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Abstract: Adiabatic Quantum Computation is not only a possibly more robust alternative to standard quantum computation. Since it considers a
continuous-time evolution of the system, it also provides a natural bridge towards studying the dynamics of interacting many-particle quantum
systems, quantum phase transitions and other issues in fundamental physics. After a brief review of adiabatic quantum computation, | will show our
recent results on the dynamics of entanglement and fidelity for the search and Deutsch algorithms including several variations and optimization. |
will show how these studies led to suggesting an alternative definition of entanglement and compare the results, and discuss possible implications
for considering entanglement aresource. | will conclude with an outlook on further applications and extensions of adiabatic quantum computation.
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Adiabatic Quantum Computer: The idea

Wo) = [P1)

input I:> solution

(easy to build)

continuous time evolution!
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constructing the adiabatic guantum computer:

H(r)
Wo) = [¥1)

ground states of

Hy =1— |Wy)(Wo| Hy, =1—|¥;)(¥|

H(t) = f(t)Ho + g(1)H,

0000000000000



condition for staying in ground state: slow evolution

H (t ) [Ek;f > == Ek(f ) |Ek; T) instantaneous energy eigenstates
8min = ﬂ[gifnT[E 1(1) — Eo(r)) min. gap between two lowest eigenstates

maxo<;<r |(E1:t| %Y |Eo:1)] s

<3 Adiabatic Theorem

after running time 7', AQC in solution state |W;) with P = |(Eo: T|W(T))|* > 1 —¢&”
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condition for staying in ground state: slow evolution

H (f ) IE k-1 ) — Ek(f ) |Ek; T) instantaneous energy eigenstates

Smin = l_,»n_:ir_l;,_[x'f 1 (1) — Eo(r)] min. gap between two lowest eigenstates
<r<

maxo<r<r |(Eizt| G |Eoit)| _

oy Adiabatic Theorem

after running time 7', AQC in solution state |W;) with P = |(Eo:T|W(T))|*? > 1 —¢&”
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Standard Model QC vs. Adiabatic QC

e qubits (or continuous variables)

* sequence of gates

e general purpose computer

* software separate from hardware

e classical input, quantum algorithm,

measurement, classical output
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e qubits (or continuous variables)

e H(t)

e special purpose computer

e software, hardware not separate

e output could be non-classical?
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Example: Adiabatic Quantum Search

Task: in the unsorted database - “haystack”

Sp— MV noede

“... as quick as possible

rescocosont— without loss of generality, we choose |m) = |0) = (1,0,0.0) ey









Example: Adiabatic Quantum Search

Task: in the unsorted database - “haystack”

S — M) noede

“... as quick as possible

rescooso%t without loss of generality, we choose |m) = |0) = (1,0,0,0) i



Adiabatic Quantum Search

(fa-% —§ - -%
-& fO-g)+z-§ =
H(r) = — ..ﬁ
P fO-FH+8 %
L& & o B
find eigenvectors and eigenvalues, two lowest: Ei ()= % ((f+g):i: \/(f—g)-’-'+%,fg)

determine running time from adiabaticity condition
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Adiabatic Quantum Search

(ra-%) -£ . i
-& fO-g)+z-§ -
H(r) = : R -L
: fa—-P+s 5
U5 | &~ & B
find eigenvectors and eigenvalues, two lowest: EL{p)= % ((f+g)i \/(f—g)’-+%,fg)

determine running time from adiabaticity condition
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Possible resources
for (adiabatic) guantum computation

* energy, time see Das, Kunstatter, Kobes, J.Phys.A 36 (2003) 2839

e Hilbert space structure, superposition, “parallelism”

e entanglement, non-locality

* measurement

Pirsa: 06060004 Page 25/68



Entanglement

a state that cannot be written as a product of single qubit states, e.g.

W= 50040 e I0aci0n) £ wASI®) 5 entangled

state of whole system is completely known,
but state of each subsystem is not,
l.e. it is in mixed state

use this for information-based definition of entanglement :
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Entropy of entanglement

for bipartite systems in pure state

gives amount of information of one qubit
that can be obtained by making measurement
on the other qubit of a pair

calculated from eigenvalues
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Toy model quantum computer: 2 qubits

general state in computational basis
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Toy Model Adiabatic Quantum Computer

_ . .
RORPR—

» calculate entropy of entanglement as function of time:
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a first result:

¢ entanglement is produced
during the computation

* max value far below 1

* is entanglement necessary for
algorithm to work, and for

speed-up?

e or is it just a byproduct of time
evolution?
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varying the initial state (changing the Hamiltonian):
two non-maximally entangled states Bell state
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more results and more questions:

* non-maximally entangled state in fig.a: Hamiltonian with the same spectrum as
equally weighted superposition, same running time

® running time correlated with spectrum (as adiabatic theorem suggests), and not
so much with entanglement?

e for states further away from marked state, more entanglement created during
search; speed-up related to overlap of initial and final state
1/N = (Wo|m)

e relevance of overiap (fidelity) for algorithm?
e larger n; and Large n

e other algorithms
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T —
two non-maximally entangled states Bell state
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more results and more questions:

* non-maximally entangled state in fig.a: Hamiltonian with the same spectrum as
equally weighted superposition, same running time

e running time correlated with spectrum (as adiabatic theorem suggests), and not
so much with entanglement?

