Title: Particle Physics 4

Date: Jun 08, 2006 10:30 AM

URL: http://pirsa.org/06060009

Abstract:

Pirsa: 06060009

OUTLINE

- CP Violation in the SM is large, specially in the B system.
- -Why we expect new CP violation sources
- CP violation and New Physics
- -Where and how to look for New Physics through study of CPV.
- Deviations from the SM
- $B \to \phi K_s, \, B \to \pi K$ and others
- Implications for collider physics(LHC)
- -Conclusions

OUTLINE

- CP Violation in the SM is large, specially in the B system.
- -Why we expect new CP violation sources
- CP violation and New Physics
- -Where and how to look for New Physics through study of CPV.
- Deviations from the SM
- $B \to \phi K_s$, $B \to \pi K$ and others
- Implications for collider physics(LHC)
- -Conclusions

OUTLINE

- CP Violation in the SM is large, specially in the B system.
- -Why we expect new CP violation sources
- CP violation and New Physics
- -Where and how to look for New Physics through study of CPV.
- Deviations from the SM
- $B \to \phi K_s, B \to \pi K$ and others
- Implications for collider physics(LHC)
- -Conclusions

CPV in the SM

CPV in the SM comes from charged current interactions:

$$\begin{pmatrix} u & c & t \end{pmatrix} V_{CKM} \begin{pmatrix} d \\ s \\ t \end{pmatrix} W$$

In the SM, CP violation is due to a complex phase in the CKM matrix:

$$V_{\scriptscriptstyle CKM} \simeq \begin{pmatrix} 1 - \frac{1}{2} \lambda^2 & \lambda & A \lambda^3 \left(\rho - i \eta \right) \\ -\lambda \left(1 + i A^2 \lambda^4 \eta \right) & 1 - \frac{1}{2} \lambda^2 & A \lambda^2 \\ A \lambda^3 \left(1 - \rho - i \eta \right) & -A \lambda^2 & 1 \end{pmatrix}$$

Pirsa: 06060009 = = 0.22

Page 5/28

 $\epsilon \sim \text{phase of } K - \bar{K} \text{ mixing } \sim inA^2\lambda^4 \sim 10^{-3}n \Rightarrow n \sim 1.$

Why is B Special?

In the SM, CP violation is due to a complex phase in the CKM matrix:

$$V_{\scriptscriptstyle CKM} \simeq \begin{pmatrix} 1 - \frac{1}{2} \lambda^2 & \lambda & A \lambda^3 \left(\rho - i \eta \right) \\ -\lambda \left(1 + i A^2 \lambda^4 \eta \right) & 1 - \frac{1}{2} \lambda^2 & A \lambda^2 \\ A \lambda^3 \left(1 - \rho - i \eta \right) & -A \lambda^2 & 1 \end{pmatrix}$$

where $\lambda = 0.22$.

Note: (i) relative sizes of CKM matrix elements, (ii) large phases occur only in corners: V_{ub} and V_{td} .

Unitarity Triangle:

$$V_{CKM} \simeq egin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-ioldsymbol{\gamma}} \ |V_{cd}| & |V_{cs}| & |V_{cb}| \ |V_{td}|e^{-ioldsymbol{eta}} & |V_{ts}| & |V_{tb}| \end{pmatrix}$$

Pirsa: 06060009

- $Arg[V_{td}] \sim \eta \sim O(1)$ Large
- $Arg[V_{ub}] \sim \eta \sim O(1)$ Large

These elements can be probed in B decays:

• $B - \bar{B} \sim (V_{td})^2 \sim e^{-2i\beta}$ $2\beta \sim 43^0$

 $Arg[V_{ub}] = \gamma \sim 60^{0}$ - CPV in the B system is large in the SM.

New Phases from New Physics

- CPV in the SM is large.
- All CPV $\propto \eta$
- V_{CKM} is unitary: $V_{CKM}^{\dagger}V_{CKM}=1\Rightarrow$ 3 angles and 6 phases.
- Weak Interactions couple only to LH quarks: Can reabsorb 5 phases in quark field definitions
- Only one weak phase η .
- Consider a NP scenario, e.g. Left-Right Symmetric Models:
- New phases associated with the RH mixing matrix, V_R .
- ullet Can no longer absorb the phases of V_R : 6 new phases.

Pirsa: 06060009 Page 8/28

Bottomline

- CPV in the SM is large: CP is not a symmetry or approximate symmetry of Nature
- Any New Physics will have new CP phases.
- No reason to expect the new CP phases are small ⇒ it is likely we will see deviations from the SM.

