Title: Watching the adiabatic quantum computer work to learn more about physics

Date: Jun 07, 2006 04:00 PM

URL: http://pirsa.org/06060004

Abstract: Adiabatic Quantum Computation is not only a possibly more robust alternative to standard quantum computation. Since it considers a continuous-time evolution of the system, it also provides a natural bridge towards studying the dynamics of interacting many-particle quantum systems, quantum phase transitions and other issues in fundamental physics. After a brief review of adiabatic quantum computation, I will show our recent results on the dynamics of entanglement and fidelity for the search and Deutsch algorithms including several variations and optimization. I will show how these studies led to suggesting an alternative definition of entanglement and compare the results, and discuss possible implications for considering entanglement a resource. I will conclude with an outlook on further applications and extensions of adiabatic quantum computation.

Pirsa: 06060004 Page 1/68

Why?

- AQC itself is interesting, possibly more robust against errors than standard circuit QC, but equivalent with regard to computational power
- seemingly simple systems illuminate fundamental problems
- AQC allows to track dynamical quantities easily
- AQC provides possible connection to quantum field theory; natural description of spin models

Pirsa: 06060004 Page 2/68

Why?

- AQC itself is interesting, possibly more robust against errors than standard circuit QC, but equivalent with regard to computational power
- seemingly simple systems illuminate fundamental problems
- AQC allows to track dynamical quantities easily
- AQC provides possible connection to quantum field theory; natural description of spin models

Pirsa: 06060004 Page 3/68

How?

- study dynamics of entanglement and other physical quantities during adiabatic algorithms
- starting with small systems that allow analytical calculations
- . D.A., Proc. Theory Canada I, Can. J. Phys. 83, 2005
- more systematic "experimental" approach to a wider variety of cases, numerics
- * K. Choy, G. Passante, D.A., M. Carrington, T. Fugleberg, R. Kobes, and G. Kunstatter, quant-ph/0605040

Pirsa: 06060004 Page 4/68

Adiabatic Quantum Computer: The idea

$$|\Psi_0\rangle \Longrightarrow |\Psi_1\rangle$$

continuous time evolution!

Pirsa: 06060004 Page 5/68

constructing the adiabatic quantum computer:

$$|\Psi_0\rangle \Longrightarrow |\Psi_1\rangle$$

ground states of

$$H_0 = I - |\Psi_0\rangle\langle\Psi_0|$$
 $H_1 = I - |\Psi_1\rangle\langle\Psi_1|$

$$H(t) = f(t)H_0 + g(t)H_1$$

drives QC from initial to final instantaneous ground stat

condition for staying in ground state: slow evolution

$$H(t)|E_k;t\rangle = E_k(t)|E_k;t\rangle$$

instantaneous energy eigenstates

$$g_{min} = \min_{0 \le t \le T} [E_1(t) - E_0(t)]$$

min. gap between two lowest eigenstates

$$\frac{\max_{0 \le t \le T} |\langle E_1; t | \frac{dH}{dt} | E_0; t \rangle|}{g_{min}^2} \le \varepsilon$$

Adiabatic Theorem

after running time T, AQC in solution state $|\Psi_1\rangle$ with $P = |\langle E_0; T | \Psi(T) \rangle|^2 \ge 1 - \epsilon^2$

Pirsa: 06060004 Page 7/68

condition for staying in ground state: slow evolution

$$H(t)|E_k;t\rangle = E_k(t)|E_k;t\rangle$$

instantaneous energy eigenstates

$$g_{min} = \min_{0 \le t \le T} [E_1(t) - E_0(t)]$$

min. gap between two lowest eigenstates

$$\frac{\max_{0 \le t \le T} |\langle E_1; t | \frac{dH}{dt} | E_0; t \rangle|}{g_{min}^2} \le \varepsilon$$

Adiabatic Theorem

after running time T, AQC in solution state $|\Psi_1\rangle$ with $P = |\langle E_0; T | \Psi(T) \rangle|^2 \ge 1 - \epsilon^2$

Pirsa: 06060004 Page 11/68

Standard Model QC vs. Adiabatic QC

qubits (or continuous variables)

qubits (or continuous variables)

sequence of gates

• H(t)

general purpose computer

special purpose computer

software separate from hardware

software, hardware not separate

 classical input, quantum algorithm, measurement, classical output output could be non-classical?

