Title: Strings/Quantum Gravity 5

Date: Jun 08, 2006 03:50 PM

URL: http://pirsa.org/06060016

Abstract:

Pirsa: 06060016

- Discreteness can respect Lorentz-transformations
 (Kinematic randomness plays a role Poisson processes)
- But locality must be abandoned
 Implies radical nonlocality at fundamental level (micro-scale l)
- 3. One can recover locality approximately at large scales (macro-scale)
- 4. But residual nonlocality survives at intermediate length-scales (meso-scale, below λ_0)
- 5. An effective meso-theory would be continuous but nonlocal

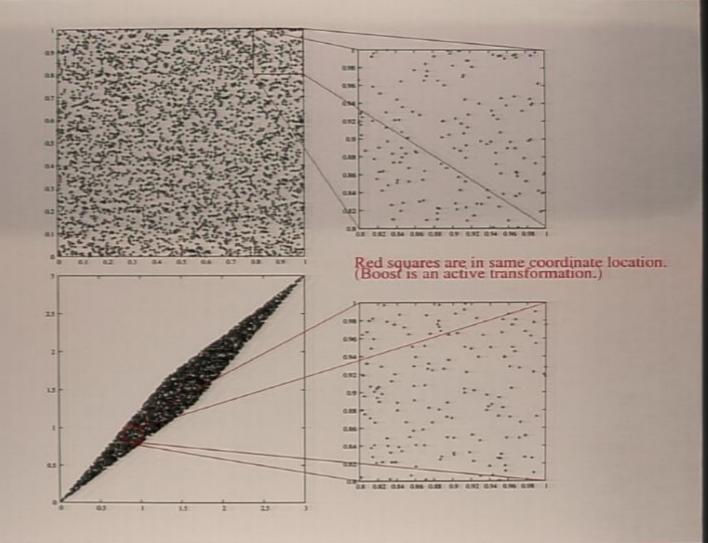
- Discreteness can respect Lorentz-transformations
 (Kinematic randomness plays a role Poisson processes)
- But locality must be abandoned
 Implies radical nonlocality at fundamental level (micro-scale l)
- 3. One can recover locality approximately at large scales (macro-scale)
- 4. But residual nonlocality survives at intermediate length-scales (meso-scale, below λ_0)
- 5. An effective meso-theory would be continuous but nonlocal

- Discreteness can respect Lorentz-transformations
 (Kinematic randomness plays a role Poisson processes)
- But locality must be abandoned
 Implies radical nonlocality at fundamental level (micro-scale l)
- 3. One can recover locality approximately at large scales (macro-scale)
- 4. But residual nonlocality survives at intermediate length-scales (meso-scale, below λ_0)
- 5. An effective meso-theory would be continuous but nonlocal

- Discreteness can respect Lorentz-transformations
 (Kinematic randomness plays a role Poisson processes)
- But locality must be abandoned
 Implies radical nonlocality at fundamental level (micro-scale l)
- 3. One can recover locality approximately at large scales (macro-scale)
- 4. But residual nonlocality survives at intermediate length-scales (meso-scale, below λ_0)
- 5. An effective meso-theory would be continuous but nonlocal

- Discreteness can respect Lorentz-transformations
 (Kinematic randomness plays a role Poisson processes)
- But locality must be abandoned
 Implies radical nonlocality at fundamental level (micro-scale l)
- 3. One can recover locality approximately at large scales (macro-scale)
- 4. But residual nonlocality survives at intermediate length-scales (meso-scale, below λ_0)
- 5. An effective meso-theory would be continuous but nonlocal

- Discreteness can respect Lorentz-transformations
 (Kinematic randomness plays a role Poisson processes)
- But locality must be abandoned
 Implies radical nonlocality at fundamental level (micro-scale l)
- 3. One can recover locality approximately at large scales (macro-scale)
- 4. But residual nonlocality survives at intermediate length-scales (meso-scale, below λ_0)
- 5. An effective meso-theory would be continuous but nonlocal



 Ω = space of all sprinklings of \mathbb{M}^d (sample space)

Poisson process induces a measure μ on Ω

Let f be a rule for deducing a direction from a sprinkling $f:\Omega\to H=$ unit vectors in \mathbb{M}^d

Require f equivariant $(f\Lambda = \Lambda f, \Lambda \in \text{Lorentz})$

Assume that f is measurable (hardly an assumption)

Theorem No such f exists
(not even on a partial domain of positive measure)

(So with probability 1, a sprinkling will not determine a frame.)

