Title: Fast Optimization or the Radiation Therapy of Tumors - the Impossible Possible

Date: May 27, 2006 02:00 PM

URL: http://pirsa.org/06050020

Abstract: <kw> Radiation Delivery, cancer, radiation therapy, electron, isocentre, planned target volume, adaptive radiotherapy, multi-leaf collimator, energy deposition, multi-beam delivery, intensity modulation, optimal radiation treatment, matrix inversion, inverse planning optimization, symmetries, fast inverse dose optimization </kw>

Pirsa: 06050020 Page 1/143

Pedro Goldman

Dept. of Physics Ryerson University

http://www.physics.ryerson.ca

$$\delta E = \frac{4\alpha^{3}}{3} \left[\frac{\langle \delta(r_{1}) + \delta(r_{2}) \rangle}{Z^{3}} \right] \left(-2\ln\alpha + \frac{19}{30} - \ln\frac{k}{Z^{2}} \right)$$

$$= \frac{\sum \int \left| \langle \psi_{n} | \vec{r}_{1} + \vec{r}_{2} | \psi_{0} \rangle \right|^{2} \left(E_{n} - E_{0} \right)^{3} \ln\left| E_{n} - E_{0} \right|}{\sum_{n} \int \left| \langle \psi_{n} | \vec{r}_{1} + \vec{r}_{2} | \psi_{0} \rangle \right|^{2} \left(E_{n} - E_{0} \right)^{3}}$$

$$\beta = \sum_{n} \int \left| \langle \psi_{n} | \vec{r} | \psi_{0} \rangle \right|^{2} \left(E_{n} - E_{0} \right)^{3} \ln\left| E_{n} - E_{0} \right|$$

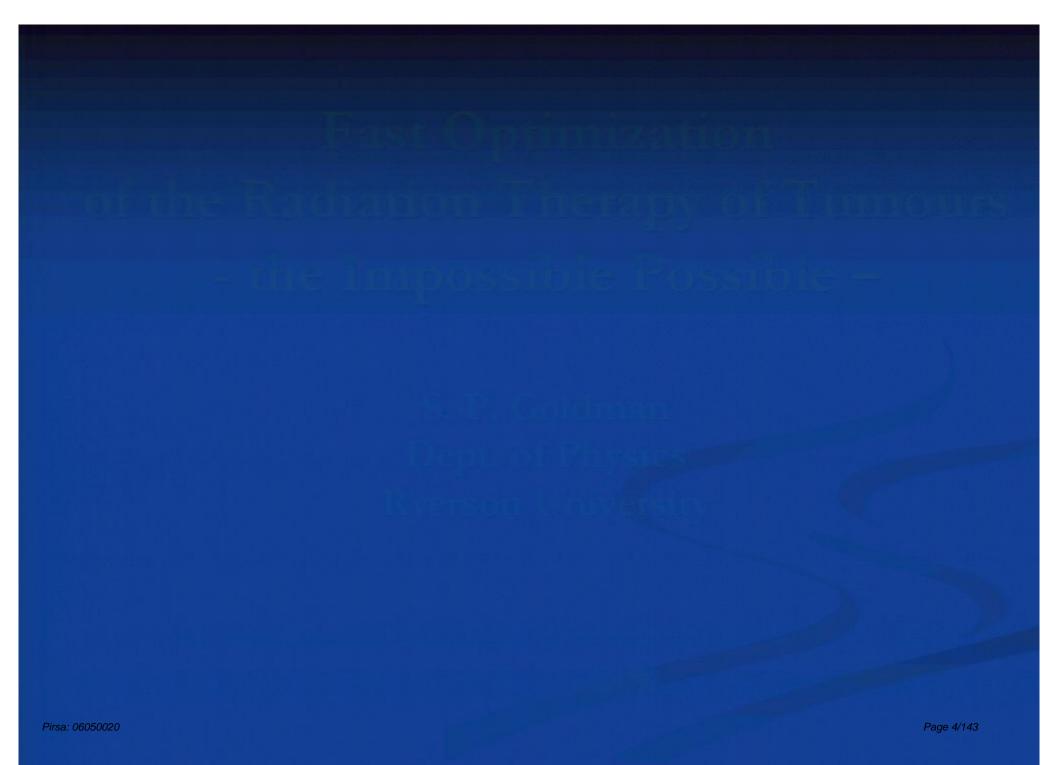
$$\beta = \sum_{n} \int \left| \langle \psi_{n} | \vec{r} | \psi_{0} \rangle \right|^{2} \left(E_{n} - E_{0} \right)^{3} \ln\left| E_{n} - E_{0} \right|$$

 β = 2.2909 8137 5205 5523 0134 2545 0657 1 a.u.

$$\sum_{n} \int \left| \left\langle \psi_{n} \middle| \vec{r} \middle| \psi_{0} \right\rangle \right|^{2} \left(E_{n} - E_{0} \right)^{3} = 2\pi Z \left\langle \delta(\vec{r}) \right\rangle_{0}$$

$$\lambda_{k} = \exp \left[\left(ax_{k-1} \right)^{b} \right] \qquad \Phi_{ik} \propto e^{-\lambda_{k} r} r^{n_{i}} Y_{l_{i}m_{i}}(\theta, \varphi)$$

Pirea: 06050020



Fast Optimization of the Radiation Therapy of Tumours - the Impossible Possible –

S. P. Goldman Dept. of Physics Ryerson University

RYTRSONUMERS/// Page 5/143

Fast Optimization of the Radiation Therapy of Tumours - the Impossible Possible –

S. P. Goldman Dept. of Physics Ryerson University

RYERSON UNIVERSITY

Co-Authors Mentors

Jerry Battista

Jeff Chen

London Regional Cancer Centre London, Ontario

sa: 06050020 Page 7/143

Co-Authors Mentors

Jerry Battista

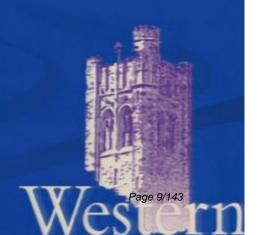
Jeff Chen

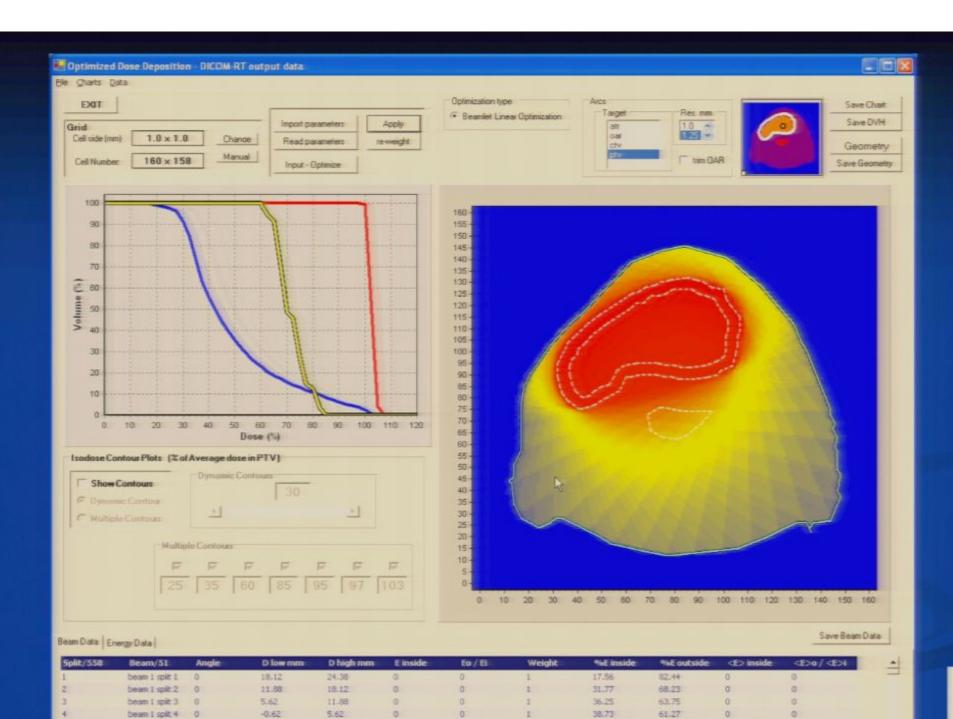
London Regional Cancer Centre London, Ontario

Research Associates

Carol Johnson David Turnbull Thomas Neff

University of Western Ontario London, Ontario





36.85

33.95

33.66

63.15

66.05

66.34

-6.88

-13.12

+19:38

beam 1 split 5:

