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Introduction

Over the last couple of years great strides have been made to simplify the standard
perturbative approach to QCD calculations

» Witten's formulation of perturbative N=4 QCD as a string theory on twistor space
®» MHV rules as a way to expedite perturbative calculations

» BCFW on-shell recursion relations

It is obvious that the on-shell recursion relations bear on the cutting rules in field theory.

In fact, cut-constructibility has been reliably used to compute loop amplitudes over the last
decade. The unitarity of the S-matrix and the existence of an ordering among a sequence of
points (largest time equation) are intimately related.

The question is: which particular formulation of QCD and which particular ordering are the
most suited for a field theoretical derivation of the on=shell recursion relations?
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Introduction

Over the last couple of years great strides have been made to simplify the standard
perturbative approach to QCD calculations

» Witten's formulation of perturbative N=4 QCD as a string theory on twistor space
®» MHV rules as a way to expedite perturbative calculations

» BCFW on-shell recursion relations

It is obvious that the on-shell recursion relations bear on the cutting rules in field theory.

In fact, cut-constructibility has been reliably used to compute loop amplitudes over the last
decade. The unitarity of the S-matrix and the existence of an ordering among a sequence of
points (largest time equation) are intimately related.

The question is: which particular formulation of QCD and which particular ordering are the
most suited for a field theoretical derivation of the on=shell recursion relations?

The answer is: the space-cone gauge QCD, and a light-like ordernna.
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..and Summary

We offer a purely quantum field theoretical proof (at the level of Feynman diagrams) of
the BCFW recursion relations.

A key ingredient Is the use of space-cone gauge.

The tree level recursion relations emerge at a more fundamental level from the largest
time equation.

Our results lend themselves to natural generalizations to include massive scalars and
fermions.




Setting notation

A 4-companent Lorentz vector can be writien as a bispinor as

(Vo+Va Wi—iWa [ot

and the norm is —det({17).

The basic principle of twistors is that a null vector = the square of a commuting spinor

Notation: < vu >= v%uq. [vu] = v®u; UV =< vu >

0026




The space-cone gauge

The Yang-Mills gauge field can be decomposed in a light-cone basis as

In a twistor basis |+). |+].|—).|—]. these components read

yields the simplest Feynman diagrams in the space-cone gauge

1II'~ _1:|P_ ";".”L_"l,..:|—§—;—| = a =\
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The space cone gauge-fixed Yang-Mills Lagrangean is given by

11 i _ _ Fat _
. —;f—:u+' )_.f+.u’us ] _(F,_;‘ : }[..,"fir. 1__;

where a™ corresponds to a positive helicity gluon and «~ to a negative helicity one.

The twistor basis is selected such that an external positive helicity gluon has momentum

(It is useful, but not necessary that two opposite helicity external gluons be selected to define
the twistor basis.)
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The space-cone gauge

The Yang-Mills gauge field can be decomposed in a light-cone basis as
Mr=lada"  a )
In a twistor basis |+). |+].|—}.|—], these components read
A=a*HH +a” |9 +al-)[H +a -+l

The Yang-Mills theory Lagrangean

L=——Tr(d"A" —d* A" +i[A" A"])".

yields the simplest Feynman diagrams in the space-cone gauge

_1'\,. _1 — Ir1 1L-..j.'h _'i_"- _ |_'_ -_| T — |.|
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Setting notation

A 4-companent Lorentz vector can be writien as a bispinor as

and the norm is —det(17).
The basic principle of twistors is that a null vector = the square of a commuting spinor

Notation: < vu >=1
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The space-cone gauge

The Yang-Mills gauge field can be decomposed in a light-cone basis as

In a twistor basis |+). |+].|—}.|—], these components read
{ =at ) H +a | +a|-) [H +a |-
The Yang-Mills theory Lagrangean
L=—Tr(d"A" —9" A" +i[A". A"])".

yields the simplest Feynman diagrams in the space-cone gauge

.1'\ A =1 K‘,iri;_"u.:|—§—;_|:‘.:.]
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The space cone gauge-fixed Yang-Mills Lagrangean is given by

"1 B e _ A+ \ _
L = I'r f_H’lF_EI S — il —a’ )_r+.u’u=' -_—.-(—n : }[ " i {'_

where a™ carresponds to a positive helicity gluon and «~ to a negative helicity one.

