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0 Introduction and Motivation

When a system interacts with its environment, its
dynamics (as seen locally) are no longer unitary.

If the system is initially uncorrelated with its environment,
we can use the Kraus representation theorem.

This states that the most general dynamics such a system
can display is a completely positive map (CP-map):

positivity: /\(p) Z 07 \V’p Z O
o (LOA)(p) >0, Vp>0

positivity:
where the identity operator can have support on an
auxiliary system of arbitrary dimension.

fepen systems, channel capacities, process tomographyd



& he Kraus representation theorem

Elegant 3-way iff equivalence result.
)

A(p?) = tr[U(p? ® pP)UT]

wnesming" form

et AL A
dynarmcal mcﬁrj/ /

/\(pA) =2>.aM AMa,

CP dynamlcal rn/ap/

[see Nielsen & Chuanq] 2

Pirsa: 06060032



& he Kraus representation theorem

Elegant 3-way iff equivalence result.

C A (p?) = tr[U(p? ® pP)UT] )
wnesm'ing" form

ST s
Pmon — Dm:npi:j
dynamical maw/ /

pranpmif]| Ayt

/\(p )—ZGMGP Mg )
super*oper‘a’rf)r’ WHGWIEG' rn/ap/
representation

(“EJW@P dual index on p) [see Nielsen & Chuangl °




& he Kraus representation theorem
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& he Kraus representation theorem

Elegant 3-way iff equivalence result.
)

A(p?) = tr[U(p” @ pP)UT]
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& he Kraus representation theorem

Elegant 3-way iff equivalence result.

AR = tril (oA ® pBYUT

( & pB) AT [
wnesming" form

A e DZJ\A /— more on this
Pm:n mnPi:j )

. . /1 form later
dynamical ma’rr*j/

A (pA) = 5, Map? M}

superoperator \ | //
representation CP dynamical map

(“EJW?’"‘ dual index on p) [see Nielsen & Chuangl °




@ What can go wrong...?

The proof really does need the initial condition:

7: 3 g A
A(p?) = tr[U(p? ® pP)UT]
No initial correlations between the system & environment.

Even classical correlations are enough to break the
strict equivalence proof -- never mind entanglement!
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& What can go wrong...?

The proof really does need the initial condition:
AN . A
A(p?) = tr[U(p? ® pP)UT]
No initial correlations between the system & environment.

Even classical correlations are enough to break the
strict equivalence proof -- never mind entanglement!

Why haven't we noticed this before...?

If the environment is a macroscopic piece of apparatus,
the Stinespring form is a good enough approximation:

> o ® pB = (T o) ® pP
because the overlaps between the various p8 s are very
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& When is this (potentially) important...?

Whenever we have a system that has significant prior
correlations with the other systems that we would like
to use to interact with it, or "measure” it, then the
mismatch between the Stinespring form initial condition
and the actual initial condition may cause us problems.

Most notoriously, this can be a problem when we try
to do process tomography in the laboratory; a lot of
very careful experimenters keep getting non-CP maps!

Non-CP maps occur naturally in dynamical decoupling
and spin-echo experiments.

This is also an issue when analysing channel capacities.
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‘ Ignorance, robustness and realizability

If I have a complete description of the density matrix
p”, as well as the state p# itself, then I can implement
any map I like on it.
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0 Ignorance, robustness and realizability

If I have a complete description of the density matrix
p”, as well as the state p# itself, then I can implement
any map I like on it.

Here's the recipe for the transpose™:

L. Take the description of p# and calculate (p#)T.

2. Throw away your original state p~.

3. Prepare the state (p#)" directly from the description.

Thus we can implement any map pointwise, given complete
knowledge of the state. But if someone swapped our
original p# for a different one, p?’, this wouldn't work!

So, to analyse practical situations, we need recipes that
will work for non-zero volumes of states in Hilbert space.
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& Prior correlations and Extension maps

For a given density matrix p# there are a variety of
ways to extend it to a larger system, and the choice of
extension map E affects the induced dynamics.

The differences between extension maps lie in the type
and degree of the correlations between the original
system and the environment:

uncor*r'e}laTed E(pA) gl pA R PB

extension:

classically A B
correlated: E(p ) ik 2'3 pzpz 2 P;
entangled E A AB where
extension: (P ) Bk

AB A B
Hi pP FE PPy @ py



& Extensions and positivity

Once we allow prior correlations, the dynamical map =
may not even be positive, let alone CP.

So, we should restrict the domain of = to those states for
which = is positive (domain of positivity) but insist that this
domain must have non-zero volume, so = is practical.

