'k + —L T VF]W + Gii
together with equations for quanfum variables such as

1,2 _9 2.2 2, 02
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Consequences

— Indirect process from quantum fluctuations to correlations:
perturbations grow more slowly, possibly giving smaller total
amplitude.

— Correlations as necessary consequence,
non-Gaussianities: 1. couples to 19 through G g

— 9, sourced by G} /s /2 since matter Hamiltonian quadratic.

For compact space, wave vectors k are on a lattice such that
k /2 does not exist for all k.

In particular, odd modes are suppsessed (as observed [K. Land,
J. Magueijo: PRD 72 (2005) 101302]) without parity violation.

Complete framework for classical perturbations together with
quantum fluctuations, to be detailed by numerical studies.
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T Quantum gravity effects

In matter Hamiltonian

- 1
SNl —a
'/{l N (gq

3/2. 2
Py T

| o .
3{13’“‘@:} Vo + ¢V (@-’JJ)

also metric component g to be quantized.
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Quantum gravity effects

In matter Hamiltonian

e T 1 < b | [ 219 _ ., .
Hy = / d>z N (3(}'_3; _}Pé " 3(}3"“Ur:f} V¢ + ¢V [q"ﬂ)

also metric component g to be quantized.

Inverse required, not existing if ¢ has discrete spectrum
containing zero. In this way, spatial discreteness of quantum
geometry is indeed realized in loop quantum gravity:.
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?  Quantum gravity effects

In matter Hamiltonian

Hy = / d*zN (;Q‘_S"}Pi + ;q‘a"‘V@ Vo +q*/?V (@9})

also metric component g to be quantized.

Inverse required, not existing if ¢ has discrete spectrum
containing zero. In this way, spatial discreteness of quantum
geometry is indeed realized in loop quantum gravity:.

Leads to characteristic quan- = — ;’E
tum gravitational correction o = A

. : . 3 R,
terms in Hamiltonians: ¢;/° =

regular and over-shooting.
Also enters effective pertur- L |
bation equations. 0 01 02 03 04 05 06 07 08
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Fﬁ Conclusions

Coupling of matter to gravity complicated in quantum theory, but
effective framework powerful.
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Conclusions

Coupling of matter to gravity complicated in quantum theory, but
effective framework powerful.

Gives complete theory of structure generation from quantum
fluctuations.
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Conclusions

Coupling of matter to gravity complicated in quantum theory, but
effective framework powerful.

Gives complete theory of structure generation from quantum
fluctuations.

Observable effects include amplitude, non-Gaussianities and
reduction of power of odd modes; sheds light on interpretational
Issues: transition from quantum to classical due to coupling of
classical and quantum variables, no explicit collapse of wave
function required.
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Conclusions

Coupling of matter to gravity complicated in quantum theory, but
effective framework powerful.

Gives complete theory of structure generation from quantum
fluctuations.

Observable effects include amplitude, non-Gaussianities and
reduction of power of odd modes; sheds light on interpretational
issues: transition from quantum to classical due to coupling of
classical and quantum variables, no explicit collapse of wave
function required.

Effective equations allow inclusion of quantum gravity
corrections for which diverse types exist (modified coefficients,
higher order, higher derivative). Not all such corrections have
been computed and evaluated yet, but suitable framework is
being developed. page 65169
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& Quantum Hamiltonian

Schrédinger equation for |¢) equivalent to Hamiltonian
equations of motion from quantum Hamiltonian Hg(c;) = (H) for
expectation value taken in state with expansion coefficients c;:

choose eigenbasis |;) of H, then Hp(c;) = > Ej c;|* and

L d E;
ERCC} = {Reg;, Hg} = T};Illlc-j
d E
EIIHC_?' = {lme; Hg} —— ﬁj Rec;
which implies ¢; = —ih™ ' Ejc;.
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Effective theory

Difficult to quantize gravity, but many issues can be analyzed in
effective theory. Well known from low energy effective actions
(perturbations around vacuum state), but need to be generalized
for matter fields on dynamical geomeiry.

Generalization available from geometrical formulation of
guantum mechanics: View Hilbert space of quantum system as
Infinite-dimensional phase space, Poisson brackets given by
imaginary part of inner product.

Choose expansion coefficients in |¢)) = Zj cj|y;) as coordinates
on phase space, then

| IS

{Rec;,Imer} = 9—563;;

—
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Quantum variables

More useful set of coordinates: classical variables ¢ = (¢) and

p = (p) and quantum variables (n > 2, a =0... .. n)
;:‘I-.ﬂ - — ((fj —— Lj&} .: 11—l [!3 - {}{j))r'{ E’ﬂ]_w_[

Poisson relations related to commutators: {q.p} = 1,
{ffa Grl;n.} — G — {p_ Gra*n,}_ {Gn.._n_ Gb.m} =R

[MB. A. Skirzewski: math-ph/0511043, hep-th/0606232] Page 68/69
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i3 Perturbation equations

When added to gravitational Hamiltonian, perturbation equations
are generated:

: — . —6 2,2 2 ~0,2
— k24 —3 L0, —3dg i =pth® “GM] m” CM, +2a Gy +5mPGYY
. ¢ = — —6 2,2 2 ~0.2

a BT 1.2
L;‘—I——L,{L—]—/FIRH G‘;‘
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