The twistor basis is selected such that an external positive helicity gluon has momentum
P=|-)l-

and another ane, with negative helicity, has momentum

(It is useful, but not necessary that two opposite helicity external gluons be selected to define
the twistor basis.)
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The space cone gauge-fixed Yang-Mills Lagrangean is given by

_l ..r__“{-)'r{-l*jl?--_lll'ain"'I}II_I.rﬁ:!--_:

9 _ | . 8

where a™ corresponds to a positive helicity gluon and «— to a negative helicity one.

The twistor basis is selected such that an external positive helicity gluon has momentum
P=|-)-]

and another ane, with negative helicity, has momentum

(It is useful, but not necessary that two opposite helicity external gluons be selected to define
the twistor basis.)
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The external line factors have to be supplied, such that« - P = 0.

We have:
_ 1+) [P PR 1
ey —P
This implies T = stmand(e_ ) = [_—’
L] .
Notice that for the reference gluons
f_:| Jlll-:]_ f :—I —t | ."_'I — (g = 1)
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The external line factors have to be supplied, such thate - P = (.

We have:

| Hp P
Pr —V
This implies (e )T = == and {( - =k
1 i
Notice that for the reference gluons
= b R ¥ ey
] — I q — 1 | ¢ = |—P| = ) € — e — |
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The external line factors have to be supplied, such that« - P = (.

We have:

|
|"'_ P Pl
]  — — F | T —
— —p

This implies (e )T = ~—= and (¢ ;—;%_
=
Notice that for the reference gluons

F=1 ()t =la=0 (g =(+g=0

However, in the vertices with a reference gluon we also need to evaluate

€p)" XP [P=1T

The less

LF )]

son: the reference gluons (+) participate only in (++K) 3-point vertices and the vertex

qual to k. where K is a negative helicity gluon

o
(4]
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Example: A 3-point function

Consider (+ + —) = (123). Select the reference null vectors the momenta P; and some
arbitrary P, = |+)[+|. The answer is

Example: A 4-point function

Consider (+ — —+) = (1234). Select the reference vectors P, = |—)[—| and P> = |+)[+].
e [12]
S e i b T e e
I _|"1L
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Example: A 3-point function

l‘}l

Consider (+ + —) = (123). Select the reference null vectors the momenta P; and some

arbitrary P, = |+)|+|. The answer is

j L
~ 123][31]
Example: A 4-point function
Consider (+ — —+) = (1234). Select the reference vectors P, = |—)[—| and P> = |+)[+].
T [12]
T )= Puf s = s
* 14 [23]|34] [41]
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QCD and tree level on-shell recursion relations

The on-shell recursion relations (BCFW) state:

APAPYL.Q.{Q;}) =Y AL(P.{P,)

where A; . Ap are lower n-point functions obtained by isolating two reference gluons with
shited momenta, P=P — 25, Q =Q + =gpwithn~ =n- P = n- Q = 0, on the two sides of
the cut. The shifting of the two external momenta is necessary in order to preserve
energy-momentum conservation.
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QCD and tree level on-shell recursion relations

The on-shell recursion relations (BCFW) state:

: : . |
A(P. -:f‘__ __'__',__:;_'r ) = q_ A (P.{P;} : : _,JL_','f.,’.':-'._'J.-

where A; . Ap are lower n-point functions obtained by isolating two reference gluons with
shiffed momenta, P=P — 25, Q = Q + zpwith - = - P = - Q = 0, on the two sides of
the cut. The shifting of the two external momenta is necessary in order to preserve
energy-momentum conservation.

Using the cutting rules which follow from the largest time equation and from the space-cone
gauge QCD Lagrangean we provided a direct proof of the BCFW recursion relations.
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QCD and tree level on-shell recursion relations

The on-shell recursion relations (BCFW) state:

. . . |
> .'llj.-. : f_ﬂ: L l__";_ : |'_'|‘ : — T '.i_ll'. }-'_b. i,j'n | r - .-.-'k_-|-f--,'l- :"} |

where A; . Ap are lower n-point functions obtained by isolating two reference gluons with
shited momenta, P=P — 2, Q =Q + =pwithn~ =n- P =n - Q = 0, on the two sides of
the cut. The shifting of the two external momenta is necessary in order to preserve
energy-momentum conservation.

Using the cutting rules which follow from the largest time equation and from the space-cone
gauge QCD Lagrangean we provided a direct proof of the BCFW recursion relations.
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Consider first the effect of the -1 shift of the external momenta on the vertices. Take the
shifted external gluons to coincide with the reference external gluons.
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Consider first the effect of the - shift of the external momenta on the vertices. Take the
shifted external gluons to coincide with the reference external gluons.