beam 1 split 6

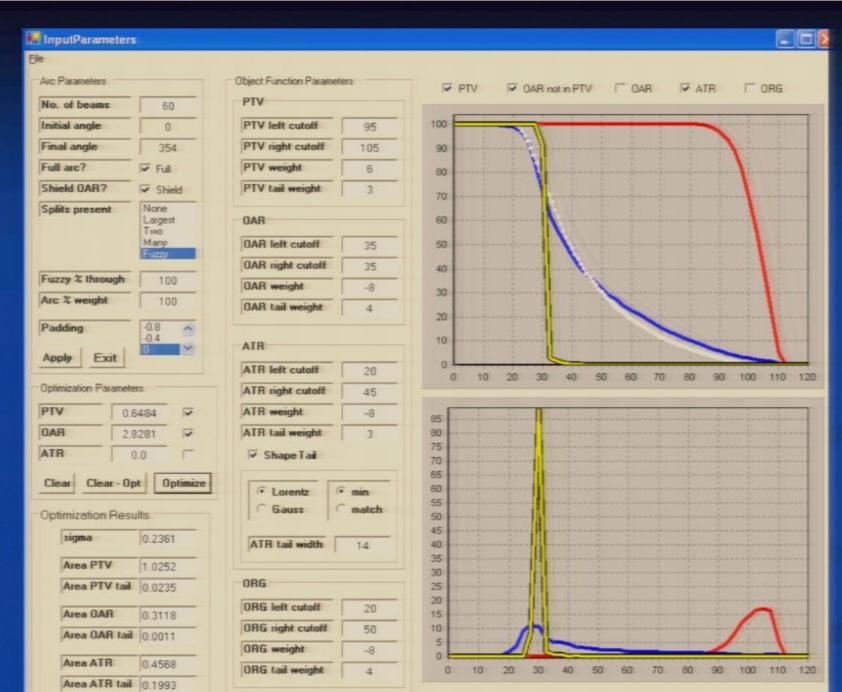
beam 1 split 7

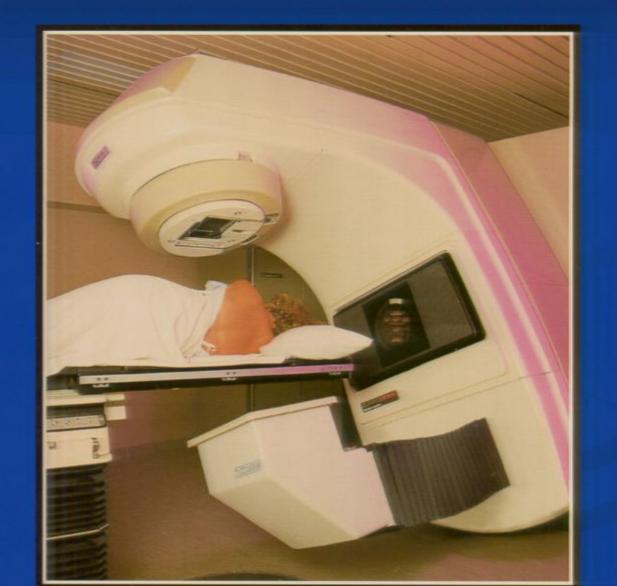
Pirsa: 06050020

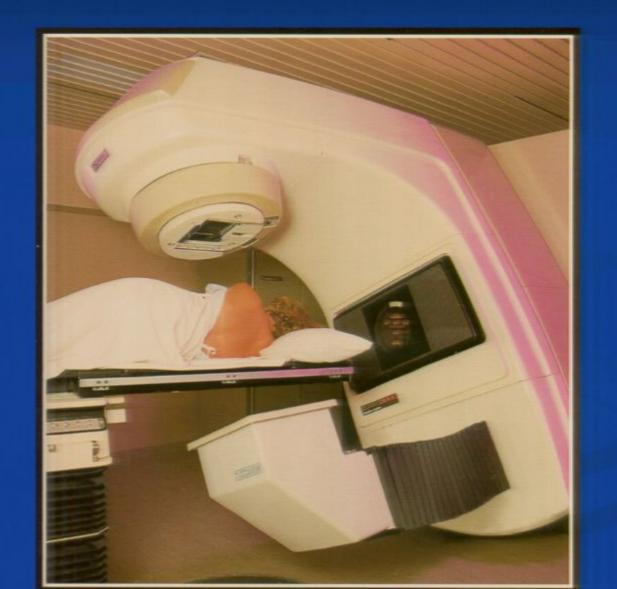
-0.62

-6.88

Page 10/143

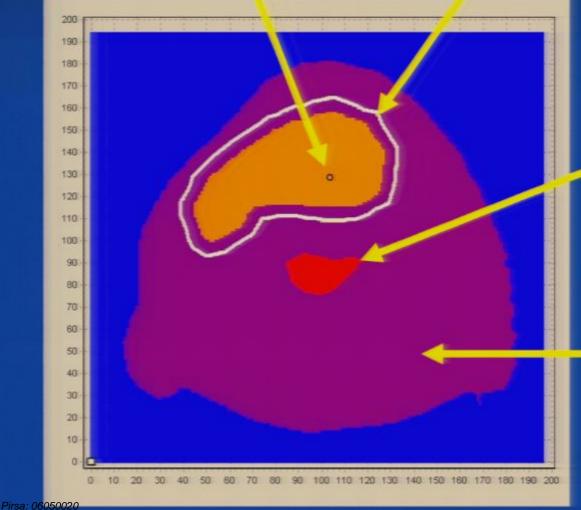






PTV:

Planned Target Volume



OAR:

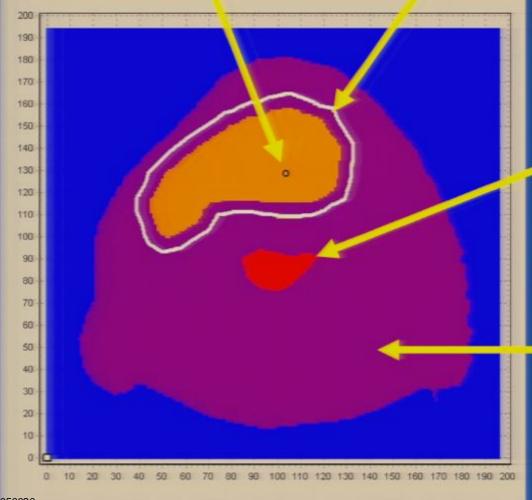
Organ at Risk

ATR:

All the Rest

PTV:

Planned Target Volume



OAR:

Organ at Risk

ATR:

All the Rest

Adaptive Radiotherapy

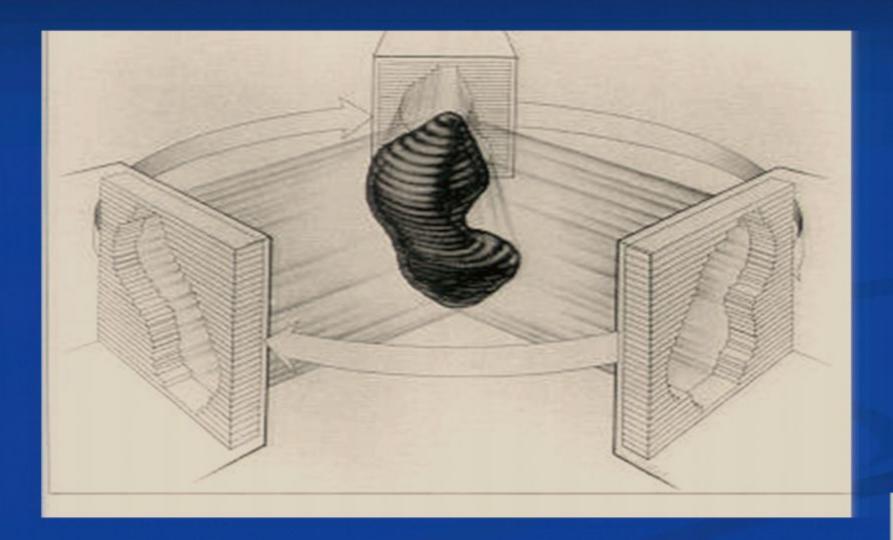
- Radiation delivery plan is calculated once before treatment starts
- Wouldn't it be nice to be able to readapt the treatment plan each day before treatment?

Indiana Para

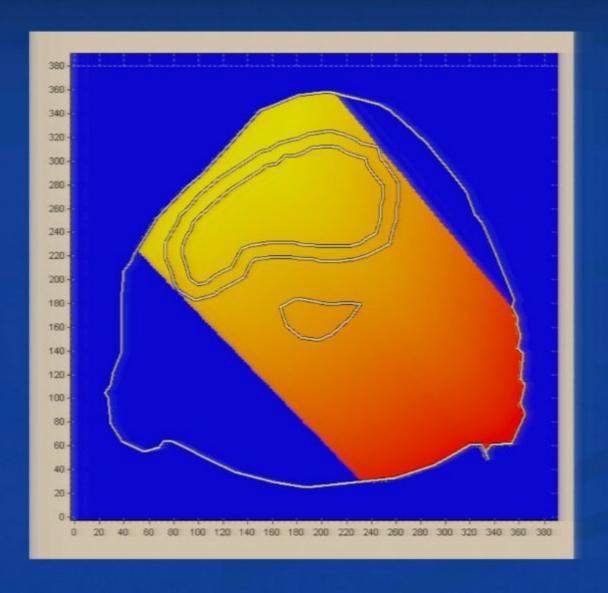
Multi-Leaf Collimator



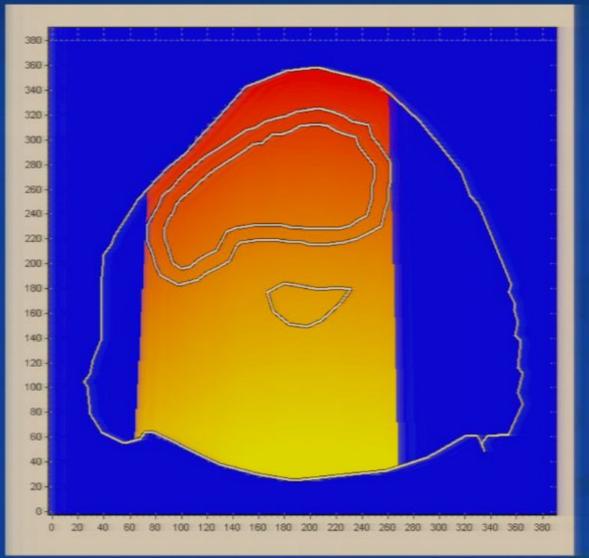
Multileaf-Collimator



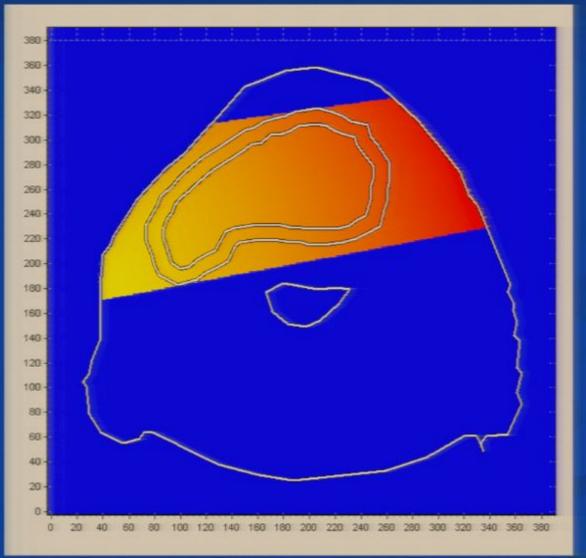
Beam: Energy Deposition



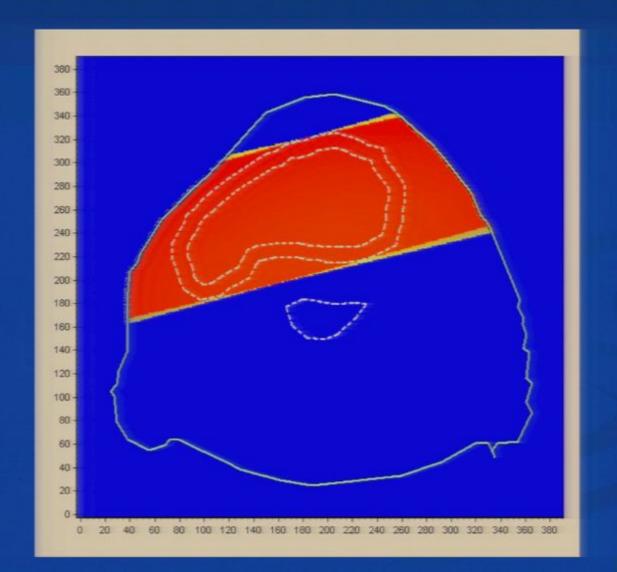
Beams: Outer Boundaries



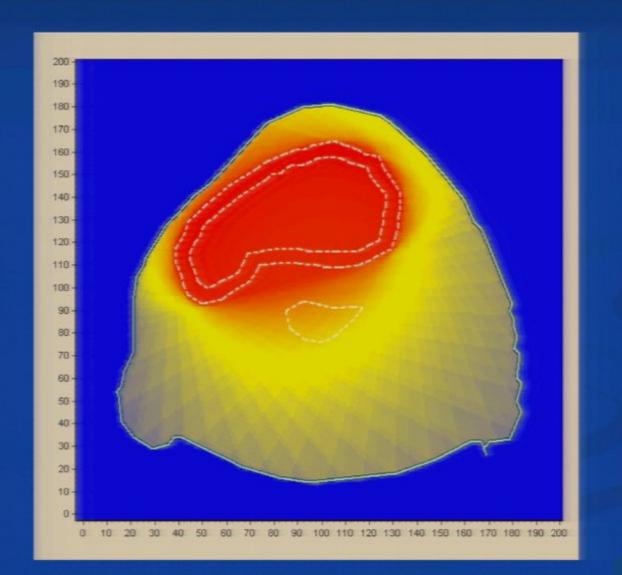
Beams: Outer Boundaries



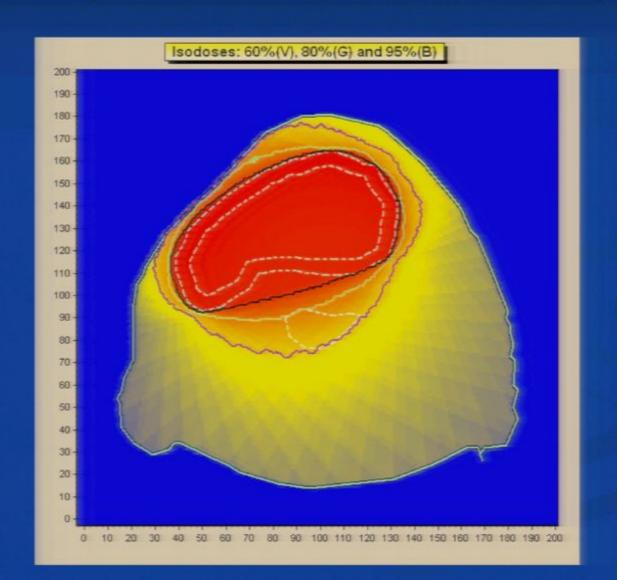
Radiation Delivery two beams, same intensity



