Title: Nuclear Theory/Heavy Ions 5

Date: Jun 10, 2006 11:10 AM

URL: http://pirsa.org/06060038

Abstract:

Pirsa: 06060038

Negative charges:

Induced B adds to seed B. Exponential Weibel instability Linearized analysis: B grows until bending angles become large.

Jay Ingran

la Firefox

Internet Explorer

netstumbleri...

Kolb Pre-Show Kolb - Extro Powerpoint Powerpoint.

Shortcut to waterloo06b...

Perimeter 1

Board Dinner Slide Show

Picture1

Network

Stumbler

talk2-mobed

impearson

Maple 9.5

fugleberg

Secure ell Client

Shuchman

Outlook

Install

Powerpoint

My Bluetool Places

torrieri_spar...

Adobe Read 7.0

Player

rakeup1... Windows Media

Worksh.

Hole_May April - Isacoff

TheoryCana...

Nader Mobed

Pirsa: 06060038

1 of 18

Page 5/27

Convergence Issues in Baryon Chiral Perturbation Theory for the Reaction $N(\pi,2\pi)N$

Nader Mobed University of Regina

Work done in collaboration with J. Zhang and D. Singh

Motives

- Aspects of chiral symmetry and its spontaneous breaking
 - $-\pi\pi$ scattering
 - Non-linear realization of chiral symmetry
- In principle, the $\pi\pi$ scattering amplitude can be extracted from the reaction $\pi+N\longrightarrow\pi+\pi+N$.
- Chiral Perturbation Theory (χ PT) is the effective low-energy theory of QCD.
- In the Baryon sector of Chiral Perturbation Theory $(B\chi PT)$ the correspondence between the loop-expansion and the chiral expansion is destroyed. Alternative formulations of $B\chi PT$ are: $HB\chi PT$, IR, EOMS.

- How well does HB χ PT reproduce the experimental data for the reaction $\pi + N \longrightarrow \pi + \pi + N$?
- How fast does HBχPT converge?
 - How large are the Low Energy Constants (LECs) of the theory?
 - How significant are the loop effects (unitarity corrections)?
- ullet How high in energy can one go before HB χ PT breaks down?

Building Blocks

Meson Sector

$$\begin{array}{rcl} U & = & u^2 = e^{i\vec{\tau}\cdot\vec{\pi}/F} \\ D_\mu U & = & \partial_\mu U - iUr_\mu + il_\mu U \longrightarrow \partial_\mu U \\ \chi & = & 2B_0(S+iP) = (m_u+m_d)B_0 \longrightarrow m_\pi^2 \\ \chi_\pm & = & u^\dagger\chi u^\dagger \pm u\chi^\dagger u \longrightarrow m_\pi^2(U^\dagger \pm U) \\ u_\mu & = & i\bigg(u^\dagger \Big(\partial_\mu - ir_\mu\Big)u - u\Big(\partial_\mu - il_\mu\Big)u^\dagger\bigg) \longrightarrow i(u^\dagger\partial_\mu U u^\dagger) \end{array}$$

\mathcal{L}_{π}	# of LECs	$N(\pi, 2\pi)N$	Status of LECs [1]
$\mathcal{L}_{\pi}^{(2)}$	2	2	known $(F_{\pi} \text{ and } m_{\pi})$
$\mathcal{L}_{\pi}^{(4)}$	7	4	known (l_i)

[1] The renormalized scale-independent LECs of $\mathcal{O}(q^4)$ are defined as:

$$\bar{l}_{\hat{z}} = \frac{32\pi^2}{\gamma_{\hat{z}}} l_{\hat{z}} - 2 \ln \frac{m\pi}{\mu} - \left\{ \frac{1}{d-4} - \frac{1}{2} [\ln(4\pi) + 1 + \Gamma'(1)] \right\}$$

- How well does HB χ PT reproduce the experimental data for the reaction $\pi + N \longrightarrow \pi + \pi + N$?
- How fast does HBχPT converge?
 - How large are the Low Energy Constants (LECs) of the theory?
 - How significant are the loop effects (unitarity corrections)?
- How high in energy can one go before $HB\chi PT$ breaks down?