Study of CPV is a good place to look for NP.

Pirsa: 06060009 Page 9/28

NP- Where?

FCNC are very rare in SM and only arise as quantum corrections or Loops. E.g. $B \to \phi K_s$ ($b \to sg$)

Beyond the SM FCNC may occur at tree level or loops and compete with the SM contribution.

Pirsa: 06060009

Page 10/28

Hence these decays are excellent probes of beyond the SM physics.

NP-How: Direct CP Violation and NP

ullet Consider the decay $B o f(f \equiv \phi K_s)$ and the CP conjugate process $ar{B} o ar{f}$

Define direct CP asymmetry:

$$a_{dir}^{CP} \equiv \frac{\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f})}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})} \sim \sin\phi \; ,$$

where ϕ is the CP violating weak phase

ullet Suppose we have a decay B o f:

$$A(B \to f) = Ae^{i\phi}$$

 $A(\bar{B} \to \bar{f}) = Ae^{-i\phi}$.

$$a_{dir}^{CP} \sim |A(B \rightarrow f)|^2 - |A(\bar{B} \rightarrow \bar{f})|^2 = 0$$

• Many decays in SM are dominated by a single amplitude and hence $a_{Pirsa: 060}^{CP}$ measurement of non zero a_{dir}^{CP} violation is a clear signal of new $a_{Pirsa: 060}^{CP}$ physics. No hadronic uncertainty involved!

Direct CP Violation

Non zero direct CP violation requires interference of 2 amplitudes. Consider the decay $B \to f$. Suppose

$$A(B \to f) = A_1 e^{i\phi_1} e^{i\delta_1} + A_2 e^{i\phi_2} e^{i\delta_2} ,$$

 $A(\bar{B} \to \bar{f}) = A_1 e^{-i\phi_1} e^{i\delta_1} + A_2 e^{-i\phi_2} e^{i\delta_2} .$

Hence direct CP asymmetry:

$$a_{dir}^{CP} \equiv \frac{\Gamma(B \to f) - \Gamma(\bar{B} \to \bar{f})}{\Gamma(B \to f) + \Gamma(\bar{B} \to \bar{f})} = -\frac{2A_1A_2\sin\Phi\sin\Delta}{A_1^2 + A_2^2 + 2A_1A_2\cos\Phi\cos\Delta} \; ,$$

where $\Phi \equiv \phi_1 - \phi_2$ and $\Delta \equiv \delta_1 - \delta_2$.

Note: direct CP asymmetry depends on unknown strong phases. Cannot extract weak phase information (Φ) without hadronic input.

Pirsa: 06060009 Page 12/28

Mixing Induced CP Violation

There is another signal of CP violation. Use $B^0-\bar{B}^0$ mixing. Choose final state f accessible to both B^0 and \bar{B}^0 . (Simplest is CP eigenstate.) Then $B^0\to f$ and $B^0\to\bar{B}^0\to f$ interfere. This leads to indirect or mixing induced CP violation.

Aside: requires large $B^0 - \bar{B}^0$ mixing. Large mixing measured in 1987. One of the most important discovery in particle physics in the last 20 years.

Size of mixing was great surprise. $\Delta M_d \sim m_t^2$, as it was expected that $m_t \sim 10$ GeV! Experiment: $m_t/M_W \sim 2$.

Pirsa: 06060009 Page 13/28

Large B^0 – \bar{B}^0 mixing: get indirect CP asymmetry:

$$\Gamma(B^0(t) \to f) \sim B + a_{dir} \cos(\Delta M t) + a_{mix} \sin(\Delta M t)$$

with

$$B \equiv \frac{1}{2} \left(|A|^2 + |\bar{A}|^2 \right) \; , \; a_{dir} \equiv \frac{1}{2} \left(|A|^2 - |\bar{A}|^2 \right) \; , \; a_{mix} \equiv \mathrm{Im} \left(e^{-2i\beta} A^* \bar{A} \right) \; .$$

Point: $\Gamma(B^0(t) \to f)$ gives 3 measurements.

Note: if there is only a single decay amplitude in $B^0 \to f$, i.e. $A_2 = 0$, then $a_{dir} = 0$, but $a_{mix} \neq 0$. This is the most interesting case, since all dependence on hadronic physics cancel.

Idea: measure α , β , γ in ways independent of strong phases.