 $\Omega = \text{space of all sprinklings of } \mathbb{M}^d \text{ (sample space)}$

Poisson process induces a measure μ on Ω

Let f be a rule for deducing a direction from a sprinkling $f:\Omega\to H=$ unit vectors in \mathbb{M}^d

Require f equivariant $(f\Lambda = \Lambda f, \Lambda \in \text{Lorentz})$

Assume that f is measurable (hardly an assumption)

Theorem No such f exists
(not even on a partial domain of positive measure)

(So with probability 1, a sprinkling will not determine a frame.)

 Ω = space of all sprinklings of M^d (sample space)

Poisson process induces a measure μ on Ω

Let f be a rule for deducing a direction from a sprinkling $f:\Omega\to H=$ unit vectors in \mathbb{M}^d

Require f in f rentz)

Assume that f is measura

THEOREM No such f exists (not even on a partial domain or

(So with probability 1, a sprinkling w

 Ω = space of all sprinklings of M^d (sample space)

Poisson process induces a measure μ on Ω

Let f be a rule for deducing a direction from $f: \Omega \to H = \text{unit vectors in } \mathbb{M}^d$

Require f equivarian Af,

Assume that f is measurable (h

Theorem No such f exists (not even on a partial domain of positr.

(So with probability 1, a sprinkling will not dete

 Ω = space of all sprinklings of \mathbb{M}^d (sample space)

Poisson process induces a measure μ on Ω

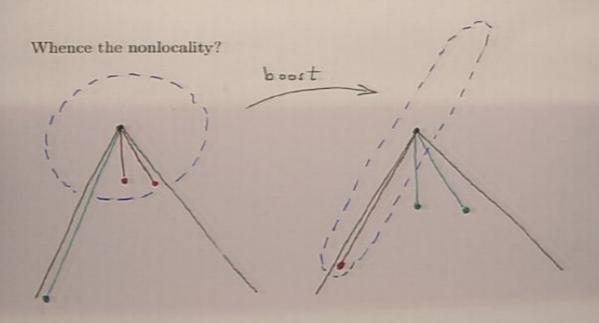
Let f be a rule for deducing a direction from a sprinkling $f:\Omega \to H=$ unit vectors in \mathbb{M}^d

Require f equivariant $(f\Lambda = \Lambda f, \Lambda \in \text{Lorentz})$

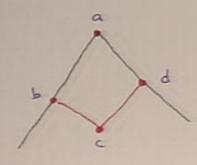
Assume that f is measurable (hardly an assumption)

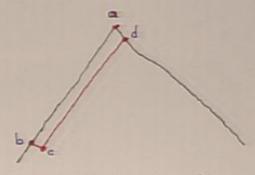
Theorem No such f exists
(not even on a partial domain of positive measure)

(So with probability 1, a sprinkling will not determine a frame.)



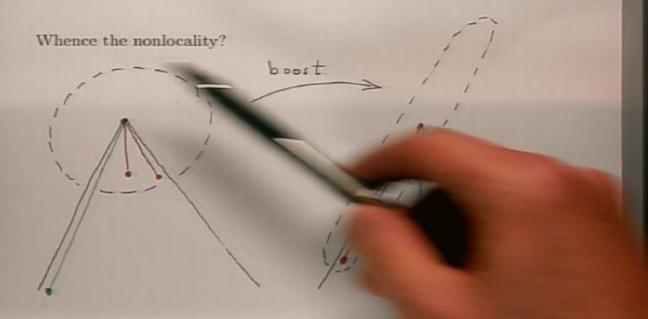
Needs a miracle. (consider eg $\phi = t^2 - x^2$, invariance $\Rightarrow \infty$?)



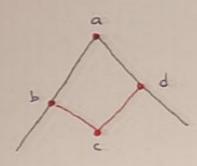


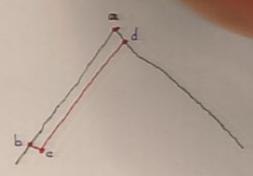
$$(a+c) - (b+d)$$

$$= (a-d) - (b-c) \longrightarrow 0$$



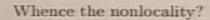
Needs a miracle. (consider eg $\phi = t^2 - x^2$, invariant

