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Abstract: It is somewhat surprising, but problems in quantum computing lead to problems in algebraic graph theory. | will discuss some instances
that | am familiar with, and note acommmon thread.
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Moore Graphs

A Bound

If a graph X has diameter d and maximum valency £, then the
number of vertices of X is at most

PR LEE—1) - LEE— D

If equality holds, we call X a Moore graph.
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Moore Graphs

Examples

m Complete graphs, with d = 1.
m Odd cycles, with £ = 2
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Moore Graphs

Examples

m Complete graphs, with d = 1.
m Odd cycles, with k£ = 2.
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Moaore Graphs

Petersen
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Not Many Moore Graphs

Adjacency matrices

Definition

If X is a graph, its adjacency matrix A(X) is the 01-matrix with
rows and columns indexed by the vertices of X, and its 7j-entry is
1 if vertex i and j are adjacent.
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Not Many Moore Graphs

A Quadratic

Suppose X is a Moore graph with diameter two and valency k. If
A = A(X), then
A A kN3
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Not Many Moore Graphs

Eigenvalues

A Moore graph with diameter two and valency & has eigenvalues &
and

| —

(=1 — v4k — 3).

T

1 —

If &2 > 2, then # and 7 must be integers and the multiplicity of 7 is

(02 +0 +1)(62+1)(0 +1)
20 + 1 '
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Lines in Complex Space

Degree

Suppose L is a set of lines in complex space C?. We can specify
the lines by unit vectors 2. ..., > such that z; spans the i-th line.
The angle between the i-th and j-th lines is determined by |(2;|z;)].
We are concerned with large sets of lines with specified angles.
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Lines in Complex Space

One Angle

If we have n lines in C? with any two distinct lines at the same
angle, then n < d*. If we have d* such lines then:

m A physicist has a SIC-POVM.
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Lines in Complex Space

One Angle

If we have n lines in C? with any two distinct lines at the same
angle, then n < d*. If we have d* such lines then:

m A physicist has a SIC-POVM.

m A mathematician has a set of d? equiangular lines in C“.
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Lines in Complex Space

Problem

Both physicist and mathematician have the same

Problem

Is it true that for all positive integers d, there is a set of d*
equiangular lines in C%7?

Pirsa: 06050011

Chris Gadsil

P e R T - ot TR, -] [ M1 RN | FOEAT R - e e o - PR

Page 17/83



Algebraic Graph Theory Mutually Unbiased Bases Coloring Graph lsomorphism

ooQD oCco0e0 Qocoo miziale ajaie mle o
lsinisia @la (Blsinle alf ainlel al@iom (sleaiealaialnle)

Lines in Complex Space

Association Schemes

Mutually Unbiased Bases

Definition

Two orthonormal bases of C? are mutually unbiased if the angle
between two unit vectors from distinct bases is always the same.
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Lines in Complex Space

A=ssociation Schemes

Mutually Unbiased Bases

Definition

Two orthonormal bases of C? are mutually unbiased if the angle
between two unit vectors from distinct bases is always the same.

So a set of m pairwise mutually unbiased bases is a set of mud lines
in m classes, such that distinct lines in the same class are

orthogonal and lines in different classes are at the same angle.

Pirsa: 06050011

Page 19/83
Chris Godsil

B L T e gl e



Algebraic Graph Theory Mutually Unbiased Bases Coloring Graph Isomorphism

o000 minaiwal QoCcoo 0000000000
mlain]sla &la ODoOOOo00n OO0 slenieeinialnls)

Lines in Complex Space

Association Schemes

How Many Bases?

A set of mutually unbiased bases in C? contains at most d + 1
bases.

Problem

s it true that there is always a set of d + 1 mutually unbiased
bases in C??