Pirsa: 06060009 Page 14/28

 $eta\colon B^0_d(t) o J/\psi K_s$. Decay dominated by tree $T'\sim V_{cb}^*V_{cs}$ (real). Indirect CPV measures phase of $B^0_d - \bar{B}^0_d$ mixing: $2\arg(V_{tb}^*V_{td}) = -2\beta$.

Both BaBar and Belle have measured this:

$$a_{mix}(B \to J/\psi K_s) = \sin 2\beta = 0.685 \pm 0.032$$
.

This agrees with other independent measurements- confirms SM.

Pirsa: 06060009

Page 15/28

$B o \phi K_s$ - Mixing CP

 $B o \phi K_s$ is a pure penguin process dominated by single amplitude

 $A(B o \phi K_s) pprox (P_t - P_c) V_{tb} V_{ts}^*$ and so in SM

$$a_{mix}(B \to \phi K_s) = \sin 2\beta = 0.685 \pm 0.032$$
.

but Expt: $a_{mix}(B \rightarrow \phi K_s) = 0.47 \pm 0.19$

There are many other final states, $\eta' K_s$, $\pi^0 K_s$, $f_0 K_s$, ... for which $a_{mix} = \sin 2\beta$ in the SM.

Pirsa: 0606000 $\mathsf{pt}.a_{mix}(combined) = 0.50 \pm 0.06$.

a_{mix} for b o s transitions

 $sin(2\beta^{eff})/sin(2\phi_1^{eff})$

Note that NP will effect different final states differently.

$$H_{NP} \sim \bar{s}\gamma_5 b\bar{s}\gamma_5 s$$

There can be a contribution to $B \to \eta' K_s$ but not to $B \to \phi K_s$ as

$$\bar{s}\gamma_5 b \to B \to K_s$$

$$\bar{s}\gamma_5 s o \eta'$$

but not ϕ .

 Hence by observing NP effects in different final states allows us to obtain information about the Lorentz structure of NP.

$B o \phi K_s$ -NP models

ullet Many NP models can produce deviation from the SM for $B o\phi K_s$

NP in other Decays

- If there is NP in $B \to \phi K_s$ then it should show up in other places: In $B \to \phi K^*$ which is also a $b \to s\bar{s}s$ transition.
- Decays with $b \to s\bar q q$ quark transition with q=u,d should be affected like $B \to K\pi, \rho K^*...$
- Models that generate new $b \to sg \to s\bar{q}q$ penguins(SUSY, LR, extra dim) will produce same effect for q=u,d,s.
- Models that generate new electroweak terms will in general couple to q=u,d,s differently.
- Hence a combined NP fit to all the decays where there are deviations from SM will point to the flavour nature of NP.

Pirsa: 06060009 Page 20/28

$B o K\pi$ puzzle

Table 1:

Mode	$BR(10^{-6})$	A_{dir}	A_{mix}
$B^+ \to \pi^+ K^0$	24.1 ± 1.3	-0.020 ± 0.034	
$B^+ \to \pi^0 K^+$	12.1 ± 0.8	0.04 ± 0.04	
$B_d^0 o \pi^- K^+$	18.2 ± 0.8	-0.108 ± 0.017	
$B_d^0 \to \pi^0 K^0$	11.5 ± 1.0	-0.09 ± 0.14	0.31 ± 0.26

•Puzzles:

 $A_{dir}(B^+ \to \pi^0 K^+) = A_{dir}(B_d^0 \to \pi^- K^+)$ using isospin if electroweak penguins(EWP) are neglected. In the SM the EWP are not big enough to explain the data. Need new EWP to explain the data.

 $B_d^0 o \pi^0 K^0$ is dominated by a single amplitude and so in SM $A_{dir}=0$ and $A_{mix}=\sin 2\beta=0.685\pm 0.032$ in disagreement with data. Again need new EWP to explain the data as EWP affect final states

Page 21/28

$B o K\pi$ - SM

 In the SM the amplitudes for the four decays can be related by isospin.