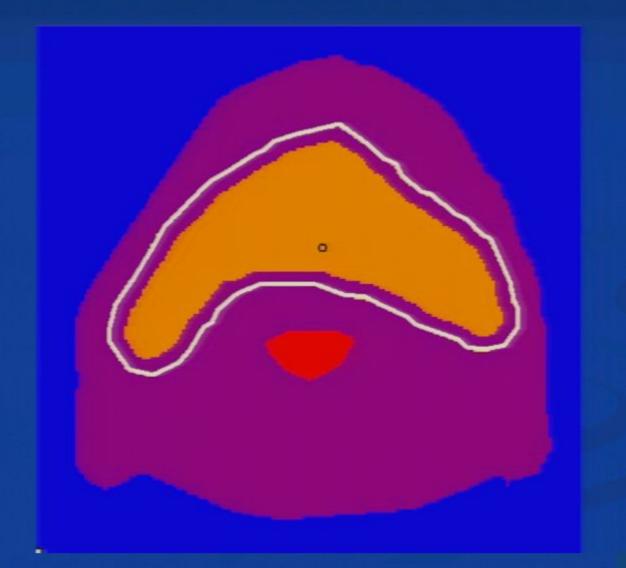
Radiation Delivery fifty beams, same intensity



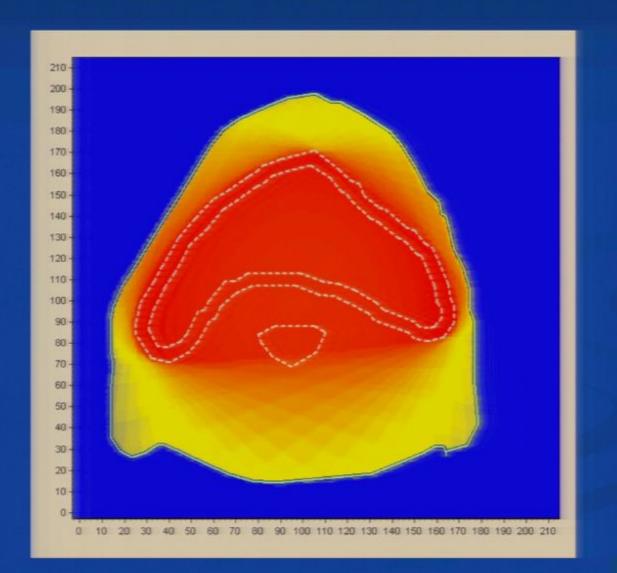
Radiation Delivery fifty beams, same intensity



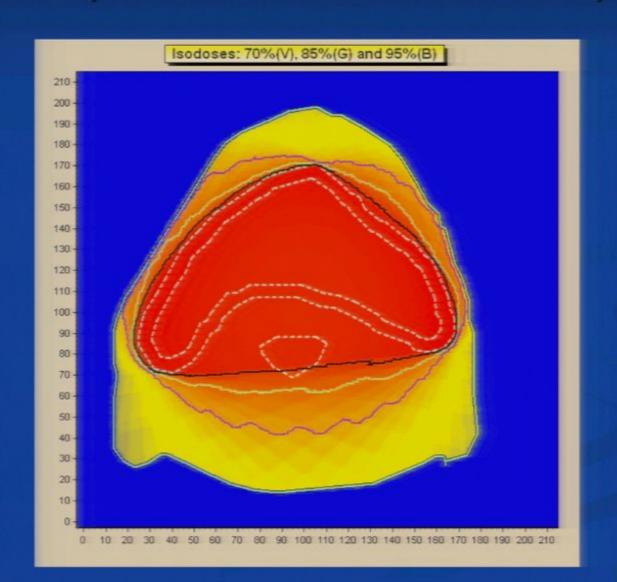
Same case different slice



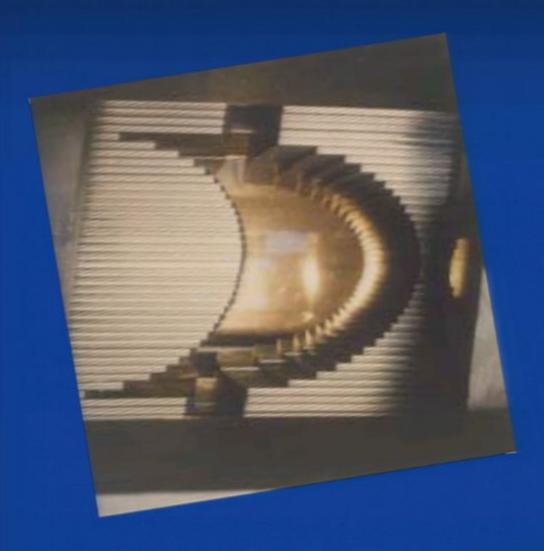
Radiation Delivery fifty beams, same intensity

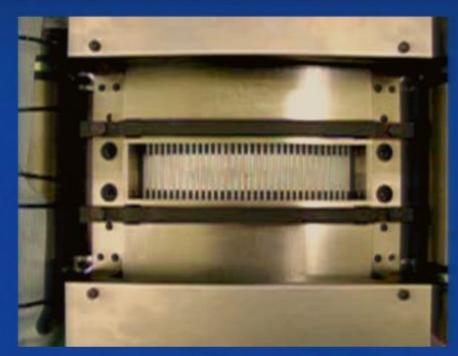


Radiation Delivery fifty beams, same intensity

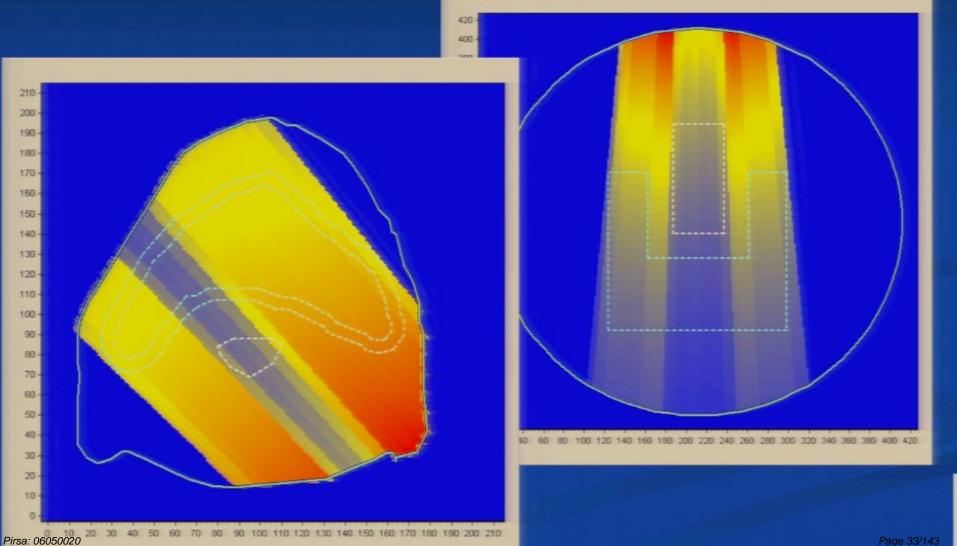


Intensity Modulation



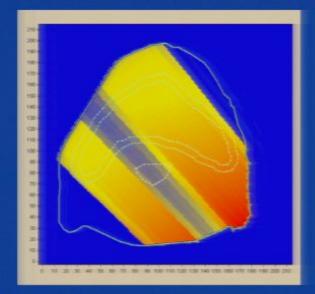


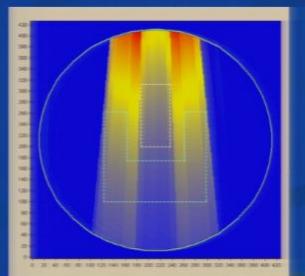
Radiation Delivery - Beamlets



Radiation delivery (IMRT, Tomotherapy,...)

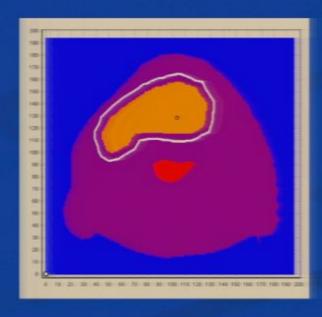
- Irradiate from several (many) gantry angles
- Beams are divided in narrow beamlets
- Each beamlet may have a different weight





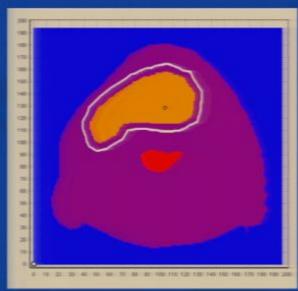
Optimal radiation treatment

Assign to each beamlet the correct weight in order to obtain:



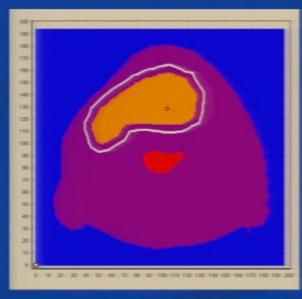
Optimal radiation treatment

- Assign to each beamlet the correct weight in order to obtain:
 - Homogeneous energy deposition inside the Planned Target Volume (PTV)
 - Low (or no) energy deposition
 - inside the Organs at Risk (OAR)
 - everywhere else inside the outside contours (ATR)



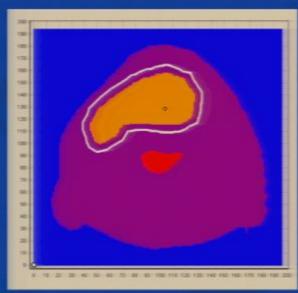
Optimal radiation treatment

- Assign to each beamlet the correct weight in order to obtain:
 - Homogeneous energy deposition inside the Planned Target Volume (PTV)
 - Low (or no) energy deposition inside the Organs at Risk (OAR)
 - Low energy deposition everywhere else inside the outside contours (ATR)



Optimal radiation treatment

- Assign to each beamlet the correct weight in order to obtain:
 - Homogeneous energy deposition inside the Planned Target Volume (PTV)
 - Low (or no) energy deposition inside the Organs at Risk (OAR)
 - Low energy deposition everywhere else inside the outside contours (ATR)
- BUT HOW?