The effect on companents

p={+HP+H =1  p={-|P+ =—
il — e |':l|_ - 1. a =

|

Do these shifts change the vertices?
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Consider first the effect of the - shift of the external momenta on the vertices. Take the
shifted external gluons to coincide with the reference external gluons.

Do these shifts change the vertices?
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The space cone gauge-fixed Yang-Mills Lagrangean is given by

where a™ corresponds to a positive helicity gluon and «~ to a negative helicity one.

The twistor basis is selected such that an external positive helicity gluon has momentum
P=|-)[-

and another ane, with negative helicity, has momentum

(It is useful, but not necessary that two opposite helicity external gluons be selected to define
the twistor basis.)
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Example: A 4-point function

Consider the same 4-point function (+ — —+) = (1234) as before, and see what the
recursion relation implies.

Figure 1: Factonization of the 4-point function
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Example: A 4-point function

Consider the same 4-point function (+ — —+) = (1234 as before, and see what the
recursion relation implies.

Figure 1: Factonization of the 4-point function
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Example: A 4-point function

Consider the same 4-point function (+ — —=) = (1234) as before, and see what the
recursion relation implies.

=S
-

Figure 1: Factonzation of the 4-point function

Notice: the vertices are the same, multiplication with external line factors is the same, and on

the internal line, now on-shell, ¢« - = 1. The factorization works trivially in this case.
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Example: A 5-point function

Consider this time the 5-point function (+ + + — —) = (12345

4™

o N

b

des

b,
5

5

e
.
o

Nt e N

Figure 1: Factorization of the 5-point function
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Comments:

B Each time there is only one internal line between the shifted/external gluons, the
factorization is trivial.

In particular, C and D are trivial.

B When there is more than one internal line that can be set on-shell, the proof of
factorization rests on a simple algebraic identity involving the propagators.

In particular, the sum A+B equals

| | | l 4 l |
!r':_‘ __r:__ - Ir'm_' 8 2 f";_ F

15 J_'j=',

Pi=Pi+in, F=FK-2

I ) I '}
P- =P + 20, P- = FP5—2n.
1

- are such that we put the internal lines i L, respectively, on-shell

i 12 _ P i

0026 2n - Pro 5% 2n - Py 15 Page 39/




Massaging “A+B™

I 1 | | [ I
!'.'_ N2 — [ s '-_:' » |
=12 l 35 ! 12 {5 I - P
... Recall n=\|+, — —28 [l
» Use that
Ir i_'_. = iy :rl ' lrrrl_ = 22q- P
Jf}_ 4 - r .!nl En_' -3 — )y f‘:
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Massaging “A+B"

(3
pe
8
K
:
|
I

l | l

This completes the proof of the BCFW recursion relation from Feynman diagrams for the
5-point function.
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The largest time equation

Consider the scalar propagator:

We begin by explicitly construct a representation of the Feynman propagator, wherein a
light-like four-vector is introduced as a parameter.
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Massaging “A+B™

e
e
8
K
i
|
I

This completes the proof of the BCFW recursion relation from Feynman diagrams for the

5-point function.
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The largest time equation

Consider the scalar propagator:

Alr —y) = = / IIII} d“ - ¢ L

We begin by explicitly construct a representation of the Feynman propagator, wherein a
light-like four-vector is introduced as a parameter.
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The largest time equation

Consider the scalar propagator:

We begin by explicitly construct a representation of the Feynman propagator, wherein a
light-like four-vector is introduced as a parameter.

l 2o [ d |
..li r— il - = i . |'i. r} :."|| 17"
= & } i i

il Il o | T —

i .ul:"r I a: . |
=l = l—p" Jo(pT)e '
e ] . L y L |

o Far i o & L

with 1 an arbitrary null vector. Appropriating some common notations to the light-cone frame
context, we can rewrite the position space propagator
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The largest time equation

Consider the scalar propagator:

We begin by explicitly construct a representation of the Feynman propagator, wherein a
light-like four-vector is introduced as a parameter.