Furthermore, the extension map E should produce an
extended state that is also positive, such that

p? = trg(p”P)

The set of states p# for which E satisfies this condition
is called the consistency domain for the extension map E.

The consistency condition is more restrictive, so the
consistency domain is a subset of the positivity domain.

irsa: 06060032 Page 22/50 B



‘ Positivity vs. Linearity of Extension Maps

Call the set of all density matrices 7, and the

positivity domain of = in 7Z to be 20, and the

consistency domain of E in 7 to be?.



"‘ Positivity vs. Linearity of Extension Maps

Call the set of all density matrices 7, and the

positivity domain of = in 7 to be 20, and the
consistency domain of E in 72 to be?.

We could engineer correlated and consistent extension
maps E to induce positive dynamical maps = over the whole
Hilbert space, but only by making E a function of p*.
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0 Positivity vs. Linearity of Extension Maps

Call the set of all density matrices 7, and the

positivity domain of = in 7Z to be 20, and the

consistency domain of E in 7 to be 7.

We could engineer correlated and consistent extension
maps E to induce positive dynamical maps = over the whole
Hilbert space, but only by making E a function of p”.

However, this would make E non-linear.

Unless the dynamical map = is induced by an uncorrelated
extension map E (which would make = CP after all) we
must choose between linearity of E and positivity of =.
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& Definition of Accessibility*

A non-CP map = is called physically accessible if there is
an extension map E,, with domain 7 which is a subset of

20 and there is a unitary U such that

=(p?) = trg[UEy(p)UT]

where U is independent of p”.

(*This definition is different from that used by some
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@ Definition of Accessibility*

A non-CP map = is called physically accessible if there is
an extension map E,, with domain 7/ which is a subset of

20 and there is a unitary U such that
=Ll agl ] A
=(p?) = trglUEy(p™)UT]
where U is independent of p”.

Note the importance of restricting the domain to a
subset? of 7Z but that? must still have a non-zero

volume. If we impose that? =74, then = can only be CP.

(*This definition is different from that used by some

000000000000

other authors who looked at continuous time dynamics.) 1°



‘ Superoperators and Dynamical Matrices

This is awkward to work with:

A(p?) = 5, MapAM]
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‘ Superoperators and Dynamical Matrices

This is awkward to work with:
A(p?) = T, MapA M}

Instead, move to the superoperator Hilbert space, in which
density matrices become vecTor‘s and A is a matrix, D(A):
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& Superoperators and Dynamical Matrices

This is awkward to work with:
A(p?) = ¥ Map? M)

Instead, move to the superoperator Hilbert space, in which
density matrices become vectors, and A is a matrix, D(A):
Al A
Pmn — Dm:npi:j
Moving to superoperator space is like lowering indices in
tensors with a trivial metric tensor, but the colon is not a

derivative - instead it indicates which were the vector
and dual indices in the original Hilbert space.
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& Superoperators and Dynamical Matrices

This is awkward to work with:
A(pA) = ¥ Map? M|

Instead, move to the superoperator Hilbert space, in which
density matrices become vectors, and A is a matrix, D(A):
A .l A
Pmon — Dm:an‘;j
Moving to superoperator space is like lowering indices in
tensors with a trivial metric tensor, but the colon is not a

derivative - instead it indicates which were the vector
and dual indices in the original Hilbert space.

The original notation

A LA
iB.QUr paper was: Pmn — D mi,nj pg}
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& Some useful facts:
Theorem [Choil:

P> < ANISCF
l.e., we can test for positivity via the eigendecomposition:
Dyl = Lo Xa(Ma)in (Mo

If D is not pOSITIVB, we can partition the spectrum into
positive and negative parts (D is Hermitian) and write:

p' = N1(p) — N2(p)
where A, and A, are both CP maps.
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¥ Some useful facts:
Theorem [Choil:

EE = 1) —5 NISIEP
l.e., we can test for positivity via the eigendecomposition:
Dyl = Lo Xa(Ma)in (Mo

If D is not posﬁrwe, we can partition the spectrum into
positive and negative parts (D is Hermitian) and write:

p' = N1(p) — N2(p)

where A, and A, are both CP maps.

Unfortunately, not all maps that can be written like this
«ape:physically accessible - need additional conditionses= |,



‘ In superoperator notation

If we look at the generalised dynamical matrix, we see
223 | vEl] i L 1717
Dm:n T Gm:n + 5 j O'mZnCS J

where G is the dynamical matrix of a CP map.
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& in superoperator notation

If we look at the generalised dynamical matrix, we see
423 L ~val) 25 "2t 19
Dm:n T Gm:n + 5 - Om:n0 "/

where G is the dynamical matrix of a CP map.