Optimal radiation treatment Inverse Optimization Problem

 We know the dose distribution we need (the final result)

Optimal radiation treatment Inverse Optimization Problem

- We know the dose distribution we need (the final result)
- We do not know what beamlet intensities will yield the desired result

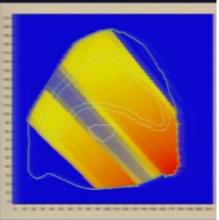
I general for

Optimal radiation treatment Inverse Optimization Problem

- We know the dose distribution we need (the final result)
- We do not know what beamlet intensities will yield the desired result
 - *i.e.* the weight of each beamlet for each beam at each gantry angle --- hundreds or thousands of beamlets!

SEARCH

- *i.e.* By <u>trial and error</u> find the weights of each of the thousand of beamlets such that:
 - The addition of the dose deposited by all beamlets at each point in the Planned Target Volume (PTV) will add up to the prescribed dose for the tumour.
 - The addition of the dose deposited by all beamlets at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.



- Rely on a numerical search
 - Trial and error: try different values for each of the hundreds (thousands) of beamlets
 - Long computation times
 - Search may 'get trapped' into sub-optimal results

I de la constant de l

- Rely on a numerical search
 - Trial and error: try different values for each of the hundreds (thousands) of beamlets
 - Long computation times
 - Search may 'get trapped' into sub-optimal results

- Rely on a numerical search
 - Trial and error: try different values for each of the hundreds (thousands) of beamlets
 - Long computation times
 - Search may 'get trapped' into sub-optimal results

- Alternative: optimize by matrix inversion
 - Very (Very) fast, single and best solution

- Rely on a numerical search
 - Trial and error: try different values for each of the hundreds (thousands) of beamlets
 - Long computation times
 - Search may 'get trapped' into sub-optimal results

- Alternative: optimize by matrix inversion
 - Very (Very) fast, single and best solution

legate to

- Rely on a numerical search
 - Trial and error: try different values for each of the hundreds (thousands) of beamlets
 - Long computation times
 - Search may 'get trapped' into sub-optimal results

- Alternative: optimize by matrix inversion
 - Very (Very) fast, single and best solution
 - Cannot be used (!!!) Why?

Ingradient Res Cannot Ca

Traditional Optimizations

An Object Function O

$$O = p_{PTV} \sum_{x \in PTV} \left(D(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(D(x) \right)^2$$

- $= \varepsilon^{PTV}$: the dose prescribed for the PTV (the target volume)
- **D(x):** the total dose deposited at point x by all the beamlets passing through x.

$$D(x) = \sum_{\text{each beamlet}}^{\text{all beamlets}} D_{\text{each beamlet}}(x)$$

Western for

Traditional Optimizations

An Object Function O

$$O = p_{PTV} \sum_{x \in PTV} \left(D(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(D(x) \right)^2$$

- D(x): the total dose deposited at point x by all the beamlets passing through x.

$$D(x) = \sum_{\text{each beamlet}}^{\text{all beamlets}} D_{\text{each beamlet}}(x)$$

Lamenton for

Traditional Optimizations

Weights:

 Express the dose deposited by each beamlet in terms of a beamlet weight

$$D_i(x) = w_i d_i(x)$$

- \mathbf{w}_i "weight" of beamlet i
- $d_i(x)$ Dose deposited at point x by beamlet i with unit weight

Inguisher Res

Traditional Optimizations

An Object Function O

$$O = p_{PTV} \sum_{x \in PTV} \left(D(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(D(x) \right)^2$$

Rewrite the total dose deposited at point x in terms of the dose deposited at x by beamlets of weight w;

$$D(x) = \sum_{i}^{\text{all beamlets}} w_i d_i(x)$$

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

OPTIMIZE THE WEIGHTS!

Lamber of the Canada Co

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

OPTIMIZE THE WEIGHTS!

■ Minimize O with respect to all the weights w_i

$$\frac{\partial O}{\partial w_i} = 0 \qquad \text{for all } w_i$$

Inches to

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

$$\frac{\partial O}{\partial w_i} = 0$$
 for all w_i

$$0 = p_{PTV} \sum_{x \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_j \, d_i(x) d_j(x) \right) - p_{PTV} \mathcal{E}^{PTV} \sum_{x \in PTV} d_i(x) + p_{OAR} \sum_{x \in OAR} \left(\sum_{j}^{\text{all beamlets}} w_j \, d_i(x) d_j(x) \right) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_i(x) d_i(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_i(x) d_i(x) d_i(x) d_i(x) \right) + p_{OAR} \sum_{i \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_i \, d_i(x) d_j(x) d_i(x) d_i(x)$$

Lancator for Canada Ca

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

$$\frac{\partial O}{\partial w_i} = 0$$
 for all w_i

$$0 = p_{PTV} \sum_{x \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_j \, d_i(x) d_j(x) \right) - p_{PTV} \varepsilon^{PTV} \sum_{x \in PTV} d_i(x) + p_{OAR} \sum_{x \in OAR} \left(\sum_{j}^{\text{all beamlets}} w_j \, d_i(x) d_j(x) \right) \right) + p_{OAR} \sum_{x \in PTV} \left(\sum_{j}^{\text{all beamlets}} w_j \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_j \, d_i(x) d_j(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_j \, d_i(x) d_j(x) d_$$

$$0 = p_{PTV} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in PTV} d_{i}(x) d_{j}(x) \right) - p_{PTV} \varepsilon^{PTV} \left(\sum_{x \in PTV} d_{i}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{$$

Income for Canada Ca

Introduction Traditional Optimizations

$$0 = p_{PTV} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in PTV} d_{i}(x) d_{j}(x) \right) - p_{PTV} \varepsilon^{PTV} \left(\sum_{x \in PTV} d_{i}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{x \in OAR} d_{i}(x) d_{i}($$

Landon By Cancer Co

Traditional Optimizations

$$0 = p_{PTV} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in PTV} d_{i}(x) d_{j}(x) \right) - p_{PTV} \varepsilon^{PTV} \left(\sum_{x \in PTV} d_{i}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{oOAR}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) d_{j}(x) + p_{OAR} \sum_{x \in OAR} d_{i}(x) d_{j}(x) d$$

Lander Reg Canar Co

Traditional Optimizations

$$0 = p_{PTV} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in PTV} d_{i}(x) d_{j}(x) \right) - p_{PTV} \varepsilon^{PTV} \left(\sum_{x \in PTV} d_{i}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) + p_{OAR} \sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{$$

Landen Re Canar Co

Traditional Optimizations

$$0 = p_{PTV} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in PTV} d_{i}(x) d_{j}(x) \right) - p_{PTV} \varepsilon^{PTV} \left(\sum_{x \in PTV} d_{i}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{x \in OAR} d_{i}(x) d_{i}(x) d_{j}(x) + p_{OAR} \sum_{x \in OAR} d_{i}(x) d_{$$

$$\alpha_{ij} = p_{PTV}\alpha_{ij}^{PTV} + p_{OAR}\alpha_{ij}^{OAR}$$
 $\beta_i = p_{PTV}\beta_i^{PTV}$

$$\beta_i = p_{PTV} \beta_i^{PTV}$$

$$\sum_{j} \alpha_{ij} w_{j} = \beta_{i}$$

Traditional Optimizations

$$0 = p_{PTV} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in PTV} d_{i}(x) d_{j}(x) \right) - p_{PTV} \varepsilon^{PTV} \left(\sum_{x \in PTV} d_{i}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{j}(x) d_{j}(x) d_{j}(x) \right) + p_{OAR} \sum_{j}^{\text{all beamlets}} w_{j} \left(\sum_{x \in OAR} d_{i}(x) d_{j}(x) d_{$$

$$0 = p_{PTV} \sum_{j}^{ ext{all beamlets}} w_{j} \, lpha_{ij}^{PTV} - p_{PTV} arepsilon^{PTV} \, eta_{i}^{PTV} + p_{OAR} \sum_{j}^{ ext{all beamlets}} w_{j} \, lpha_{ij}^{OAR}$$

$$\alpha_{ij} = p_{PTV}\alpha_{ij}^{PTV} + p_{OAR}\alpha_{ij}^{OAR}$$

$$\beta_i = p_{PTV} \beta_i^{PTV}$$

$$\sum_{j} \alpha_{ij} w_{j} = \beta_{i}$$

$$w_i = \sum_j \alpha_{ij}^{-1} \beta_j$$

Legaleta for

Traditional Optimizations

$$0 = p_{PTV} \sum_{j}^{\text{all beamlets}} w_{j} \alpha_{i}^{pTV} = \sum_{j}^{pTV} \alpha_{ij}^{pTV} \beta_{j}^{pTV}$$

$$w_{i} = \sum_{j}^{pTV} \alpha_{ij}^{pTV} \beta_{j}^{pTV}$$

$$p_{OAR} \sum_{j}^{ ext{all beamlets}} w_{j} \, lpha_{ij}^{OAR}$$

$$\beta_i = p_{PTV} \beta_i^{PTV}$$

$$\sum_{j} \alpha_{ij} w_{j} = \beta_{i}$$

W

Matrix Inversion Optimization

- Call w the weight of the beamlet with 'ID number' j
- The optimal set of weights can be found by solving a set of linear algebraic equations:

$$2\mathbf{w}_1 + 3\mathbf{w}_2 = 23$$

$$4\mathbf{w}_1 - 2\mathbf{w}_2 = 6$$

Landing Ro Canar Co

Matrix Inversion Optimization

- Call w the weight of the beamlet with 'ID number' j
- The optimal set of weights can be found by solving a set of linear algebraic equations:

$$\alpha_{11}\mathbf{w}_{1} + \alpha_{12}\mathbf{w}_{2} + \alpha_{13}\mathbf{w}_{3} + \alpha_{14}\mathbf{w}_{4} + \dots = \beta_{1}$$
 $\alpha_{21}\mathbf{w}_{1} + \alpha_{22}\mathbf{w}_{2} + \alpha_{23}\mathbf{w}_{3} + \alpha_{24}\mathbf{w}_{4} + \dots = \beta_{2}$
 $\alpha_{31}\mathbf{w}_{1} + \alpha_{32}\mathbf{w}_{2} + \alpha_{33}\mathbf{w}_{3} + \alpha_{34}\mathbf{w}_{4} + \dots = \beta_{3}$
 $\vdots \qquad \vdots \qquad \vdots \qquad \vdots$

- The weights w are unknown
- The other coefficients are known

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

$$w_i = \sum_j \alpha_{ij}^{-1} \beta_j$$

Inguish the Cartes of the Cart

Introduction Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

$$w_i = \sum_j \alpha_{ij}^{-1} \beta_j$$

DISASTER!!!

 \blacksquare A number of weights w_i come out **negative**

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

$$w_i = \sum_j \alpha_{ij}^{-1} \beta_j$$

 \blacksquare Constrain all the weights w_i to be positive

16 March 18 March 18

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

$$w_i = \sum_j \alpha_{ij}^{-1} \beta_j$$

 \blacksquare Constrain all the weights w_i to be positive

Lamador Ray Carboar Co

Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

$$w_i > 0$$

$$w_i = \sum_j \alpha_{ij}^{-1} \beta_j$$

- \blacksquare Constrain all the weights w_i to be positive
- Optimal w_i must be found through a systematic numerical search.