Motives

- Aspects of chiral symmetry and its spontaneous breaking
 - $-\pi\pi$ scattering
 - Non-linear realization of chiral symmetry
- In principle, the $\pi\pi$ scattering amplitude can be extracted from the reaction $\pi+N\longrightarrow\pi+\pi+N$.
- Chiral Perturbation Theory (χ PT) is the effective low-energy theory of QCD.
- In the Baryon sector of Chiral Perturbation Theory (B χ PT) the correspondence between the loop-expansion and the chiral expansion is destroyed. Alternative formulations of B χ PT are: HB χ PT, IR, EOMS.

- How well does HB χ PT reproduce the experimental data for the reaction $\pi + N \longrightarrow \pi + \pi + N$?
- How fast does HBχPT converge?
 - How large are the Low Energy Constants (LECs) of the theory?
 - How significant are the loop effects (unitarity corrections)?
- How high in energy can one go before $HB\chi PT$ breaks down?

Formalism

 The chiral expansion of the effective Lagrangian reads:

$$\mathcal{L}_{\text{eff}} = \underbrace{\mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \dots + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \dots}_{\text{min}}$$

Transition amplitudes of $\mathcal{O}(q)$, $\mathcal{O}(q^2)$, $\mathcal{O}(q^3)$ or higher

- In HB χ PT the chiral loops first appear at $\mathcal{O}(q^3)$.
- ullet The short distance dynamics of QCD are encoded in the LECs of χ PT.

Building Blocks

Meson Sector

$$\begin{array}{rcl} U & = & u^2 = e^{i\vec{\tau}\cdot\vec{\pi}/F} \\ D_\mu U & = & \partial_\mu U - iUr_\mu + il_\mu U \longrightarrow \partial_\mu U \\ \chi & = & 2B_0(S+iP) = (m_u+m_d)B_0 \longrightarrow m_\pi^2 \\ \chi_\pm & = & u^\dagger\chi u^\dagger \pm u\chi^\dagger u \longrightarrow m_\pi^2(U^\dagger \pm U) \\ u_\mu & = & i\bigg(u^\dagger \Big(\partial_\mu - ir_\mu\Big)u - u\Big(\partial_\mu - il_\mu\Big)u^\dagger\Big) \longrightarrow i(u^\dagger\partial_\mu U u^\dagger) \end{array}$$

\mathcal{L}_{π}	# of LECs	$N(\pi, 2\pi)N$	Status of LECs [1]
$\mathcal{L}_{\pi}^{(2)}$	2	2	known $(F_{\pi} \text{ and } m_{\pi})$
$\mathcal{L}_{\pi}^{(4)}$	7	4	known (l_i)

[1] The renormalized scale-independent LECs of $\mathcal{O}(q^4)$ are defined as:

$$\bar{l}_{\hat{z}} = \frac{32\pi^2}{\gamma_{\hat{z}}} l_{\hat{z}} - 2 \ln \frac{m\pi}{\mu} - \left\{ \frac{1}{d-4} - \frac{1}{2} [\ln(4\pi) + 1 + \Gamma'(1)] \right\}$$

Nucleon Sector

The building blocks involve U, u_{μ} , and

$$\nabla_{\mu} = \partial_{\mu} + \Gamma_{\mu} - iv_{\mu}^{(s)} \longrightarrow \partial_{\mu} + \frac{1}{2} \left\{ u^{\dagger} \partial_{\mu} u + u \partial_{\mu} u^{\dagger} \right\},$$

$$S^{\mu} = \frac{i}{2} \gamma_{5} \sigma^{\mu\nu} v_{\nu}$$

The heavy-field transformation is defined as:

$$N_v = e^{iMv\mu x^{\mu}} P_v^+ \Psi,$$

 $P_v^+ = \frac{1}{2} (1 + \psi), \quad v^2 = 1.$

$\mathcal{L}_{\pi N}$	# of LECs	$N(\pi, 2\pi)N$	Status of LECs [1]
$\mathcal{L}_{\pi N}^{(1)}$	2	2	known $(g_A \text{ and } m_N)$
$\mathcal{L}_{\pi N}^{(2)}$	7	5	known (a_i)
$\mathcal{L}_{\pi N}^{(3)}$	23	13	7 known (b_i) 6 unknown (b_i)