Pirsa: 06060004 Page 12/68

Example: Adiabatic Quantum Search

Task: in the unsorted database

$$|\Psi_0
angle = rac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i
angle$$

"haystack"

find the marked state

$$|\Psi_1\rangle = |m\rangle$$

"needle"

"... as quick as possible

$$H(t) = f(t)(I - |\Psi_0\rangle\langle\Psi_0|) + g(t)(I - |m\rangle\langle m|)$$

Example: Adiabatic Quantum Search

Task: in the unsorted database

$$|\Psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i\rangle$$

"haystack"

find the marked state

$$|\Psi_1\rangle = |m\rangle$$

"needle"

"... as quick as possible

$$H(t) = f(t)(I - |\Psi_0\rangle\langle\Psi_0|) + g(t)(I - |m\rangle\langle m|)$$

Adiabatic Quantum Search

$$H(t) = \begin{pmatrix} f(1 - \frac{1}{N}) & -\frac{f}{N} & \dots & \dots & -\frac{f}{N} \\ -\frac{f}{N} & f(1 - \frac{1}{N}) + g - \frac{f}{N} & \dots & -\frac{f}{N} \\ \vdots & -\frac{f}{N} & \dots & \dots & -\frac{f}{N} \\ \vdots & \vdots & \vdots & f(1 - \frac{1}{N}) + g & -\frac{f}{N} \\ -\frac{f}{N} & -\frac{f}{N} & \dots & -\frac{f}{N} & f(1 - \frac{1}{N}) + g \end{pmatrix}$$

find eigenvectors and eigenvalues, two lowest:

$$E_{\pm}(t) = \frac{1}{2} \left((f+g) \pm \sqrt{(f-g)^2 + \frac{4}{N} fg} \right)$$

determine running time from adiabaticity condition

$$\frac{\max_{0 \le t \le T} |\langle E_1; t | \frac{dH}{dt} | E_0; t \rangle|}{g_{min}^2} \le \varepsilon$$

Adiabatic Quantum Search

$$H(t) = \begin{pmatrix} f(1-\frac{1}{N}) & -\frac{f}{N} & \dots & \dots & -\frac{f}{N} \\ -\frac{f}{N} & f(1-\frac{1}{N}) + g - \frac{f}{N} & \dots & -\frac{f}{N} \\ \vdots & -\frac{f}{N} & \dots & \dots & -\frac{f}{N} \\ \vdots & \vdots & \vdots & f(1-\frac{1}{N}) + g & -\frac{f}{N} \\ -\frac{f}{N} & -\frac{f}{N} & \dots & -\frac{f}{N} & f(1-\frac{1}{N}) + g \end{pmatrix}$$

find eigenvectors and eigenvalues, two lowest:

$$E_{\pm}(t) = \frac{1}{2} \left((f+g) \pm \sqrt{(f-g)^2 + \frac{4}{N}fg} \right)$$

determine running time from adiabaticity condition

$$\frac{\max_{0 \le t \le T} |\langle E_1; t | \frac{dH}{dt} | E_0; t \rangle|}{g_{min}^2} \le \varepsilon$$

Possible resources for (adiabatic) quantum computation

• energy, time see Das, Kunstatter, Kobes, J.Phys.A 36 (2003) 2839

Hilbert space structure, superposition, "parallelism"

· entanglement, non-locality

measurement

Pirsa: 06060004 Page 25/68

Entanglement

a state that cannot be written as a product of single qubit states, e.g.