Pirsa: 06050011

Page 20/83
Chris Godsil

[ L R T T - TR, OSSR T N | RN AT S o R o o - PSR









Algebraic Graph Theory Mutually Unbiased Bases Colering Graph lsomorphism Association Schemes
000D ulnials aln) QDoo0D 00000000
mloin]sialnls alel Lolalaeialel Qoo (mle wig el alnls)

An Incidence Graph

Affine Planes

Let [ be a finite field, e.g.. Z,. The points of the affine plane are
represented by ordered pairs (. y) from F x F. The lines of finite
slope (not parallel to the y-axis) can be represented by ordered
pairs [a,b] from F x F.

The point (x.y) is on the line [a.b] if y = ax + b (just as in high
school). The lines with the same slope form a parallel class.
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An Incidence Graph

A Graph

Given F with order ¢, we construct a graph X as follows.

m The vertices of X are the ¢° points (r.y) and the ¢ lines
la. b].
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An Incidence Graph

A Graph

Given F with order ¢, we construct a graph X as follows.

m The vertices of X are the ¢° points (r.y) and the ¢* lines
la. b].

m The vertex (x.y) is adjacent with the line [a. b] if the point is
on the line.
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An Incidence Graph

Properties

The graph just constructed is:

Bipartite: point-vertices are adjacent only to line vertices, and
vice versa.

Regular: each vertex has exactly ¢ neighbors.

Diameter 4: two points with the same x-coordinate are at
distance four, two lines in the same parallel class at
at distance four; any other pair of vertices are at
distance at most three.
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An Incidence Graph

Symmetries

Our graph has two abelian groups of symmetries of order ¢, each
with ¢ + 1 orbits.
[y.: maps (z,y) to (z +u.y+v) and [a.b] to
la.b+ v — aul.
Sw.-: maps (z.y) to (r,y + 2 + wx) and [a. b] to
la+y.b+ z].
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An Incidence Graph

An Abelian group

If we define

H.r‘._u " — Itr_u*s‘_r;_ll'-

then the set
H:—{H,,: 5,y F)}

Association Schemes

is an abelian group of order ¢* that acts transitively on the points

and on the lines.
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An Incidence Graph

MUB's

Let [ be a finite field and let H be the group just defined. Let Hj
be the subset of H defined by

Hy={H,p:ucTF}.

Each character of H is a function on H, its restriction to Hj is a
vector in C7.
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An Incidence Graph

MUB's

Let ' be a finite field and let H be the group just defined. Let Hj
be the subset of H defined by

Hy={H,p:ucl}.

Each character of H is a function on H, its restriction to Hj, is a
vector in CY.

Theorem

These q° vectors, together with the standard basis vectors, form a
set of ¢ + 1 mutually unbiased bases.
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An Incidence Graph

More MUB's

Association Schemes

m We can use commutative semifields rather than fields. All

known MUB's can be obtained from this construction using
suitable commutative semifields.
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An Incidence Graph

More MUB's

m We can use commutative semifields rather than fields. All

known MUB's can be obtained from this construction using
suitable commutative semifields.

m An equivalent construction was found by Calderbank,
Cameron, Kantor and Seidel.
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An Incidence Graph

More MUB's

m We can use commutative semifields rather than fields. All

known MUB's can be obtained from this construction using
suitable commutative semifields.

m An equivalent construction was found by Calderbank,
Cameron, Kantor and Seidel.

m [ here are more graphs than MUB's: we can construct graphs
of the same form which lack the abelian group of symmetries.
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A Game

The Rules

We play a game with Alice and Bob. We separately offer Alice and
Bob +1-vectors v4 and vg of length 2. Without any
communication Alice and Bob must generate vectors 4 and rp
respectively of length m such that:
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A Game

The Rules

We play a game with Alice and Bob. We separately offer Alice and
Bob +1-vectors v4 and vp of length 2. Without any
communication Alice and Bob must generate vectors 4 and rp
respectively of length m such that:

m If vq =vpg, then x4 = .

m If v4 and vy are orthogonal, then x4 # xp.
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A Game

A Classical Solution?

