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1. Discreteness can respect Lorentz-transformations

—

Kinematic randomness _f:ll:t‘.'-‘- a role Hoisson processes )

2. But locality must be abandoned

Implies radical nonlocality at fundamental level (micro-scale 1)

3. One can recover locality approximately at laree scales | macro-scale)

4. But residual nonlocality survives at intermediate length-scales

(meso-scale. below ;)

9. An effective meso-theory would be confinuous but nonlocal
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Nustrate these claims with scalar Beld & on a fired causet

Becovery of Od

(9A 1s also a nonlocal effect of discreteness: 'l 1 ot discuss it
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A theorem on Poisson processes

: F - e amd o 1
{) — space of all sprinklings of M (samuple space)

Poisson process induces a measure u on

Let f be a rule for deducing a direction from a sprinkling

f - 22— H = unit vectors in M®

Require f eguivariant (fA = Af. A = Lorentz)

Ikl

Assume that f is measurable (hardly an assumption)

THEOREM No such f erists
(not even on a partial domain of positive measure)
(S

20 with probability 1. a sprinkling will not determine a frame.)
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IDEA: Our averaged sum is a confinuum exXpression,

where
B(xz) =8(x) (—2Kd(x) + 4K plE) E_E}

fJ2

where £ = Kuv with K = 1/|

But can decouple K from [*. We get a nonlocal con
the D’alembertian! Call it Og.

Umkehren: approximate [ by 3 over sprinkled points!

This produces the causet expression.
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The “trick” drives down the fluctuations. but nonlocali

the intermediate secale A\g = 1/vV K.

iLhe effective O of this expression is just O itself
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Remarks and applications

e Analogous expressions exist in other dimensions. In d = 4

p(£) =1— 35+ (3/2)% — (1/6)&3
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e Can now study propagation on sprinkled causet (Rideout)
cf. swerves
e The continuum theory’s free field is stable- (ker Ox = kerd)

But response to sources differs

e Quantum Field Theory version? New ipproach to renormalization?
Our nonlocality does not remove oo’s, but perhaps it will allow an

invariant {Lorentzian) cutoff.

e How big is Ag? Must balance fluctuations vs. nonlocality-

T

L = Hubble~ !, | = Planck length.

if want Oy pointwise accurate. = nuclear size!
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