Introduction Traditional Optimizations

$$O = p_{PTV} \sum_{x \in PTV} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) - \varepsilon^{PTV} \right)^2 + p_{OAR} \sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} w_i d_i(x) \right)^2$$

 $w_i > 0$

- \blacksquare Constrain all the weights w_i to be positive
- Optimal w_i must be found through a systematic numerical search.

I Good of the control of the control

Inverse Planning Optimization

Medical Science Series

THE PHYSICS OF THREE-DIMENSIONAL RADIATION THERAPY

Conformal Radiotherapy, Radiosurgery and Treatment Planning

Steve Webb

Joint Department of Physics, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, UK

Institute of Physics Publishing Bristol and Philadelphia

Inverse Planning Optimization

CONTENTS

PREFACE ACKNOWLEDGEMENTS			ix
			xiii
1	THREE-DIMENSIONAL RADIATION-THERAPY TREATMENT PLANNING		1
	LL	Conformal radiotherapy treatment planning	- 1
		Registration of two image datasets for 3D treatment planning	38
		Summary and the NCI study of 3D radiation therapy planning	54
		References	55
2	TREATMENT PLAN OPTIMIZATION		65
	2.1	General considerations	65
	2.2	The impossibility of true inverse computed tomography	67
	2.3	The case of a circularly-symmetric dose distribution	72
	2.4	Primitive blocked rotation therapy	77
	2.5	Methods for 2D and 3D optimization	87
	2.6	Summary	124
	2.7	Appendix 2A. A historical note on the origins of rotation therapy References	125
3	STEREOTACTIC RADIOSURGERY AND RADIOTHERAPY		135
	3.1	Introduction	135
	3.2	Radiosurgery and stereotactic radiotherapy	144
	3.3	Stereotactic interstitial implant therapy	163
	3.4		164
		References	165
4	THE PHYSICS OF PROTON RADIOTHERAPY		172
	4.1	Introduction: elementary physics of proton beams	172
	4.2	Proton-therapy facilities	179
	4.3	Range modulation and production of large-area beams	186
	4.4	Proton treatment planning	198
	4.5	Summary	212

W.

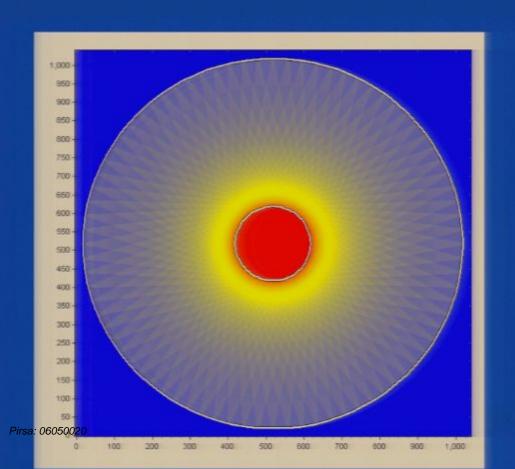
2	TREATMENT PLAN OPTIMIZATION	65	
	2.1 General considerations	65	
	2.2 The impossibility of true inverse computed tomography	67	

16

"... All so well and good except for the problem of needing negative beam-weights.... As we have seen, it is apparent that, without unphysical negative intensities, perfect dose distributions can never be achieved..."

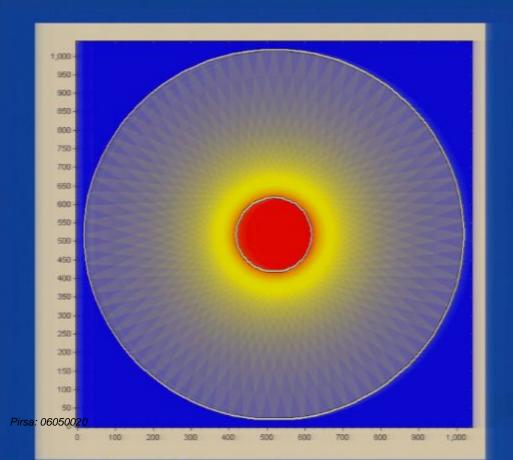
"...It is these limitations which iterative, and admittedly computationally expensive, dose-planning algorithms can remove.....Methods of solving the inverse problem which constrain the beam intensities to be positive avoid this difficulty altogether by seeking practical solutions..."

Consider a system symmetric under rotations: Circular PTV and outside contour, centered at the isocentre



 $r_{PTV} = 4 \text{ cm}$ Grid cell-length = 0.4 mm Number of beams = 80

Consider a system symmetric under rotations: Circular PTV and outside contour, centered at the isocentre

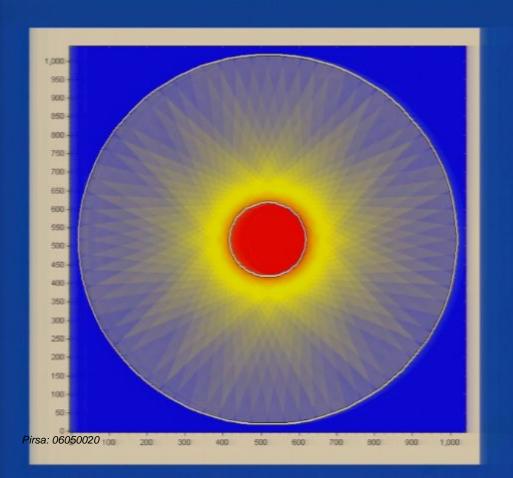


All beam weights must be the same

$$r_{PTV} = 4 \text{ cm}$$

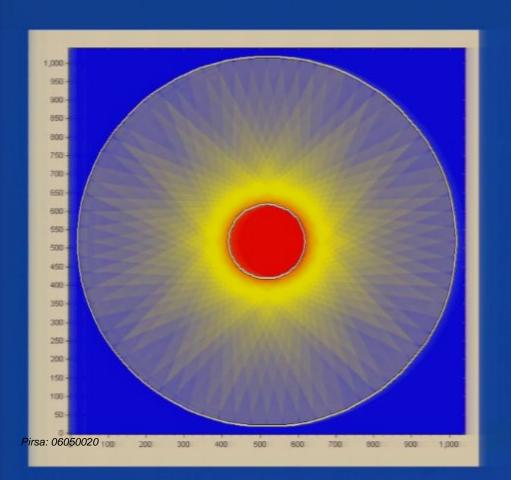
Grid cell-length = 0.4 mm
Number of beams = 80

■ The symmetry is lost!



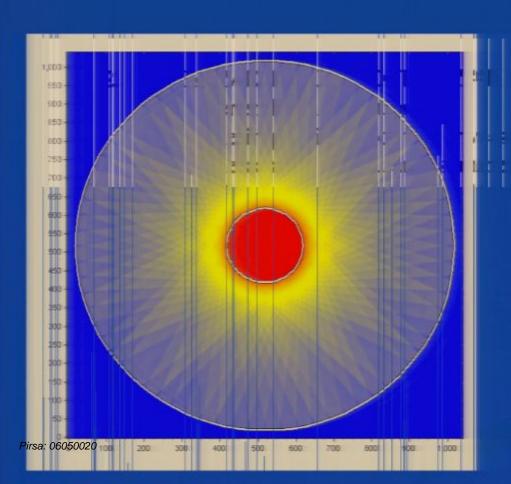
 $r_{\text{PTV}} = 4 \text{ cm}$ Grid cell-length = 0.4 mm
Number of beams = 80
Number of negative weights: 8 Page 77/143

■ The symmetry is lost!



 $r_{\text{PTV}} = 4 \text{ cm}$ Grid cell-length = 0.4 mm
Number of beams = 80
Number of negative weights: 8 Page 78/143

■ The symmetry is lost!



All beam weights should be the same!

$$r_{\text{FTV}} = 4 \text{ cm}$$
Grid cell-length = 0.4 mm

Number of beams = 80

Number of negative weights: 8 Page 79/14.

			15	
2	TRE	EATMENT PLAN OPTIMIZATION	65	
	2.1	General considerations	65	
	2.2	The impossibility of true inverse computed tomography	67	
		The case of a circularly-symmetric dose distribution	72	
			77	

Manager And Company of the Company o

555

The impossible IS possible

Introducing...

Introducing...

FIDO Fast Inverse Dose Optimization

- An exact solution of a system of linear algebraic equations with positive weights
- No numerical search!!!

Introducing...

FIDO Fast Inverse Dose Optimization

- An exact solution of a system of linear algebraic equations with positive weights
- No numerical search!!!

Avoiding negative weights in regions in which dose deposition is undesirable:

legate to

Avoiding negative weights in regions in which dose deposition is undesirable:

Avoiding negative weights in regions in which dose deposition is undesirable:

Presently

The <u>addition</u> of the dose deposited by all beamlets at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

Interest for Contract Co.

Avoiding negative weights in regions in which dose deposition is undesirable:

Presently

- The <u>addition</u> of the dose deposited by all beamlets at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.
- The optimization yields some beamlets that are positive, some that are negative (!!!) and the sum cancels to zero.

e.g. $a+b=0 \rightarrow b=-a$

Avoiding negative weights in regions in which dose deposition is undesirable:

Presently

- The <u>addition</u> of the dose deposited by all beamlets at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.
- The optimization yields some beamlets that are positive, some that are negative (!!!) and the sum cancels to zero.

e.g.
$$a+b=0 \rightarrow b=-a$$

Landon Mr. Cancer Co

Avoiding interference effects in regions in which dose deposition is undesirable:

New in FIDO

Avoiding interference effects in regions in which dose deposition is undesirable:

New in FIDO:

The dose deposited by <u>each</u> beamlet at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

Landon Reg

Avoiding interference effects in regions in which dose deposition is undesirable:

Presently

The <u>addition</u> of the dose deposited by all beamlets at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

Avoiding interference effects in regions in which dose deposition is undesirable:

New in FIDO:

The dose deposited by <u>each</u> beamlet at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

> Lander Re-Career Co

Avoiding interference effects in regions in which dose deposition is undesirable:

Presently

The <u>addition</u> of the dose deposited by all beamlets at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

Avoiding interference effects in regions in which dose deposition is undesirable:

New in FIDO:

The dose deposited by <u>each</u> beamlet at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

Avoiding interference effects in regions in which dose deposition is undesirable:

New in FIDO:

The dose deposited by <u>each</u> beamlet at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

> Lander No. Calcar Co.

Avoiding interference effects in regions in which dose deposition is undesirable:

Presently

The <u>addition</u> of the dose deposited by all beamlets at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

> Lamanum Res California

Avoiding interference effects in regions in which dose deposition is undesirable:

New in FIDO:

The dose deposited by <u>each</u> beamlet at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.