$$|\Psi\rangle_{Bell} = \frac{1}{\sqrt{2}}(|0\rangle_A \otimes |1\rangle_B - |1\rangle_A \otimes |0\rangle_B) \neq |\Psi_A\rangle \otimes |\Psi_B\rangle$$
 is entangled

state of whole system is completely known, but state of each subsystem is not, i.e. it is in mixed state

use this for information-based definition of entanglement :

Pirsa: 06060004 Page 26/68

Entropy of entanglement

for bipartite systems in pure state

$$E(\rho_{AB}) = S_{vN}(\rho_A) = -Tr(\rho_A \log \rho_A)$$
 With $\rho_A = Tr_B(\rho_{AB})$
= $S_{vN}(\rho_B) = -Tr(\rho_B \log \rho_B)$ $\rho_B = Tr_A(\rho_{AB})$

gives amount of information of one qubit that can be obtained by making measurement on the other qubit of a pair

$$S_{\nu N}(\rho) = -Tr(\rho \log \rho) = -\sum_{n} \lambda_n \log \lambda_n$$

calculated from eigenvalues

Toy model quantum computer: 2 qubits

$$|\Psi\rangle = \sum_{i=0}^{3} c_i |i\rangle \equiv (c_0, c_1, c_2, c_3)$$

general state in computational basis

$$|0\rangle_{2}=|00\rangle=|0\rangle_{1}\otimes|0\rangle_{1}=(1,0,0,0)$$

$$|1\rangle_{2}=|01\rangle=|0\rangle_{1}\otimes|1\rangle_{1}=(0,1,0,0)$$

$$|2\rangle_{2}=|10\rangle=|1\rangle_{1}\otimes|0\rangle_{1}=(0,0,1,0)$$

$$|3\rangle_{2}=|11\rangle=|1\rangle_{1}\otimes|1\rangle_{1}=(0,0,0,1)$$

$$\rho_{AB} = \begin{pmatrix} c_0 c_0^* c_0 c_1^* c_0 c_2^* c_0 c_3^* \\ c_1 c_0^* c_1 c_1^* c_1 c_2^* c_1 c_3^* \\ c_2 c_0^* c_2 c_1^* c_2 c_2^* c_2 c_3^* \\ c_3 c_0^* c_3 c_1^* c_3 c_2^* c_3 c_3^* \end{pmatrix}$$

reduced density matrix

$$\rho_A = \begin{pmatrix} c_0 c_0^* + c_1 c_1^* & c_0 c_2^* + c_1 c_3^* \\ c_2 c_0^* + c_3 c_1^* & c_2 c_2^* + c_3 c_3^* \end{pmatrix}$$

eigenvalues

$$\mu_{\pm} = \frac{1}{2} (1 \pm \sqrt{1 - 4|c_0c_3 - c_1c_2|^2})$$

Toy Model Adiabatic Quantum Computer

$$|\psi(t)\rangle = \sum_{i=0}^{3} c_i(t)|i\rangle = (c_0(t), c_1(t), c_2(t), c_3(t))$$

instantaneous eigenstate

eigenvalues of reduced density matrix:

$$\mu_{\pm}(t) = \frac{1}{2} (1 \pm \sqrt{1 - 4|c_0(t)c_3(t) - c_1(t)c_2(t)|^2})$$

calculate entropy of entanglement as function of time:

$$\mathcal{E}(t) = -\left[\mu_{+}(t)\log\mu_{+}(t) + \mu_{-}(t)\log\mu_{-}(t)\right]$$

a first result:

- entanglement is produced during the computation
- max value far below 1
- is entanglement necessary for algorithm to work, and for speed-up?
- or is it just a byproduct of time evolution?