Graph Define (2(n) to be the graph with the +1-vectors of
length n as its vertices; two vertices are adjacent if

and only if the corresponding vectors are orthogonal.

Pirsa: 06050011 Page 38/83

Chris Gadsil

I e T . o PRI ] SO (T 1 DY | PIEET R . DR Eehr ¢ PPN



Algebraic Graph Theory Mutually Unbiased Bases Coloring Graph lsomorphism Association Schemes

oo0D (mfsals aln) QOeo0 0000000000
mlain]sla mla (Blsinle el o mle] Ooa0 (mleainainialnle)

A Game

A Classical Solution?

Graph Define (2(n) to be the graph with the +1-vectors of
length n as its vertices; two vertices are adjacent if

and only if the corresponding vectors are orthogonal.

Coloring Alice and Bob construct a proper coloring of €2(2™)
with 2" colors; in other words a map from its
vertices to {1..... 2"} such that adjacent vertices
are assigned different integers.
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A Classical Solution?

Graph

Coloring

Solution
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Define (2(n) to be the graph with the +1-vectors of
length n as its vertices; two vertices are adjacent if

and only if the corresponding vectors are orthogonal.

Alice and Bob construct a proper coloring of €2(2™)

with 2 colors; in other words a map from its
vertices to {1..... 2"} such that adjacent vertices
are assigned different integers.

Alice and Bob determine the color of the vertex, they
are given, and return this.
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A Game

A Quantum Solution

Buhrmann, Cleve and Tapp described an algorithm that will solve
the problem on Q(2™) for any m, provided that Alice and Bob

share 2" Bell pairs of qubits.

Brassard, Cleve and Widgerson showed that if no 2"-coloring of
(2(2™) exists, no classical algorithm will work without some

communication between Alice and Bob.
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A Game

A Quantum Solution

Buhrmann, Cleve and Tapp described an algorithm that will solve
the problem on €(2™) for any m, provided that Alice and Bob

share 2" Bell pairs of qubits.

Brassard, Cleve and Widgerson showed that if no 2™-coloring of
(2(2™) exists, no classical algorithm will work without some

communication between Alice and Bob.

In a sense, the quantum chromatic number of €2(2"™) is 2™,

Pirsa: 06050011 Page 42/83

Chris Gaodsil

I . R R - LI R RIS, y OSSRl (e Y NN | FEET SRR RN (Beac . - PR



Algebraic Graph Theory Mutually Unbiased Bases Coloring Graph lsomerphism Association Schemes

i ain Oo0oCa0 [aimisim] ] OO0 00000
alanlnialnls (alalnle sinlainlel Qoo QOO0 00
A Game

Classical Failures

m The vertices of (2(2™) contain an orthogonal basis of R?™,
and so we cannot use fewer than 2" colors.
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A Game

Classical Failures

m The vertices of {2(2") contain an orthogonal basis of R>",
and so we cannot use fewer than 2" colors.

mlf m=1, 2or 3, then Q(2™) admits a 2" -coloring.
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A Game

Classical Failures

m The vertices of {2(2") contain an orthogonal basis of R>",
and so we cannot use fewer than 2" colors.

mlfm=1, 2or 3, then (2(2™) admits a 2" -coloring.

m If m is large enough, there is no proper 2"'-coloring (Frankl

and Radl).
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A Game

Classical Failures

m The vertices of {2(2") contain an orthogonal basis of R%",
and so we cannot use fewer than 2" colors.

mlfm=1, 2or 3, then Q(2") admits a 2" -coloring.

m If m is large enough, there is no proper 2"'-coloring (Frankl

and Radl).
m (2(16) does not have a 16-coloring (Galliard, Tapp and Wolf).
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A Game

Classical Failures

m The vertices of {2(2") contain an orthogonal basis of R>",
and so we cannot use fewer than 2" colors.

mlf m=1, 2or 3, then Q2(2™) admits a 2" -coloring.

m If m is large enough, there is no proper 2"'-coloring (Frankl

and Radl).
m (2(16) does not have a 16-coloring (Galliard, Tapp and Wolf).

m If m > 4 there is no 2""-coloring of 2(2") (Godsil and
Newman).
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Colering Spheres

The Sphere

We construct an infinite graph X with the points of the unit
sphere in R? as its vertices, where two unit vectors are adjacent if
and only if they are orthogonal.