Avoiding interference effects in regions in which dose deposition is undesirable:

New in FIDO:

- The dose deposited by <u>each</u> beamlet at each point in the organs at risk (OAR) will be as small as possible or, ideally, zero.
- The only way to have beamlets whose sum cancels to zero is if each beamlet has zero intensity.

e.g.
$$a^2 + b^2 = 0 \implies b = a = 0$$

First Change in the Objective function

$$\sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} D_i(x) \right)^2 \to 0 \quad \text{with} \quad D_i(x) \ge 0 \quad \text{for all beamlets}$$

First Change in the Objective function

If
$$\sum_{x \in OAR} \left(\sum_{i=0}^{\text{all beamlets}} D_i(x) \right)^2 \to 0$$
 with $D_i(x) \ge 0$ for all beamlets

then
$$\sum_{i=0}^{\text{all beamlets}} \sum_{i=0}^{\text{all beamlets}} D_i^2(x) \to 0 \quad \text{with} \quad D_i(x) \ge 0 \quad \text{for all beamlets}$$

First Change in the Objective function

If
$$\sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} D_i(x) \right)^2 \to 0 \quad \text{with} \quad D_i(x) \ge 0 \quad \text{for all beamlets}$$

then $\sum_{x=0}^{\text{all beamlets}} \sum_{i}^{\text{all beamlets}} D_i^2(x) \to 0 \quad \text{with} \quad D_i(x) \ge 0 \quad \text{for all beamlets}$

4/143

First Change in the Objective function

If
$$\sum_{x \in OAR} \left(\sum_{i}^{\text{all beamlets}} D_i(x) \right)^2 \to 0 \quad \text{with} \quad D_i(x) \ge 0 \quad \text{for all beamlets}$$

- then $\sum_{x \in OAR} \sum_{i}^{\text{all beamlets}} D_i^2(x) \to 0 \quad \text{with} \quad D_i(x) \ge 0 \quad \text{for all beamlets}$
 - We eliminate the *ad-hoc* constraint $(w_i > 0)$ on *physical* grounds:
 - No interference between beamlets
 - Minimize the dose deposited by **each** beamlet!

FIDO - Summary

■ Beams with negative intensities can be avoided

- Fast optimization
 - Matrix inversion instead of a numerical search

Landing Rig

FIDO - Summary

■ Beams with negative intensities can be avoided

$$w = \alpha^{-1} \times \beta$$

- Fast optimization
 - Matrix inversion instead of a numerical search
- Single best solution:

Absolute minimum

FIDO - Summary

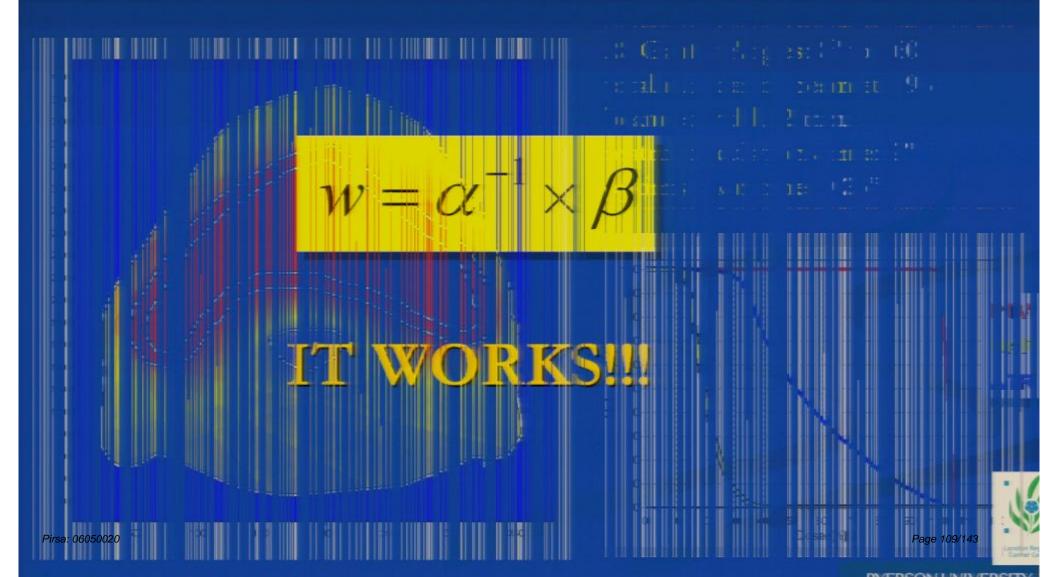
■ Beams with negative intensities can be avoided

$$w = \alpha^{-1} \times \beta$$

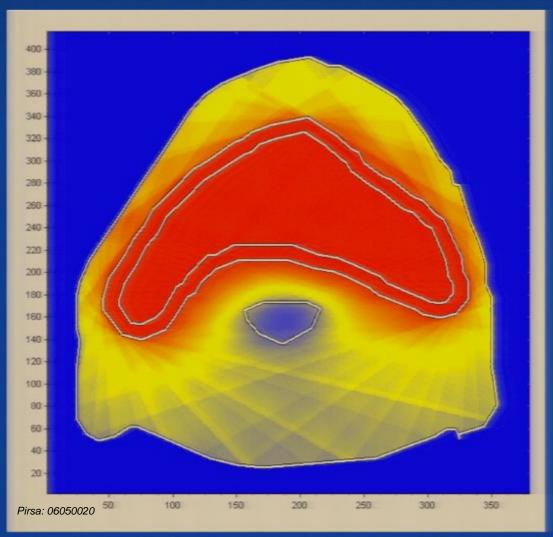
- Fast optimization
 - Matrix inversion instead of a numerical search
- Single best solution:

Absolute minimum

FIDO - Summary



$$w_i = \alpha_{ij}^{-1} \beta_j$$

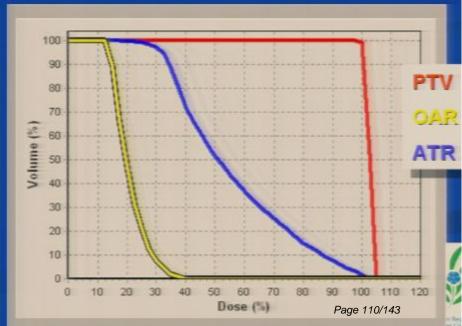


20 Gantry Angles: 0° to 360°

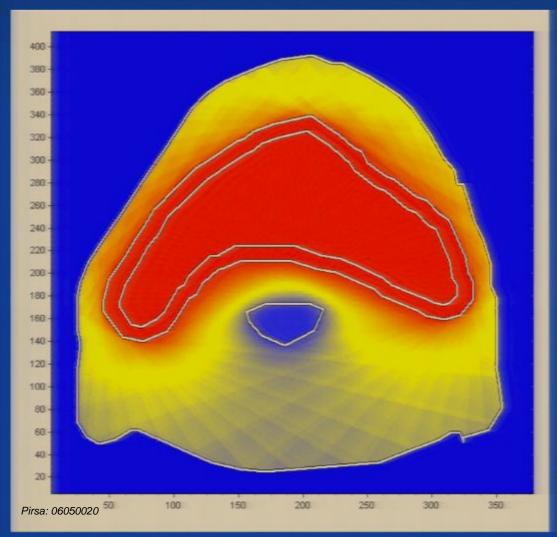
total number of beamlets: 988

beamlet width: 2 mm

matrix calculations time: 2"



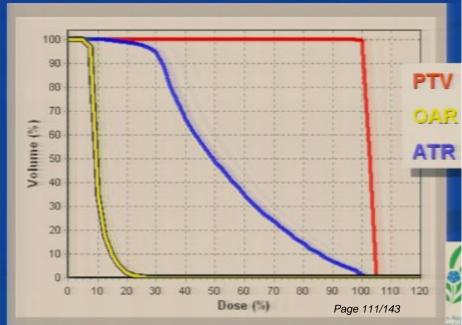
$$w_i = \alpha_{ij}^{-1} \beta_j$$



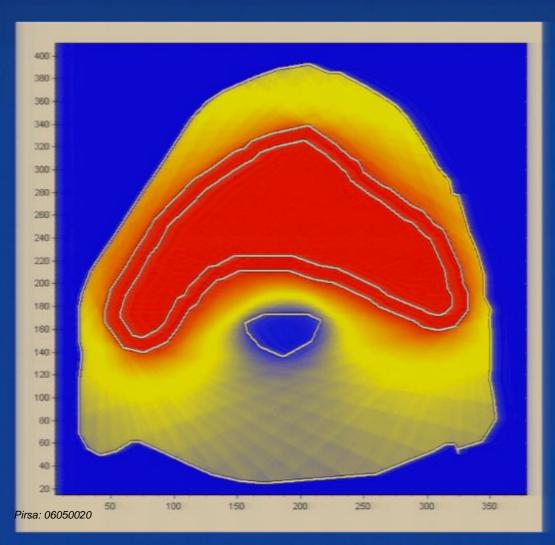
40 Gantry Angles: 0° to 360° total number of beamlets: 1976

beamlet width: 2 mm

matrix calculations time: 7"



$$w_i = \alpha_{ij}^{-1} \beta_j$$



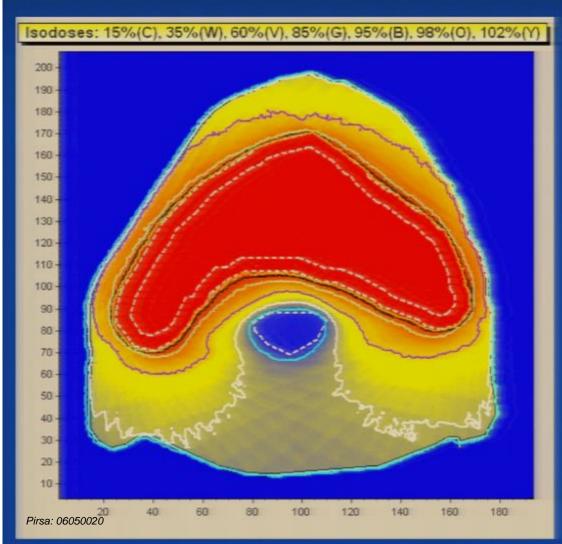
60 Gantry Angles: 0° to 360°

total number of beamlets: 2968

beamlet width: 2 mm

matrix calculations time: 16"

$$w_i = \alpha_{ij}^{-1} \beta_j$$



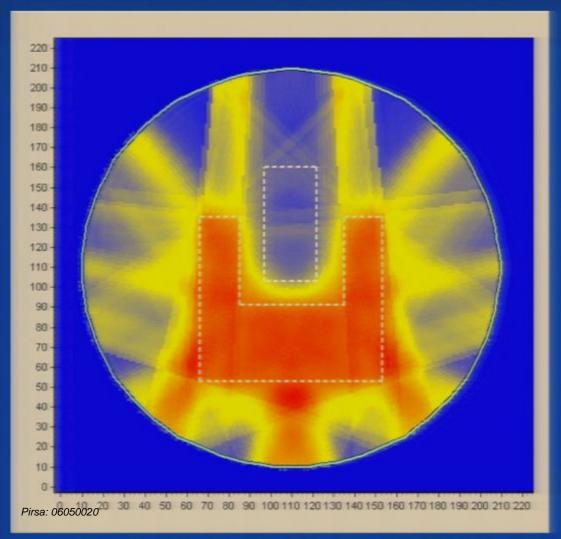
60 Gantry Angles: 00 to 3600

total number of beamlets: 2968

beamlet width: 2 mm

matrix calculations time: 16"