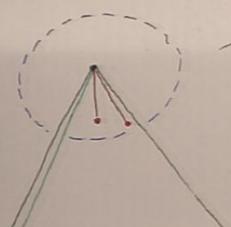




$$(a+c) - (b+d)$$

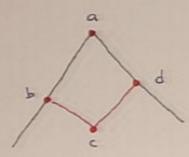
$$= (a-d) - (b-c) \longrightarrow 0$$

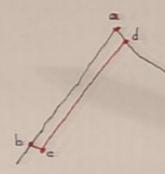




boost

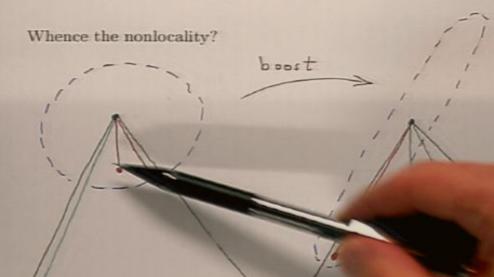
Needs a miracle. (consider eg $\phi = t^2 - x^2$, invariance $\Rightarrow \infty$?)



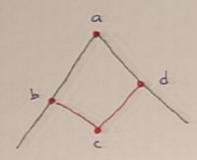


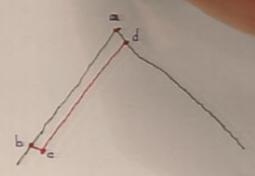
$$(a+c) - (b+d)$$

$$= (a-d) - (b-c) \longrightarrow 0$$



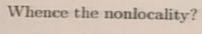
Needs a miracle. (consider eg $\phi = t^2 - x^2$, invaria.

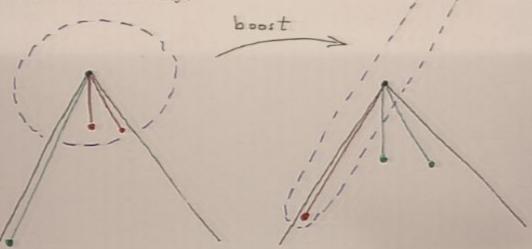




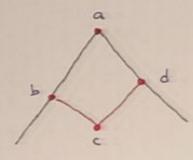
$$(a+c) - (b+d)$$

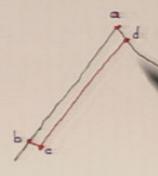
$$= (a-d) - (b-c) \longrightarrow 0$$





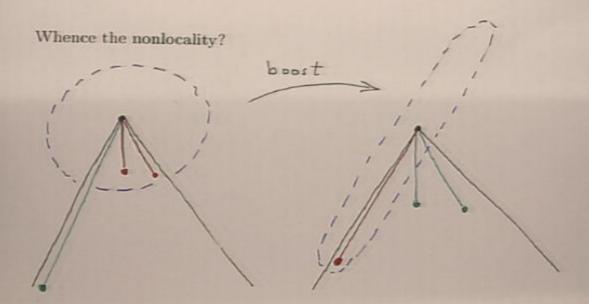
Needs a miracle. (consider eg $\phi = t^2 - x^2$, invariance $\Rightarrow \infty$?)



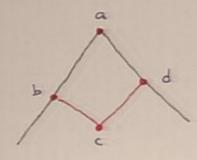


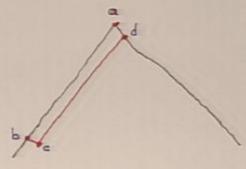
$$(a+c) - (b+d)$$

$$= (a-d) - (b-c) \longrightarrow (a+d)$$



Needs a miracle. (consider eg $\phi = t^2 - x^2$, invariance $\Rightarrow \infty$?)





$$(a+c) - (b+d)$$

$$= (a-d) - (b-c) \longrightarrow 0$$

These ideas lead to expressions like

$$\frac{4}{l^2} \left(-\frac{1}{2} \phi(0) + \sum_{x \in I} \phi(x) - 2 \sum_{x \in II} \phi(x) + \sum_{x \in III} \phi(x) \right)$$

i.e.

$$\Box \phi(i) \leftrightarrow \sum_k B(i,k) \phi(k)$$

where

$$\frac{l^2}{4}B(i,k) = \begin{cases} -\frac{1}{2} \text{ if } i = k \\ 1 \text{ if } i \prec k \text{ is a link (NN)} \mid < i, k > \mid = 0 \\ -2 \text{ if } i \prec k \text{ and (NNN)} \mid < i, k > \mid = 1 \\ 1 \text{ if } i \prec k \text{ and (NNNN)} \mid < i, k > \mid = 2 \end{cases}$$

Can prove that, as $l \to 0$

$$S \equiv \mathbf{E} \sum_{k} B_{ik} \phi_k \qquad \rightarrow \Box \phi(x_i)$$

using e.g.

$$\mathbf{E} \sum_{x \in I} \phi(x) = \int \frac{dudv}{l^2} \exp\{-uv/l^2\} \ \phi(u, v)$$

Problem: $\Delta S \to \infty$ (fluctuations) as $l \to 0$!