1 f d'p [ d: |
..:’:Li E— Y] == = / }w_ __ s it p :*‘lijl'r_ £

—

! ray

,| .l_.l-‘jl i 1= & : S v ey e
— - / = - __ H—p Jo(pTle ;

o P! . T RE

with 7 an arbitrary null vector. Appropriating some common notations to the light-cone frame
context, we can rewrite the position space propagator

A b — I.,II —== f'rl _,-'_-"l:l_ i_.ll'_'llr._'l'-" —i..l"—.',' _li_ .-_r‘l:..
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The algebraic identity involving propagators, which sits at the core of our proof of
factorization, is a consequence of the largest time equation. Following . we begin
with the following set of rules:

® for any Feynman diagram. construct all copies s.t. the vertices can be circled or
un-circled;

B any circled vertex brings i, and each un-circled vertex a factor (—i)

® the propagator between to uncircled vertices is A(r — y), and the one between circled
vertices is A™ (x — y)
B the propagator between circled and un-circled vertices is AT (r — y) and between

un-circled and circled is A7 (r — y

Flz —1{'-"5.,'..—}_"[ = —1
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The algebraic identity involving propagators, which sits at the core of our proof of
factorization, is a consequence of the largest time equation. Following . we begin
with the following set of rules:

® for any Feynman diagram. construct all copies s.t. the vertices can be circled or
un-circled;

B any circled vertex brings i, and each un-circled vertex a factor (—i)

e

the propagator between to uncircled veriices is A(r — y/, and the one between circled
vertices is A™ (x — y)

B the propagator between circled and un-circled vertices is AT (r — y) and between
un-circled and circled is AT (r — y

Flx:)4+ F7 (z;) —EI: sy — | )
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Another way to phrase the largest time equation is to select r; and ;. Assume r,;” < r, .
Then, one has

iz — z)" W Fiz:) +Flk.z:})) =0.
where F(k. z; ) is the sum of all diagrams with & uncircled, but at least one other vertex
circled. Similarly, one has

4 TV Fila L F =

By adding these two equations one finds
Flz;) =—-F{k.lz;) —0((x; —x )T F(k.L.x;) = 0((zp — ;)7 )F(k.l.x;)).

where F(k.[, r; ) is the sum of all diagrams with neither /.. circled, but at least one other
vertex circled, F( k.. ;) is the sum of all amplitudes with & uncircled , but | circled.

The shift of two external momenta by £-7 in the on-shell recursion relations is nothing but

the result of the implementation of the step functions that appear in the largest time equation

0026




Another way to phrase the largest time equation is to select r; and r;. Assume r,;” < r, .
Then, one has

Mizy — )" WF(x;) +Flk.x:)) =0.

where F(k.x, ) is the sum of all diagrams with & uncircled, but at least one other vertex

circled. Similarly, one has

Flz;)=-F(k.l.z;) —0((x; —xi )T )F(k.l.z;) = 0((xp — ;)7 )F(k.l.x;)).

where F(k.[, r,) is the sum of all diagrams with neither /. [ circled, but at least one other
vertex circled, F( k.1 r; ) is the sum of all amplitudes with % uncircled , but [ circled.

on relations is nothing but

o

The shift of two external momenta by +-1 in the on-shell recur

the result of the implementation of the step functions that appear in the largest time equation
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Consider the propagator identity we found for the 5-point function (+ -+ — — \. Reinstating
the usual i« prescription in the momentum space propagators. the left-hand-side of the
identity becomes:

P +---+P5) 1

— - / fl'l_'j-'!_.' n;‘l.l,.l!.."‘l — 1) A(xo — 1€ (P14-Pa)ay+iPyea+i{ Py+-P:

The shifted propagators which appear on the left-hand-side of the identity can be cast into

MNP L+---+PF5) | o F 1

— = =71 / (] |fll.."_f'?.l" s
P :

|+ e+ y oo 4]
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Consider the propagator identity we found for the 5-point function (+ + + — — . Reinstating
the usual i« prescription in the momentum space propagators. the lefi-hand-side of the
identity becomes:

il rrl + ety Tl ". ] l

= / drydradr3A(z) — x2)A(xe — x3)e’ 12T R AR

The shifted propagators which appear on the left-hand-side of the identity can be cast into

0 IJ—FL_'_IIF+JF_LI-I I ;ll 7 I ||
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After a similar manipulation of the second term on the rhs, the identity becomes

/ | droedrye P1+£2)x1+ 2+ Pyt P A — 12 ) A(xry —x3)
— (8((xr — 23)1)AF (21 — 22) +8((x3 — 21)F)A (21 — 72) ) A2 -
\
[ 6((z; — 23) D) AT (25 L6 HIA~ (x5 A o)l =4
L]

There is one more step that is needed in order to show the relationship with the largest time
equation with r,. ry the two vertices that are singled out