$$w_i = \alpha_{ij}^{-1} \beta_j$$

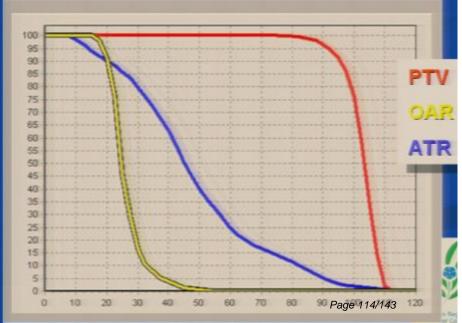


9 Gantry Angles: 00 to 3600

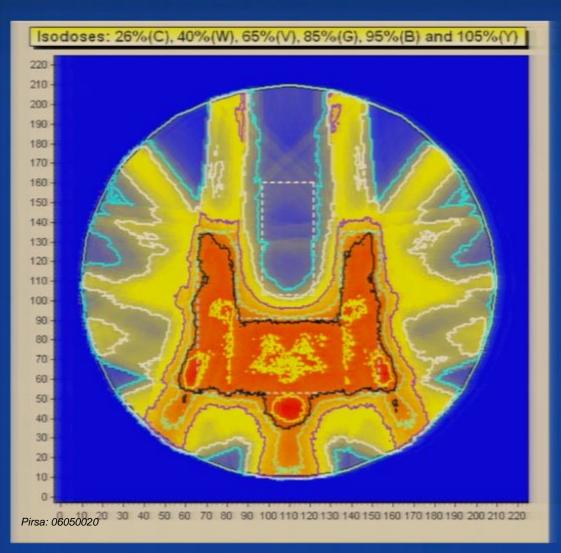
total number of beamlets: 393

beamlet width: 5 mm

matrix calculations time: 0.83"



$$w_i = \alpha_{ij}^{-1} \beta_j$$

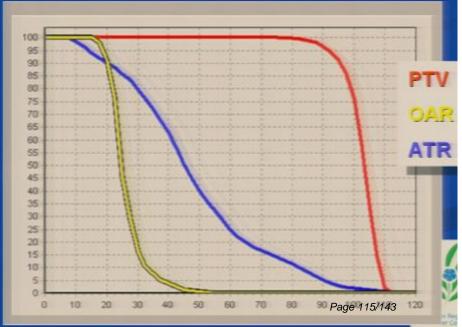


9 Gantry Angles: 0° to 360°

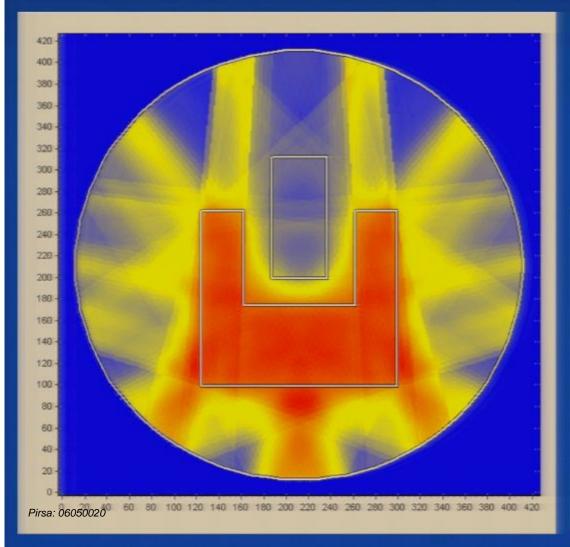
total number of beamlets: 393

beamlet width: 5 mm

matrix calculations time: 0.83"



$$w_i = \alpha_{ij}^{-1} \beta_j$$

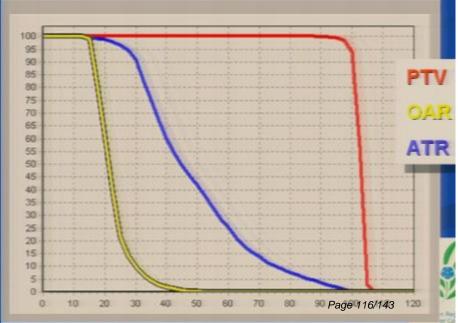


20 Gantry Angles: 0° to 360°

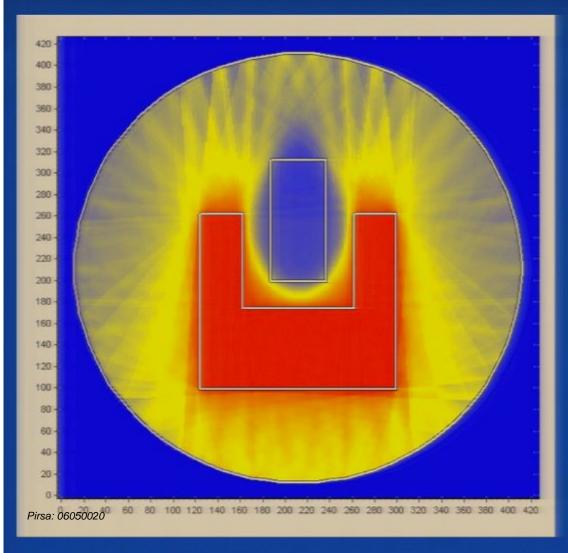
total number of beamlets: 1162

beamlet width: 3.75 mm

matrix calculations time: 14"



$$w_i = \alpha_{ij}^{-1} \beta_j$$

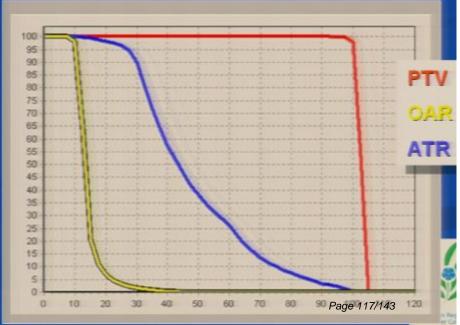


40 Gantry Angles: 0° to 360°

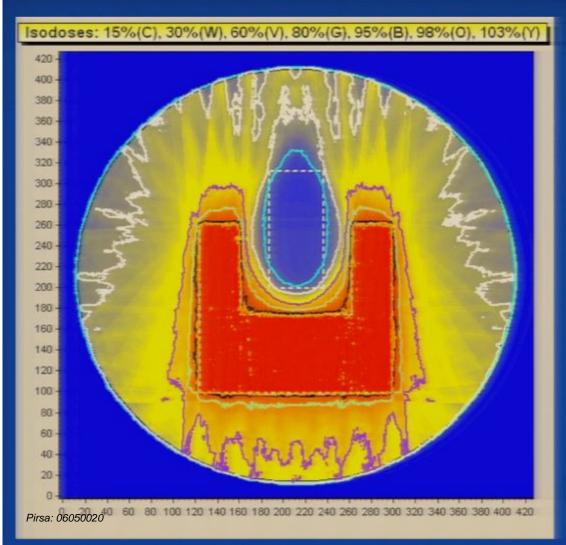
total number of beamlets: 2326

beamlet width: 3.75 mm

matrix calculations time: 48"



$$w_i = \alpha_{ij}^{-1} \beta_j$$



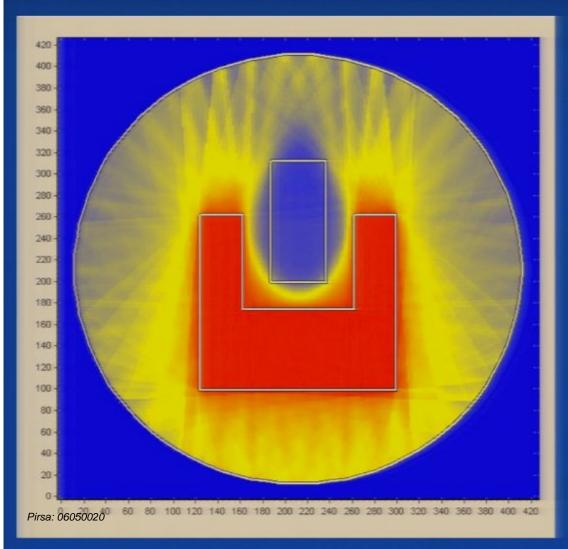
40 Gantry Angles: 00 to 3600

total number of beamlets: 2326

beamlet width: 3.75 mm

matrix calculations time: 48"

$$w_i = \alpha_{ij}^{-1} \beta_j$$

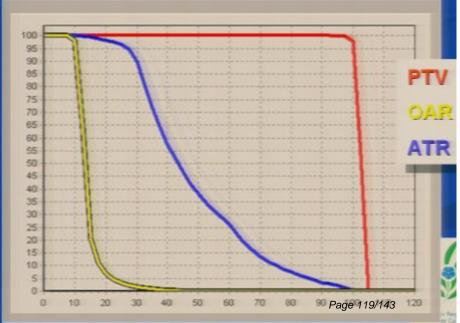


40 Gantry Angles: 0° to 360°

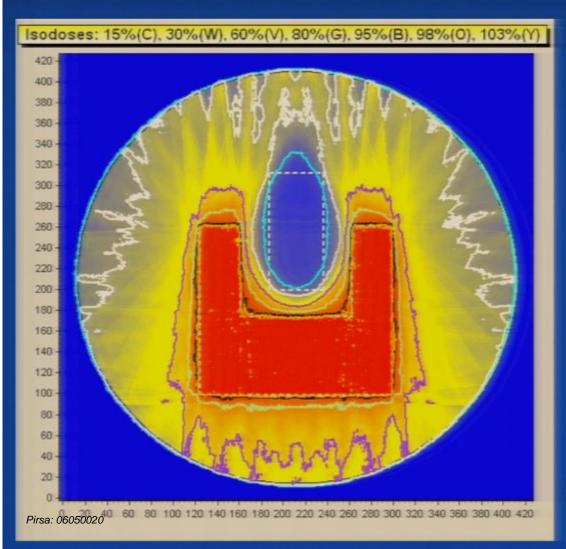
total number of beamlets: 2326

beamlet width: 3.75 mm

matrix calculations time: 48"



$$w_i = \alpha_{ij}^{-1} \beta_j$$

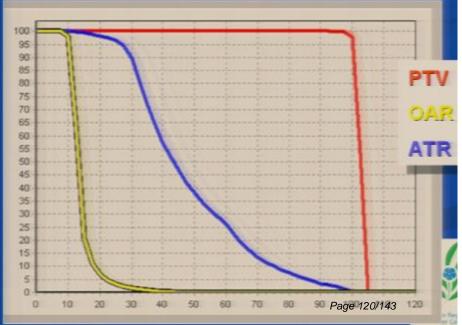


40 Gantry Angles: 00 to 3600

total number of beamlets: 2326

beamlet width: 3.75 mm

matrix calculations time: 48"