Note that the correction term zA, in general.
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& in superoperator notation

If we look at the generalised dynamical matrix, we see
223 | val] =~ - i1
Dy = Gy HE - Omino™?

where G is the dynamical matrix of a CP map.

Note that the correction term zA, in general.

i=11

In the original ki7" jpace, this is

=k = a[U(Ev(pA))UT]

Sress
Pomter Opbons »

Help

End Shove




¥ n superoperator notation

If we look at the generalised dynamical matrix, we see
223 | eval] = 2717
Dm:n T Gm:n " 3 5 - Om:n0 "/

where G is the dynamical matrix of a CP map.

Note that the correction term zA, in general.
In the original Hilbert space, this is

=(p™) = trp[U(Ey(p)UT]




¥ |h superoperator notation

If we look at the generalised dynamical matrix, we see

it it - _ -
ijn e G'm,j:n & Om:n0"J

where G is the

dynamical matrix of a CP map.

Note that the correction term zA, in general.
In the original Hilbert space, this is

=(p?) = trglU(Ey(p))UT]
== Zu,l/ MuypAsz

_I_

pirsaIEOIejoeis the corre

> (plUT 08 @ oPUT )

ation tensor, and the gs are generatens. |,



@ A simple example

Consider the state: pA — %(ﬂ_ — 55)

and the extension map
E(p") = z(1ap + ai0{ ® 15 + a0 ® 0’)

and the unitary: (1 0 0|
O cos¢g smg O
O —sm¢ cos¢g O
L0 0 0 ¥

The correction term (in superoperator space) is

1 (asm2g 0
Aot 2 0 —asin g

*® 14



@ A simple example, continued.

A non-zero|correction ’rer'rnldoesn'f automatically™ make =
non-CP, so we need to check the eigenspectrum of D:

A
0.03

0.02

—— e e .
s I8 0
——
=
-

0.01

—0.01}

—0 .02}

-0.03"
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& What kinds of correlations are present?

As this is a fwo-qubit system, we can test the state for
entanglement using the Peres partial franspose test.
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0 What kinds of correlations are present?

As this is a fwo-qubit system, we can test the state for
entanglement using the Peres partial transpose test.

For apositive, the two qubits are never entangled, and
yet for some values of ¢ we found = was non-CP.

For some negative values of a, we do find entanglement
and = was non-CP, as expected...

.but for some other negative values of g, we still found
entanglement, yet the dynamical map was still CP.

Therefore entanglement is not sufficient to induce
non-CP maps. (This is less surprising; otherwise the
issue of non-CP maps would be much more well-knownl)
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& Conditions for Accessibility

Don't yet have a complete characterisation of accessibility.
However, we have found two necessary conditions:
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& Conditions for Accessibility

Don't yet have a complete characterisation of accessibility.
However, we have found two necessary conditions:

Condition 1

The existence of an affme form

] 2
pmn—G ‘nPij + & -0m:n
with a trace-preserving G and a traceless .o ferm is
a necessary condition for = to be physically accessible.
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& Conditions for Accessibility

Don't yet have a complete characterisation of accessibility.
However, we have found two necessary conditions:

Condition 1
The existence of an affine form
] ) L
pmn""‘G nPij +&-0m:n
with a trace-preserving G and a traceless .o term is
a necessary condition for = to be physically accessible.

Condition 2

Any accessible unital map that has a state-independent
affine form is completely positive.
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& Conditions for Accessibility

Don't yet have a complete characterisation of accessibility.
However, we have found two necessary conditions:

Condition 1

The existence of an affme form

] =
pmn '—GmnPZJ + &£ - Omn
with a trace-preserving G and a traceless .o term is
a necessary condition for = to be physically accessible.

Condition 2

Any accessible unital map that has a state-independent
affine form is completely positive.

In other words, a necessary condition for a non-CP map

with a state-independent affine form to be accessible
dS-that it must also be non-unital.
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& Conclusions and Open Questions

Entanglement is not required for a non-CP dynamical map.
(Classical correlations can sometimes be enough.)

Entanglement is not sufficient either.

Non-CP maps have already been seen, in some process
tomography experiments, so the correction terms are
big enough to observe. See for example:

N Boulant, J Emerson, TF Havel, DG Cory & S Furuta,
J. Chem. Phys. 121, 2955 (2004),

YS Weinstein, TF Havel, J Emerson, N Boulant,
M Saraceno, S Lloyd & DG Cory,
J. Chem.Phys. 121, 6117 (2004)
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