Pirsa: 06060004 Page 30/68

varying the initial state (changing the Hamiltonian):
two non-maximally entangled states

Bell state

for $c_0 \ge c_3$ (states close to $|m\rangle$), \mathcal{E} approaches 0 monotonically

for $c_3 \gg c_0$ (states further away from $|m\rangle$), difference between initial and maximum \mathcal{E} larg

Pirsa: 06060004 Page 31/68

more results and more questions:

- non-maximally entangled state in fig.a: Hamiltonian with the same spectrum as equally weighted superposition, same running time
- running time correlated with spectrum (as adiabatic theorem suggests), and not so much with entanglement?
- for states further away from marked state, more entanglement created during search; speed-up related to overlap of initial and final state $1/N = \langle \Psi_0 | m \rangle$
- relevance of overlap (fidelity) for algorithm?
- larger n; and Large n
- other algorithms

varying the initial state (changing the Hamiltonian):
two non-maximally entangled states

Bell state

for $c_0 \ge c_3$ (states close to $|m\rangle$), \mathcal{E} approaches 0 monotonically

for $c_3 \gg c_0$ (states further away from $|m\rangle$), difference between initial and maximum \mathcal{E} larg

more results and more questions:

- non-maximally entangled state in fig.a: Hamiltonian with the same spectrum as equally weighted superposition, same running time
- running time correlated with spectrum (as adiabatic theorem suggests), and not so much with entanglement?
- for states further away from marked state, more entanglement created during search; speed-up related to overlap of initial and final state $1/N = \langle \Psi_0 | m \rangle$
- relevance of overlap (fidelity) for algorithm?
- larger n; and Large n
- other algorithms

search with different initial states, n=2 qubits

$$|Y\rangle = N(2,2,1,1)$$

$$|C\rangle = N(1,1,2,2)$$

$$|G\rangle = N(1,1,1,1)$$

$$|R\rangle = N(1,3,1,3)$$

$$|P\rangle = N(3,1,3,1)$$

$$|B\rangle = N(1,5,1,5)$$

correlations: large maximum entanglement - large running time small initial fidelity - large running time

Deutsch-Jozsa Algorithm

determine whether a function

$$F: \{0,1\}^n \to \{0,1\}$$

is constant or balanced

e.g. for n=1: four possible outcomes

$$F(0)=F(1)=0$$

F(0)=F(1)=1

F(0)=0; F(1)=1

F(0)=1; F(1)=0

constant (all outputs identical)

balanced (number of zeros=number of ones)

classically: need to measure F(0) and F(1)

quantum: one measurement yields result

Deutsch-Jozsa algorithm: adiabatic version

Das, Kobes, Kunstatter, quant-ph/0111032

$$|\Psi_0\rangle = \frac{1}{\sqrt{N}} \sum_{i=0}^{N-1} |i\rangle$$

$$|\Psi_1\rangle = \alpha|0\rangle + \frac{\beta}{\sqrt{N-1}} \sum_{i=0}^{N-1} |i\rangle$$

$$\alpha = \frac{1}{N} \left| \sum_{x \in \{0,1\}^n} (-1)^{F(x)} \right|; \beta = 1 - \alpha$$

if measurement yields $|0\rangle$, F is constant, otherwise balanced

note: $\alpha = 1, \beta = 0$ coincides with search algorithm for $|m\rangle = |0\rangle$

Deutsch-Jozsa algorithm, n=2

Pirsa: 06060004 Page 41/68

try "larger" system, n=3

how should we calculate entropy of entanglement?

results depend on which qubits are traced over

 check if results on running time etc. change with a different definition of entanglement

 alternative definition of entanglement: not mathematical or axiomatic, or operational, but physically motivated

Pirsa: 06060004 Page 42/68

measuring entanglement geometrically

as the distance

$$|d\rangle = |c\rangle - |p\rangle$$

between the composite state under consideration $|c\rangle=(c_0,c_1,c_2,c_3)$

and the closest product state

$$|p\rangle = (a_0|0\rangle + a_1|1\rangle) \otimes (b_0|0\rangle + b_1|1\rangle)$$