[1] The scale-independent renormalized LECs of $\mathcal{O}(q^3)$ are defined as:

$$\tilde{b}_{\tilde{t}} = b_{\tilde{t}} - \beta_{\tilde{t}} \left\{ \frac{1}{d-4} - \frac{1}{2} [\ln(4\pi) + 1 + \Gamma'(1)] + \ln \frac{m_{\overline{t}}}{\mu} \right\}$$

Figure 1: Topologically distinct Feynman graphs

Calculations

There are five experimentally accessible channels:

$$\begin{array}{cccc} \pi^- p & \longrightarrow & \pi^0 \pi^0 n \\ \pi^{\pm} p & \longrightarrow & \pi^{\pm} \pi^+ n \\ \pi^{\pm} p & \longrightarrow & \pi^{\pm} \pi^0 p \end{array}$$

The unknown LECs in $\mathcal{L}_{\pi N}^{(3)}$ were determined by fitting

•
$$\sigma_{N(\pi,2\pi)N}$$
 • $\frac{d\sigma_{N(\pi,2\pi)N}}{dT_{\pi}d\Omega_{\pi}}$

LECs of $\mathcal{O}(q^3)$ determined in this work^(1,2)

(The fitting energy range 170 MeV $\leq (T_{\pi})_{\rm lab} \leq$ 260 MeV)

\tilde{b}_5	\tilde{b}_{11}	\tilde{b}_{12}	
2.6 ± 3.3	-25.1 ± 6.2	-10.2 ± 4.7	

\tilde{b}_{13}		\tilde{b}_{14}	\tilde{b}_{17}	
1	22.3 ± 5.7	-8.4 ± 2.7	-5.3 ± 1.1	

 $^{^{1}}$ The RGE were employed. 2 The χ^{2}/dof of the fit is 3.4.

Figure 2: The total cross-section σ .

Dashed curve: $\mathcal{O}(q)$, Dotted curve: $\mathcal{O}(q^2)$, Solid curve: $\mathcal{O}(q^3)$.

Figure 3: The double-differential cross-section $d\sigma/d\Omega dT$. Dashed curve: $\mathcal{O}(q)$, Dotted curve: $\mathcal{O}(q^2)$, Solid curve: $\mathcal{O}(q^3)$.

9

Figure 4: The total cross section σ .

Dashed curve: $\mathcal{O}(q)$, Dotted curve: $\mathcal{O}(q^2)$, Solid curve: $\mathcal{O}(q^3)$.

Figure 5: The invariant cross sections: $d\sigma/dt$ and $d\sigma/ds$. Dashed curve: $\mathcal{O}(q)$, Dotted curve: $\mathcal{O}(q^2)$, Solid curve: $\mathcal{O}(q^3)$.

Figure 6: The angular correlation function $W(\theta,\phi)$. Dashed curve: $\mathcal{O}(q^2)$, Dotted curve: $\mathcal{O}(q^2)$, Solid curve: $\mathcal{O}(q^3)$.

Figure 7: The polarization observable $A_{np}(\phi_q)$ vanishes identically in the absence of loop contributions (unitarity corrections).