IDEA: Our averaged sum is a continuum expression,

$$\int B(x-x') \ \phi(x') \ d^2x' \ ,$$

where

$$B(x) = \theta(x) \left(-2K\delta(x) + 4K^2 \ p(\xi) \ e^{-\xi} \right) \ , \label{eq:beta}$$

where $\xi = Kuv$ with $K = 1/l^2$.

But can decouple K from l^2 . We get a nonlocal continuum analog of the D'alembertian! Call it \square_K .

Umkehren: approximate \int by \sum over sprinkled points! This produces the causet expression,

$$\frac{4\varepsilon}{l^2} \left(-\frac{1}{2} \phi(y) + \varepsilon \sum_{x \prec y} p(\xi) \ e^{-\xi} \ \phi(x) \right) ,$$

where $\xi = \varepsilon \mid \langle x, y \rangle \mid$ and $\varepsilon = l^2 K$

The "trick" drives down the fluctuations, but nonlocality the intermediate scale $\lambda_0 = 1/\sqrt{K}$.

The effective \square of this expression is just \square_K itself.

IDEA: Our averaged sum is a continuum expression,

$$\int B(x-x') \ \phi(x') \ d^2x' \ ,$$

where

$$B(x) = \theta(x) \left(-2K\delta(x) + 4K^2 p(\xi) e^{-\xi} \right) ,$$

where $\xi = Kuv$ with $K = 1/l^2$.

But can decouple K from l^2 . We get a nonlocal continuum analog of the D'alembertian! Call it \square_K .

Umkehren: approximate \int by \sum over sprinkled points! This produces the causet expression,

$$\frac{4\varepsilon}{l^2} \left(-\frac{1}{2} \phi(y) + \varepsilon \sum_{x \prec y} p(\xi) \ e^{-\xi} \ \phi(x) \right) \ ,$$

where $\xi = \varepsilon \mid \langle x, y \rangle \mid$ and $\varepsilon = l^2 K$

The "trick" drives down the fluctuations, but nonlocality survives at the intermediate scale $\lambda_0 = 1/\sqrt{K}$.

The effective \square of this expression is just \square_K itself.

Remarks and applications

• Analogous expressions exist in other dimensions. In d=4

$$\begin{split} p(\xi) &= 1 - 3\xi + (3/2)\xi^2 - (1/6)\xi^3 \\ &\leftrightarrow \sum_I - 3\sum_{II} + 3\sum_{III} - \sum_{IV} \end{split}$$

- Can now study propagation on sprinkled causet (Rideout) cf. swerves
- The continuum theory's free field is stable: (ker $\square_K = \ker \square$) But response to sources differs
- Quantum Field Theory version? New approach to renormalization? Our nonlocality does *not* remove ∞ 's, but perhaps it will allow an invariant (Lorentzian) cutoff.
- How big is λ_0 ? Must balance fluctuations vs. nonlocality. $L={\rm Hubble^{-1}},\ l={\rm Planck\ length}.$

$$\lambda_0 \gtrsim (l^2 L)^{1/3}$$

if want \square_K pointwise accurate. \Rightarrow nuclear size!!

Remarks and applications

• Analogous expressions exist in other dimensions. In d=4

$$p(\xi) = 1 - 3\xi + (3/2)\xi^{2} - (1/6)\xi^{3}$$

$$\leftrightarrow \sum_{I} -3\sum_{II} +3\sum_{III} - \sum_{IV}$$

- Can now study propagation on sprinkled causet (Rideout) cf. swerves
- The continuum theory's free field is stable: $(\ker \Box_K = \ker \Box)$ But response to sources differs
- Quantum Field Theory version? New approach to renormalization?
 Our nonlocality does not remove ∞'s, but perhaps it will allow an invariant (Lorentzian) cutoff.
- How big is λ_0 ? Must balance fluctuations vs. nonlocality. $L={\rm Hubble^{-1}},\ l={\rm Planck\ length}.$

$$\lambda_0 \gtrsim (l^2 L)^{1/3}$$

if want \square_K pointwise accurate. \Rightarrow nuclear size!!