_"1.-1..-':_ —- _"";-.."_- —1x3) = A ! —.'_-,:-_\_ > —T3)
- LT — bt {__.";-'_I 2 )JA(x2 — - A (xy —x2) AT (22 —
+ Gl — 17 _:(-A'_.r'[ — o)A (o —x3) — AT (ry — ) A (k2 —

The Fourier-transform of our identity equals the largest time eqution up to the following extra

terms: (1 —z3) T )AT(x1 —22) AT (22 — 23). {23 — 21 )T IA (21 — 22) A" (22 — T3).
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These terms in fact are zero as the product of the three distributions has zero support. The
easiest to see this is to evaluate the Fourier transform

/ Iridradrse’ F11HE tiFyxa+il PatFs)e3g 2 ) T)AT(a ) AT (x9 )
by rewriting the step function as a z-integral, followed by the integration over r|.x>. 23, to
arrive at

P D k ! L | ] p i W B B oy 2

NETY T.ury) i g\ T2 TZIn o {\Fyp+— F5— Z7) ).

> — 3

It is clear that no = can satisfy the simultaneously the two delta-function constraints.

0026 Page 61/







After a similar manipulation of the second term on the rhs, the identity becomes

/.-.'_ | _s'rr € 1+ T 2-+8( K] A — B9 _\L--_"_
— [ 8((zy — z3) D) AT (z1 — 22) +0((z3 - A — 22) JA(z2 —
\ j
| oy — sl 1A s} ) )A™ (r2 — 23) JA(zy —22)| =1
II'.

There is one more step that is needed in order to show the relationship with the largest time

equation with = . -, the two vertices that are singled out

= A (x; — 22 ) AT (2

Alxy — x20) (20 — x5
F B((xy —xz3)T |:_L‘|‘|..-. - 72)A(z2 — 13) — A" (21 — 22) AT (22 — 73) ]
N (ry — ) A (x2 — 2

+ B(xx — 1y

The Fourier-transform of our identity equals the largest time eqution up to the following extra

"'I_"'.I'..[— AT (o —x3). {3 —x1)TIA (21 — 29
Page 63/

terms: (11 — 3
0026







After a similar manipulation of the second term on the rhs, the identity becomes

/ idradrzet F1HF2)e1+ ataFatd A(r1 —x2)A(x2 —x3)
= I.r” —) '._\l'.; —Io)+0 e A — o .b_‘-,k 5y —
\
(g 1 — r3) AT (25 -6 TIAT (2 | A 2 =
II'.

There is one more step that is needed in order to show the relationship with the largest time

equation with = . r4 the two vertices that are singled out

_."L':.a":_ —.."_'__III'L oy — 1L = _\_ L _.'_'.:'_\\._ oL — %]
{ :. T oy (o ra ) — \ | — I9 __‘.1_ ro — I3 '

The Fourier-transform of our identity equals the largest time eqution up to the following extra

"JIAT e —x2 ) AT (o —23). (3 — 321 )T IAT (11 — 29 (x2 — 13).
Page 65/

terms: 0( (x| — 3
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These terms in fact are zero as the product of the three distributions has zero support. The
easiest to see this is to evaluate the Fourier transform

/ Ersdundne™ RIS SR E s ) 3) TJAT(z1 — 22) AT (22 )
by rewriting the step function as a z-integral, followed by the integration over r|.x>. 23, 10
arrive at
P D L =D P vs+ir D B 2
Y = | 1 f } D+ ] NiBNEN, T = — Z7 |

It is clear that no = can satisfy the simultaneously the two delta-function constraints.
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These terms in fact are zero as the product of the three distributions has zero support. The
easiest to see this is to evaluate the Fourier transform

/ i1 '_I_ir_.l'"_l".:_.";' : :”-._l_l; LT r.: “I-l_. __I'E_._r._' ; :F‘:lll"_ - I 3 :|+ ,_l_._:.j' - 'P:'_l-;_ ED ¥ i J

by rewriting the step function as a z-integral, followed by the integration over r|.x>. 23, o
arrive at

- ) I' % W, I . 2 r
P +...P5) / : —0T((Py + Pa+20)")d" ((Py + P5s — zn)~).

It is clear that no = can satisfy the simultaneously the two delta-function constraints.