= $a_0b_0|00\rangle + a_0b_1|01\rangle + a_1b_0|10\rangle + a_1b_1|11\rangle$
= $(a_0b_0, a_0b_1, a_1b_0, a_1b_1)$

i.e. minimize the function

$$D(a_0, a_1, b_0, b_1) = c_0^2 + c_1^2 + c_2^2 + c_3^2 + (a_0^2 + a_1^2)(b_0^2 + b_1^2) - 2(a_0b_0c_0 + a_0b_1c_1 + a_1b_0c_2 + a_1b_1c_3)$$

remarks

- advantage over entropy of entanglement: generalization to more than two subsystems straightforward, problem of how to partition the system does not occur
- D is very similar to the Hilbert-Schmidt distance, but faster to calculate numerically
- minimization of D with unnormalized product states gives condition that might suggest geometric interpretation of von Neumann entropy of entanglement for n=2: length of closest non-normalized product state determines one of the terms

$$(N_a N_b)^2 - N_a N_b + |c_0 c_3 - c_1 c_2|^2 = 0$$

$$\mu^2 - \mu + |c_0c_3 - c_1c_2|^2 = 0$$

with $N_a N_b = (a_0^2 + a_1^2)(b_0^2 + b_1^2)$

geometrical interpretation:

- space of all normalized 4-dim. states is a 3-sphere
- space of normalized product states is a subset on the surface of this 3-sphere
- unnormalized product states lie on radial lines that intersect the 3-sphere
- the closest product state to an arbitrary normalized state will lie on such a line in the interior of the 3-sphere, i.e. it will be unnormalized
- the only case where the closest product state will be normalized is if the arbitrary state is a product state itself

Pirsa: 06060004 Page 45/68

Entanglement for the search algorithm, n=2

Pirsa: 06060004 Page 46/68

another distance measure

we compare the function

$$G(t) = \sum_{i=0}^{N-1} ||c_i(t)| - |c_i(T)||$$

which measures the distance between instantaneous ground state and final state componentwis

with the function

$$F(t) = 1 - \tilde{F}(t)$$

which is essentially the negative of the fidelity

$$\tilde{F}(t) = |\langle c(t)|c(T)\rangle| = |\sum_{i=0}^{N-1} c_i^*(t)c_i(T)|$$

100 t

Optimizing the adiabatic evolution

adiabaticity condition

for

$$\varepsilon = \max_{0 \le t \le T} \left| \frac{\langle E_{+} | \frac{dH}{dt} | E_{-} \rangle}{(E_{+} - E_{-})^{2}} \right|$$

$$\langle E_{+} | \frac{dH}{dt} | E_{-} \rangle$$

• running time for a particular value of E

$$T = \max_{0 \le s \le 1} \left| \frac{\langle E_+ | \frac{dH}{ds} | E_- \rangle}{\varepsilon (E_+ - E_-)^2} \right|$$

with dimensionless time variable

$$s = t/T$$

optimization: apply condition locally to each infinitesimal time step dt, i.e. replace s(t) by non-linear function that changes fast where energy gap is large, and slow only where energy gap is small

$$dt = ds \left| \frac{\varepsilon (E_{+} - E_{-})^{2}}{\langle E_{+} | \frac{dH}{ds} | E_{-} \rangle} \right|$$

$$T_{opt} = \varepsilon \int_0^1 ds \left| \frac{(E_+ - E_-)^2}{\langle E_+ | \frac{dH}{ds} | E_- \rangle} \right|$$

optimized running time

Optimizing the adiabatic evolution

adiabaticity condition

for

$$\varepsilon = \max_{0 \le t \le T} \left| \frac{\langle E_+ | \frac{dH}{dt} | E_- \rangle}{(E_+ - E_-)^2} \right|$$