e for states further away from marked state, more entanglement created during
search; speed-up related to overlap of initial and final state
1/N = (Wo|m)

* relevance of overiap (fidelity) for algorithm?
® Jarger n; and Large n

e other algorithms
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[¥)=N(2.2.1.1)
IC)=N(1.1.2.2)
|G} =N{1.1.1.1)
|R)=N(1.3,1.3)
|P)=N(3.1.3.1)
|By=N(1.5.1.5)

correlations: large maximum entanglement - large running time
small initial fidelity - large running time
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Deutsch-Jozsa Algorithm

determine whether a function F:{0,1}" — {0,1}

IS constant or balanced

e.g. for n=1: four possible outcomes

F(0)=F(1)=0 : :
F(0)=F(1) = 1 constant (all outputs identical)
FOIE0FD =1 p o lanced (humber of zeros=number of ones)
F(0)=1;F(1)=0

classically: need to measure F(O) and F(1)

uantum: one measurement yields result
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Deutsch-Jozsa algorithm: adiabatic version

Das, Kobes, Kunstatter, quant-ph/0111032

MR TS Mg

)
xe{0,1}"

a= B=1—a

L
N

if measurement yields |0), F is constant, otherwise balanced

note: a=1,p=0 coincides with search algorithm for |m) = |0)
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Deutsch-Jozsa algorithm, n=2

correlations: small initial fidelity - large running time
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try “larger” system, n=3

* how should we calculate entropy of entanglement?

results depend on which qubits are traced over

e check if results on running time etc. change with a different definition of
entanglement

¢ alternative definition of entanglement: not mathematical or axiomatic, or
operational, but physically motivated
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measuring entanglement geometrically

as the distance |d) = |c) —|p)

between the composite state under consideration |¢) = (co, 1, ¢2,¢3)
and the closest product state |P)=(a0l0) +a1|1)) ® (bol0) +b1[1))
=aobo|00) + aob1|01) +a1bo|10) +a1by[11)

l.e. minimize the function
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remarks

¢ advantage over entropy of entanglement: generalization to more than two
subsystems straightforward, problem of how to partition the system does not

occur

e D is very similar to the Hilbert-Schmidt distance, but faster to calculate
numerically

* minimization of D with unnormalized product states gives condition that might
suggest geometric interpretation of von Neumann entropy of entanglement for
n=2: length of closest non-normalized product state determines one of the

terms

WiIth - NaNp = (@3 +a7) (b5 +b7)
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geometrical interpretation:

¢ space of all normalized 4-dim. states is a 3-sphere
* space of normalized product states is a subset on the surface of this 3-sphere
e unnormalized product states lie on radial lines that intersect the 3-sphere

* the closest product state to an arbitrary normalized state will lie on such a line
in the interior of the 3-sphere, i.e. it will be unnormalized

¢ the only case where the closest product state will be normalized is if the
arbitrary state is a product state itself
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another distance measure

which measures the distance between instantaneous ground state and final state componentwis

we compare the function

with the function F(1)=1-F()
R—
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Optimizing the adiabatic evolution

¢ adiabaticity condition - for -

¢ running time for a particular value of .

with dimensionless time variable ~ S=#JF

* optimization: apply condition locally to each infinitesimal time step dt, i.e.
replace s(t) by non-linear function that changes fast where energy gap is large,

and slow only where energy gap is small -
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Optimizing the adiabatic evolution

* adiabaticity condition - for -

¢ running time for a particular value of -

with dimensionless time variable ~ S=# /1

e optimization: apply condition locally to each infinitesimal time step dt, i.e.
replace s(t) by non-linear function that changes fast where energy gap is large,

and slow only where energy gap is small -
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Optimizing the adiabatic evolution

¢ adiabaticity condition _ for -

¢ running time for a particular value of .

with dimensionless time variable ~ S==#J

¢ optimization: apply condition locally to each infinitesimal time step dt, i.e.
replace s(t) by non-linear function that changes fast where energy gap is large,

and slow only where energy gap is small -
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adiabatic search for n=2 qubits

global adiabatic evolution

S(s), FP'(=s)
0.25;

s-red

optimized running time

S(t), F*(E)

0.2
t-red
-0.2:
-0.4
-0.6

rate of change of fidelity is largest where entanglement is largest;

optimizing the running time flattens the rate of change of the fidelity;

dectregases maximum value of entanglement
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adiabatic search for n=3 qubits

global adiabatic evolution

S5(s), F"(=s)

optimized running time
S(t), P'(v)

0.4!
ﬂ.l;
t-red

100 20 B

-0.2
-0.4
-0.6
-0.8

-]

rate of change of fidelity is largest where entanglement is largest;

optimizing the running time flattens the rate of change of the fidelity;

deereases maximum value of entanglement
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Results

* larger initial fidelity yields smaller running time, same result for G

¢ for search algorithm with unoptimized time, F’ is largest where entanglement
production is largest

* optimizing the time variable flattens out the rate of change of the fidelity

¢ using optimized time, initial states that produce more entanglement have larger
running time for n=2 (for n=3, result only holds for geometric entanglement)

¢ for Deutsch’s algorithm, states that generate entropy more quickly have a
shorter running time
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