Ne have shown that the algebraic identity which was found by reassembling the Feynman
diagrams into the BCFW recursion relations arises from the more fundamental largest time

equation.
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Massaging “A+B™

[ Fa 2 2
PLP;, PLP. PP
P Recall n =+, — =13 [l
» Use that
i _ B e ]
P9 = —4<i -~ I']2 Fys = &<n -1
P? =2(:—2)-Pr2, PL=2:-—2y-P

0026 Page 68/




Massaging “A+B"

e
pe
8
i
|
|
I

This completes the proof of the BCFW recursion relation from Feynman diagrams for the

5-point function.
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Caonsider the propagator identity we found for the 5-point function (+ ++ — — \. Reinstating
the usual i« prescription in the momentum space propagators. the lefi-hand-side of the
identity becomes:

P +---+P5) 1

— - / dridrydraAlry —ro)A(xro — xr3)e (Pr+Pa)xy+iPyea+i{ Py+Ps

The shifted propagators which appear on the left-hand-side of the identity can be cast into

A _,.’"'L_._..,_i__.l'_‘-l_- | I : .' s
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These terms in fact are zero as the product of the three distributions has zero support. The
easiest to see this is to evaluate the Fourier transform

/ |J_i"|l.l"_f ! P1+F s 2+ Py+P5)r3y | )+ AT ] AT 9 |
by rewriting the step function as a z-integral, followed by the integration over r|.x>. 23, 10
arrive at
i P » ] 7 | 4 D P At S D 2
..1__..____11, (1= ] |_.||l|_-.-_‘:-.- '.;' T .;l_f-_-_-il | .

It is clear that no = can satisfy the simultaneously the two delta-function constraints.

Ne have shown that the algebraic identity which was found by reassembling the Feynman
diagrams into the BCFW recursion relations arises from the more fundamental largest time
equation.

Comments: For the largest time equation 7 is real. For its Fourier-transform version into

momentum space, appropriate for a physical process under consideration we keep n as a
variable.

We then analytically complexify n — |+) —|.
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A general proof which can be extended to massless/massive scalar particles coupled to

Yang-Mills gauge bosons is based on partial fractioning.
The factorization procedure amounts to splicing the graph into a sum of products of two

on-shell graphs with shifted momenta {p, — tand { —¢ Dy, +

multiplying the propagator

Figure 1: Factorization of tree level amplitudes
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2 l — &l = ! 1 = <7 |
=4 2\~2 — ' a2 = Emn—1
1
{Zn—1 — 21 ){(Zn—1 — 22} —1 — Zn—2)Zn-
This partial fractioning formula emerges from § —— . - ~ =
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Adding quarks

Tree level recursion relations with fermions:

Consider the Lagrangian of minimally coupled massive fermions

L" = E II'r i"r — TR '.i_'r

The recursion relations are formulated with the two reference gluons connected by a path
which includes a fermionic line are based on the another identity involving momentum space

fermion propagators

1 | : |
d +mi 12 + mo fn—1 + My
7 — @ 52 | | l l
g + n- g2 — ‘_:I',u-|— 19 fy 1 — nTm._
- i ! >— 82 T -_'|'n_ 5 ) > |
a1 — n.':-—— 11 3= +ms) bi—1 — 2o+ M-
: I in—1 —fn—1 + 2n—1))
4 - -y =3 -2 :
a7 — - m ] = LI+ m ;. g. T, ;)
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A general proof which can be extended to massless/massive scalar particles coupled to
Yang-Mills gauge bosons is based on partial fractioning.

The factorization procedure amounts to splicing the graph into a sum of products of two
on-shell graphs with shifted momenta {p, — =, t and { —q D, +

muitiplying the propagator

Figure 1: Factorization of tree level amplitudes
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This partial fractioning formula emerges from § —— = e =k

0026 Page 76/




Adding quarks

Tree level recursion relations with fermions:

Consider the Lagrangian of minimally coupled massive fermions

Er= E W (iV —m; )0

The recursion relations are formulated with the two reference gluons connected by a path
which includes a fermionic line are based on the another identity involving momentum space
fermion propagators
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For the proof, first rewrite the fermionic propagators such that all denominators will
correspond to scalar propagators. We end up with a set of partial fractioning identities which
arise from

/ o ; o =0. form<n—-2,

N | oy SR

=

where the integral is evaluated over a contour which encircles all the poles.
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Conclusions and future directions

We offered a purely quantum field theoretical proof of the BCFW recursion relations.

A key ingredient was the use of space-cone gauge.
The tree level recursion relations emerge at a more fundamental level from the largest
time equation.

Our results lend themselves to natural generalizations to include massive scalars and
fermions.

We are currently investigating the extension of our methods at the loop level.

A few preliminary results:
® The dispersive integrals are a hallmark of the largest time equation.

# We have computed one-loop 3-point functions. For same helicity gluons the
amplitude is given by

where Pf = P5 =|
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