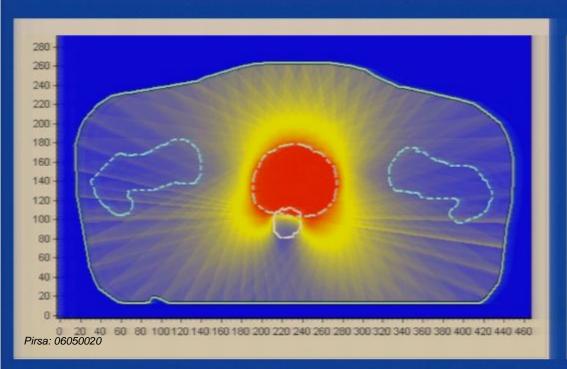
$$w_i = \alpha_{ij}^{-1} \beta_j$$

50 Gantry Angles: 0° to 360°

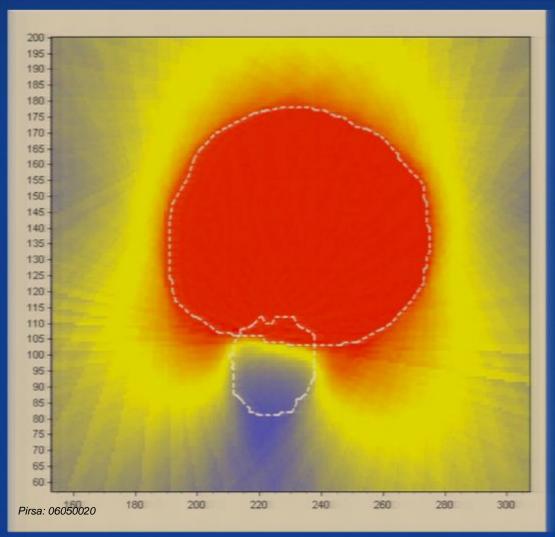
total number of beamlets: 1642

beamlet width: 2.00 mm

matrix calculations time: 6"

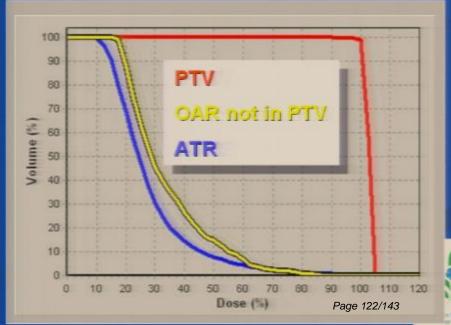


$$w_i = \alpha_{ij}^{-1} \beta_j$$

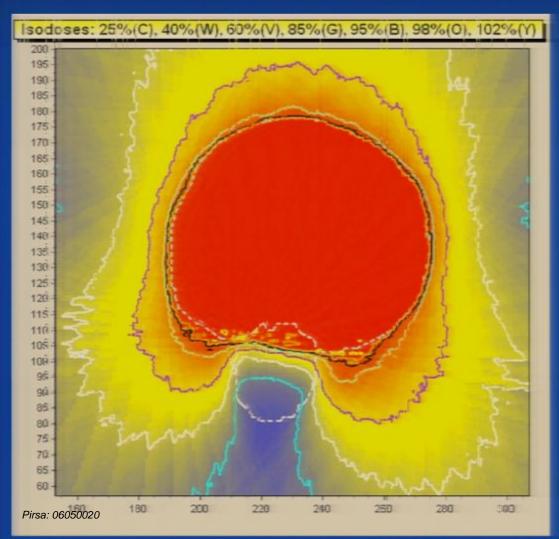


50 Gantry Angles: 0° to 360° total number of beamlets: 1642 beamlet width: 2.00 mm

matrix calculations time: 6"

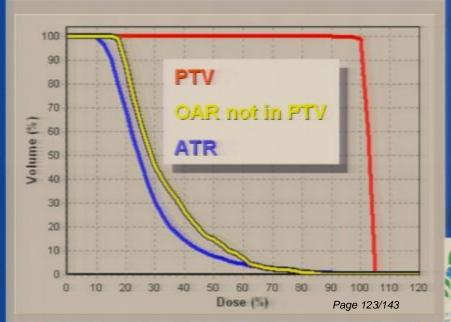


$$w_i = \alpha_{ij}^{-1} \beta_j$$

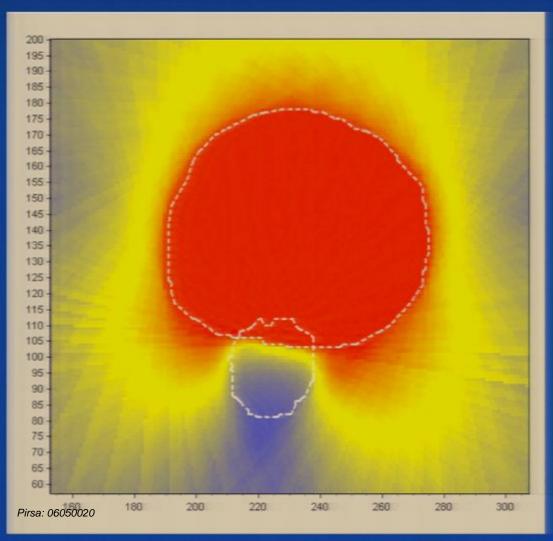


50 Gantry Angles: 0° to 360° total number of beamlets: 1642 beamlet width: 2.00 mm

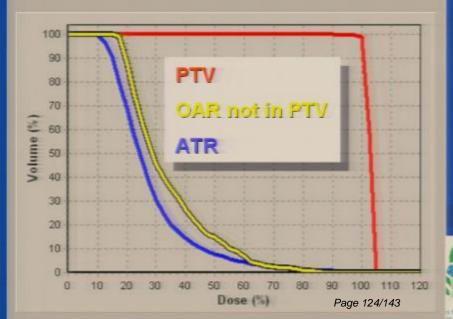
matrix calculations time: 6"



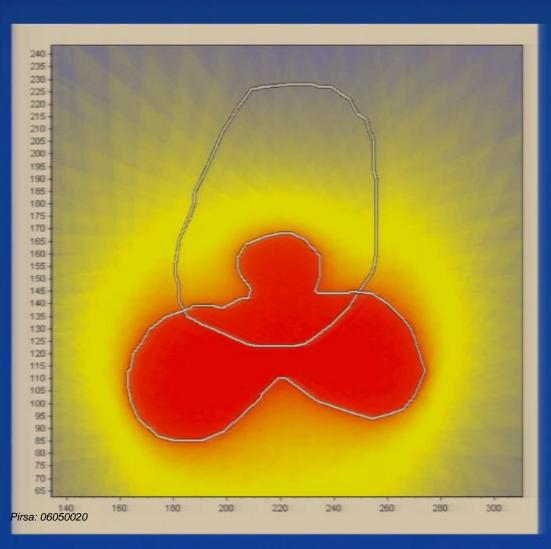
$$w_i = \alpha_{ij}^{-1} \beta_j$$



50 Gantry Angles: 0° to 360° total number of beamlets: 1642 beamlet width: 2.00 mm matrix calculations time: 6"



$$w_i = \alpha_{ij}^{-1} \beta_j$$

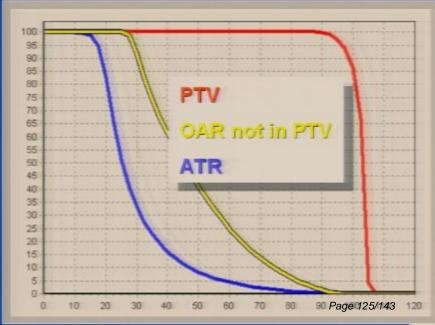


60 Gantry Angles: 0° to 360°

total number of beamlets: 2314

beamlet width: 2.00 mm

matrix calculations time: 47"



Concluding Remarks

Using the FIDO algorithm we obtain very conformal dose distributions in very short optimization times

- Conformal dose distributions: Allow to reduce the safety margin around the target volume
- Very short optimization times: Open the door to adaptive radiation therapy (re-optimize before each fraction is administered)

■ Immediate benefit to society

Lamenton for Cancer Co

- Immediate benefit to society
- High demand for medical physicists

Legalor Por Canada Co

- Immediate benefit to society
- High demand for medical physicists
- Exciting field with tremendous future

· September

- Immediate benefit to society
- High demand for medical physicists
- Exciting field with tremendous future
- Good salaries

- Immediate benefit to society
- High demand for medical physicists
- Exciting field with tremendous future
- Good salaries

Cutting-edge Research in Medical Physics at Ryerson http://www.physics.ryerson.ca

- Radiation therapy
- Magnetocarcinotherapy (magnetic nanoparticles)
- Biomedical optics (fiberoptics + lasers)
- Photoacoustic and magnetoacoustic tomography
- Ultrasound imaging and therapeutics
- Thermal Therapy
- X-ray fluorescence (analysis of trace elements in humans)

Lancator Res Calcar Co

Superb Teaching & Training in Medical Physics at Ryerson http://www.physics.ryerson.ca

- Princess Margaret
- Sunnybrook
- Heidelberg

Superb Teaching & Training in Medical Physics at Ryerson http://www.physics.ryerson.ca

- Princess Margaret
- Sunnybrook
- Heidelberg

- Undergraduate projects
- Clinical courses
- Graduate supervision

goldman@ryerson.ca

Superb Teaching & Training in Medical Physics at Ryerson http://www.physics.ryerson.ca

- Princess Margaret
- Sunnybrook
- Heidelberg

- Undergraduate projects
- Clinical courses
- Graduate supervision

goldman@ryerson.ca

Present Work

- 3-D IMRT
- Scattering effects
- Dose Volume constraints
- Gantry angle optimization
- Intensity Modulated Arc Therapy (future)
- Applications to CT image reconstruction (Queen's University)

Canadian Association of Physicists, 6th Annual

Teacher's Workshop

Monday, June 12th, 2006 8 AM - 4:45 PM

Brock University
Thistle Complex, Room 325

Registration: <u>Free</u> - before June 1st (\$25 after June 1st)

Lunch Provided

★ Sponsored by the Canadian Institute for Photonics Innovations

Session Topics:

- Classroom Activities to Engage Students
- Teaching Strategies for Physics in Canada
- Einstein's Impact on Science Culture
- Breakthrough Radiation Therapy of Tumors
- Strategies for Advancing Biophotonics

Special DVD Showing & Presentation:

"The Power of the SUN" ...

Walter Kohn, Nobel Laureate, UC Santa Barbara

Poster Sessions to update yourself on a wide variety of modern Physics research!

 Sponsored by the Canadian institute for Photonics Innovations

Biophotonics

Special DVD Showing & Presentation:

Open to Teachers AKD Students!

"The Power of the SUN"

Walter Kohn, Nobel Laureate, UC Santa Barbara

Poster Sessions to update yourself on a wide variety of modern Physics research!

Herzberg Memorial Public Lecture *Energy: Where on Earth are We Going?

Sunday June 11th, 2006 7pm Sean O'Sullivan Theatre, Brock University

Ernie McFarland, University of Guelph

This event is tailored to the General Public.

No mathematical or scientific knowledge is necessary.

For more information contact:

Heather Theijsmeijer at heather_theijsmeijer@ridley.on.ca

Or visit: http://cap06.brocku.ca/english/teachers.html

Canadian Association of Physicists, 6th Annual

Monday, June 12th, 2006 8 AM - 4:45 PM

Brock University Thistle Complex, Room 325

Registration: Free - before June 1st (\$25 after June 1st)

Lunch Provided

* Sponsored by the Canadian Institute for Photonics Innovations

Session Topics:

- Classroom Activities to **Engage Students**
- Teaching Strategies for Physics in Canada
- Einstein's Impact on Science Culture
- Breakthrough Radiation Therapy of Tumors
- Strategies for Advancing Biophotonics

Special DVD Showing & Presentation:

The Power of the SUN"

Walter Kohn, Nobel Laureate, UC Santa Barbara

goldman@ryerson.ca