Threshold Amplitudes

The information regarding S-wave $\pi\pi$ scattering lengths is contained in the threshold isospin amplitudes, D_1 and D_2 , for the reactions:

$$D_1: \pi^+ p \longrightarrow \pi^+ \pi^+ n$$

$$D_2: \pi^- p \longrightarrow \pi^0 \pi^0 n$$

	$\mathcal{O}(q)$	$\mathcal{O}(q^2)$	$\mathcal{O}(q^3)$	Expt. [1]
$D_1(fm^3)$	2.50	2.14	1.90 ± 0.43	2.26 ± 0.12
$D_2(fm^3)$	-7.70	-6.96	-11.44 ± 2.60	-9.05 ± 0.36

	Present work	BKM [2]	Expt. [1]
$D_1(fm^3)$	1.90 ± 0.43	2.65 ± 0.24	2.26 ± 0.12
$D_2(fm^3)$	-11.44 ± 2.60	-9.06 ± 1.05	-9.05 ± 0.36

- [1] Burkhardt et al. Phys. Rev. Lett. 72, 2622 (1991)
- [2] Bernard et al. Nucl. Phys. B457, 146 (1995)

Unitarity Corrections

The amplitude for the reaction $N(\pi,2\pi)N$ reads:

$$\mathcal{M}_{fi} = \bar{u}(p_f)\gamma_5 \left[f_1 + f_2 q_1 + f_3 q_2 + f_4 q_1 q_2 \right] u(p_i)$$

The imaginary parts of the invariant amplitudes f_1, f_2, f_3 , and f_4 originate entirely form loops and are hence parameter free quantities.

Threshold amplitudes for the reaction $\pi^- p \longrightarrow \pi^0 \pi^0 n$

$\mathcal{O}(q^n)$	$f_1 \times m_\pi^{-2}$	$f_2 \times m_\pi^{-3}$	$f_3 \times m_\pi^{-3}$	f_4
$\mathcal{O}(q)$	-44.30	3.90	3.90	0
$\mathcal{O}(q^2)$	-39.51	3.81	3.81	0
$\mathcal{O}(q^3)$	-38.69 +i 47.88	3.20 - i 5.22	3.20 - i 5.22	0

Threshold amplitudes for the reaction $\pi^+ p \longrightarrow \pi^+ \pi^+ n$

$O(q^n)$	$f_1 \times m_\pi^{-2}$	$f_2 \times m_\pi^{-3}$	$f_3 \times m_\pi^{-3}$	f_4
$\mathcal{O}(q)$	30.75	-1.44	-1.44	0
$\mathcal{O}(q^2)$	25.36	-1.71	-1.71	0
$\mathcal{O}(q^3)$	-23.71 - <i>i</i> 3.89	1.67 + i0.03	1.67 + i0.03	0

CONCLUSIONS

Comparison with Data

The calculated values of different observables are in reasonable agreement with experimental data. In most cases contributions of $\mathcal{O}(q^3)$ are essential in order to reproduce the data.

Issues

- Some of the LECs of $\mathcal{O}(q^3)$ are substantially larger than their expected "Natural Size".
- In some reaction channels the unitarity corrections are sizable.
- Is HBχPT a (rapidly) converging series?
 Slow convergence is observed also in other chiral processes.
 - [1] Mojzis, Eur. Phys. J. C2, 181 (1998)
 - [2] Djukanovic, Gegelia, Scherer, hep-ph/0604164

Possibilities

- The short distance dynamics of QCD are encoded in the LECs of χ PT. Calculate amplitudes of $\mathcal{O}(q^4)$ in HB χ PT for the reaction under consideration in order to complete the one loop analysis.
- Include the low-lying resonances as dynamical degrees of freedom in the chiral Lagrangian. [1]
 [1] Bernard, Hemmert, and Meissner, Nucl. Phys. A686, 290 (2001)
- Calculate the process under consideration within the framework of the infrared^[2] or extended on-massshell renormalization^[3] schemes. These methods are manifestly Lorentz covariant, provide a consistent chiral power counting scheme, and may offer an improved convergence rates for the chiral series.
 - [2] Becher and Leutwyler, JHEP 06, 017 (2001)
 - [3] Schindler, Gegelia, Scherer, Nucl. Phys. B682, 367 (2004)