The four decays can be represented by the following amplitudes:

$$\bullet \frac{|T|}{|P|} = \frac{V_{ub}V_{us}^*}{V_{cb}V_{cs}^*} \frac{c_1}{c_t} \sim 0.2 \quad \frac{|C|}{|P|} \sim \frac{1}{N_c} \frac{|T|}{|P|} \sim 0.04 \quad \frac{|P_{EW}|}{|P|} \sim 0.14$$

Pirsa: 06060009

$B o K\pi$ - SM

- •We have 4 decays and 9 measurements, x_{exp}^i $x_{exp}^i = f^i(|T|,|C|,|P|,|P_{EW}|,\delta)$. δ is the strong phase we can neglect |C| and so we have four parameters. A χ^2 fit to the data gives a poor fit- $\chi^2_{min}/d.o.f.=15.6/5$ (0.8%) (hep-ph/0412086)
- •Keep all amplitudes- no assumption about their sizes. W now have eight theoretical parameters: $|P|, |P_{uc}|, |T|, |C|, \gamma$, and three relative strong phases. With nine pieces of experimental data, we can still perform a fit, which is acceptable: $\chi^2_{min}/d.o.f. = 0.7/1$ (40%). In addition, we find $\gamma = 64^\circ$, consistent with independent measurements.
- •However fit gives |C/T|=1.8 about 10 times bigger than expected size. Such large |C/T| are not seen in other decays including decays like $B\to\pi\pi$ which are related to $B\to K\pi$ by SU(3) symmetry- Puzzle

Pirsa: 06060009 Page 23/28

$B o K\pi$ -NP

- •NP in the $K\pi$ system can be parametrized in terms of 3 amplitudes, A_{comb}, A_C^u and A_C^d . (Datta and London)
- •For models that produce new QCD penguins (LR models, SUSY with squark mixing, extra dim) the NP is isospin conserving and

$$A_{comb} = 0, \quad A_C^u = A_C^d = A_{NP}$$

We can now do a fit with

$$x_{exp}^{i} = f^{i}(|T|, |P|, |P_{EW}|, \delta, A_{NP})$$

We obtain a poor fit- NP is not from QCD penguins

The best fit is obtained for models with

$$A_{comb} = A_{NP}, \quad A_C^u \sim A_C^d \sim 0$$

This can come from NP that is not isospin conserving.

This points to electroweak penguins(EWP) and to certain color structures of the NP operators- color allowed EWP.

Pirsa: 06060009 Page 24/28

Implications for Colliders

The important question: NP at what scale

The contribution of NP operators to meson mixing can be represented by higher dimension operators:

$$c_{NP}(\bar{d}q)^2/\Lambda^2$$

where q = s, b.

The measurement of the K and the B system tell us that $\Lambda \geq 100$ TeV !!! if $c_{NP} \sim 1$

Note K(B) mixing in SM is small because of loop and small parameters like $\lambda=0.22$

For e.g. B mixing \sim Loop $\times V_{td}^2$ and $V_{td} \sim \lambda^3$

Pirsa: 06060009 Page 25/28

- ullet But we expect $\Lambda \sim TeV$ to stabilize the Higgs mass!
- c_{NP} has the same suppression as in the SM so $\Lambda \sim \text{TeV} \Rightarrow \text{strong}$ constraints on the flavour structure of NP expected to be revealed at LHC.

or

if $c_{NP} \sim 1$ then flavour physics probes physics at scales way beyond the reach of present or future experiments.

Pirsa: 06060009 Page 26/28

A New Physics Model

- •Consider a 2 Higgs doublet model with 2-3 symmetry in the quark and lepton Yukawa coupling (Datta and O'Donnell). The 2-3 symmetry explains the large $\nu_{\mu} \nu_{\tau}$ mixing.
- •The breaking of the 2-3 symmetry generates FCNC suppressed by $\frac{m_s}{m_b} \sim \lambda^2$ in the quark sector and FCNC suppressed by $\frac{m_\mu}{m_\tau}$ in the lepton sector. Low energy effective Hamiltonian is

$$H_{NP} = \frac{m_s}{m_b} \frac{1}{m_H^2} \left[\bar{s} \gamma_A b \bar{q} \gamma_A q + \ldots \right]$$

 $\gamma_A = (1 \pm \gamma_5)$ and q = d, s.

•Predicts small effect in $B \to \phi K_s$ but large effect in $B \to \eta' K_s$. Can explain the ϕK^* , $K\pi$ and ρK^* puzzle for $m_H \sim$ TeV.

Pirsa: 06060009 Page 27/28

Conclusions

CP Violation is a good place to look for and measure new physics

There are many signals of new physics(puzzles) in measurements of CP violation in B decays- $B \to \phi K_s, \phi K^*, \eta' K_s, K\pi, \rho K^*...$

Combined fit to the NP signals point to a very specific structure of NP. This NP could arise through possible extension in the electroweak sector with extra Z or Higgs.

Hopefully, we will find NP at B factories, measure its parameters and (partially) identify it along with the LHC. Coming years should be very interesting for B physics and all flavour physics.

Pirsa: 06060009 Page 28/28