• running time for a particular value of E

$$T = \max_{0 \le s \le 1} \left| \frac{\langle E_+ | \frac{dH}{ds} | E_- \rangle}{\varepsilon (E_+ - E_-)} \right|$$

with dimensionless time variable

$$s = t/T$$

optimization: apply condition locally to each infinitesimal time step dt, i.e.
 replace s(t) by non-linear function that changes fast where energy gap is large,
 and slow only where energy gap is small

$$dt = ds \left| \frac{\varepsilon (E_{+} - E_{-})^{2}}{\langle E_{+} | \frac{dH}{ds} | E_{-} \rangle} \right|$$

$$T_{opt} = \varepsilon \int_0^1 ds \left| \frac{(E_+ - E_-)^2}{\langle E_+ | \frac{dH}{ds} | E_- \rangle} \right|$$

optimized running time

Optimizing the adiabatic evolution

adiabaticity condition

for

$$\varepsilon = \max_{0 \le t \le T} \left| \frac{\langle E_+ | \frac{dH}{dt} | E_- \rangle}{(E_+ - E_-)^2} \right|$$

• running time for a particular value of E

$$T =$$

$$T = \max_{0 \le s \le 1} \left| \frac{\langle E_+ | \frac{dH}{ds} | E_- \rangle}{\varepsilon (E_+ - E_-)^2} \right|$$

with dimensionless time variable

$$s = t/T$$

optimization: apply condition locally to each infinitesimal time step dt, i.e. replace s(t) by non-linear function that changes fast where energy gap is large, and slow only where energy gap is small

$$dt = ds \left| \frac{\varepsilon (E_{+} - E_{-})^{2}}{\langle E_{+} | \frac{dH}{ds} | E_{-} \rangle} \right|$$

$$T_{opt} = \varepsilon \int_0^1 ds \left| \frac{(E_+ - E_-)^2}{\langle E_+ | \frac{dH}{ds} | E_- \rangle} \right|$$

optimized running time

adiabatic search with 2 qubits and optimized time

entropy of entanglement and geometric entanglement show qualitatively the same behaviour largest maximum value of entanglement corresponds to largest running time

adiabatic search with 2 qubits and optimized time

argest initial distance (small fidelity) corresponds to largest running time

adiabatic search for n=2 qubits

rate of change of fidelity is largest where entanglement is largest;

optimizing the running time flattens the rate of change of the fidelity;

Original control of the running time flattens the rate of change of the fidelity;

Page 61/68

adiabatic search for n=3 qubits, optimized time

largest initial distance (smallest fidelity) corresponds to largest running time

Pirsa: 06060004 Page 62/68

adiabatic search for n=3 qubits

rate of change of fidelity is largest where entanglement is largest;

optimizing the running time flattens the rate of change of the fidelity;

Prise: 0000004 Ses maximum value of entanglement

Page 63/68

adiabatic quantum search for n=3 qubits, optimized time

note: order of maxima is not the same for the two measures of entanglement (same result for unoptimized time)

Pirsa: 06060004 Page 64/68

adiabatic Deutsch algorithm for n=2 qubits

states that generate entropy faster have a shorter running time

Results

- larger initial fidelity yields smaller running time, same result for G
- for search algorithm with unoptimized time, F' is largest where entanglement production is largest
- optimizing the time variable flattens out the rate of change of the fidelity
- using optimized time, initial states that produce more entanglement have larger running time for n=2 (for n=3, result only holds for geometric entanglement)
- for Deutsch's algorithm, states that generate entropy more quickly have a shorter running time

Pirsa: 06060004 Page 66/68

questions

- does the initial fidelity or the production of entanglement determine the running time? or both?
- different initial states have different initial entropy, but also produce different interactions and therefore different entanglement -- how to separate effects?
- does the geometric measure of entanglement allow conclusions about the partitioning problem?

Pirsa: 06060004 Page 67/68

wish list

- larger systems
- more algorithms
- · e.g. structured search
- from combinatorial to spatial search
- role of the Hamiltonian, interactions, relation to quantum phase transitions, and from there to spin models
- definition of entanglement for multipartite systems, identical particles, thermal systems etc.