Problem

Can we properly color the vertices of X using three colors?
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Coloring Spheres

Some Physics

Theorem (Gleason)

If f is a non-negative real function on the vertices of X that sums
to 1 on each orthonormal basis, then [ is continuous.
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Coloring Spheres

Some Physics

Theorem (Gleason)

If f is a non-negative real function on the vertices of X that sums
to 1 on each orthonormal basis, then [ is continuous.

Corollary

We cannot color X with three colors.
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Coloring Spheres

Rationality

Theorem (Godsil and Zaks)

The subgraph of the orthogonality graph on the unit sphere in R3
formed by the rational vectors is 3-colorable.
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Isomorphism and Spectra

Isomorphism

If A, and A, are adjacency matrices of graphs X and X, then X

and X, are isomorphic if and only if there is a permutation matrix
P such that

Pl AP = As.

Since a permutation matrix is orthogonal, this implies that A, and

Ay are similar and hence they have the same spectrum. (That is,
the same characteristic polynomial.)
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Isomorphism and Spectra

Complexity

The problem of graph isomorphism is in the class NP, but is not
known to be NP-complete.

Since we can compute the characteristic polynomial in polynomial
time, the idea that we might be able to verify that graphs are not

isomorphic by computing characteristic polynomials is very
attractive. . .
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Isomorphism and Spectra

Salvage?

We can attempt to save the situation by using weighted adjacency
matrices, thus replacing A(X ) by a symmetric matrix of the same
size, but all such attempts fail on strongly regular graphs.
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Isomorphism and Spectra

A Counterexample
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Isomorphism and Spectra

Complexity

The problem of graph isomorphism is in the class NP, but is not
known to be NP-complete.

Since we can compute the characteristic polynomial in polynomial
time, the idea that we might be able to verify that graphs are not
isomorphic by computing characteristic polynomials is very
attractive. ..
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Isomorphism and Spectra

A Counterexample
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Isomorphism and Spectra

Salvage?

We can attempt to save the situation by using weighted adjacency
matrices, thus replacing A(X) by a symmetric matrix of the same
size, but all such attempts fail on strongly regular graphs.
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Isomorphism and Spectra

Latin Square Graphs

Definition

Let L be an n x n Latin square. The vertices of the Latin square
graph X (L) are the n* positions in the matrix L, two positions are
adjacent if they are in the same row of L, or the same column, or
have the same entry.
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Isomorphism and Spectra

Two Latin Squares
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Isomorphism and Spectra

Regularity

If X is the graph of a Latin square of order n, then X has v = n*
vertices and:

(a) Each vertex has valency k = 3n — 3.
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Isomorphism and Spectra

Regularity

If X is the graph of a Latin square of order n, then X has v = n*
vertices and:

(a) Each vertex has valency k& = 3n — 3.

(b) Two adjacent vertices have exactly @ = n common neighbours.
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Isomorphism and Spectra

If X is the graph of a Latin square of order n, then X has v = n?
vertices and:

(a) Each vertex has valency k = 3n — 3.
(b) Two adjacent vertices have exactly @ = n common neighbours.

(c) Two distinct non-adjacent vertices have exactly ¢ = 6 common
neighbours.
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Isomorphism and Spectra

A Matrix Equation

If X is a Latin square graph with parameters (v. k: a. ¢), then

AJ=JA=FkJ
A2 _(a—e)A—(k—e)] =c¢J

and A" is a linear combination of .J, I and A whose coefficients
are determined by r and the parameters of X.
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Isomorphism and Spectra

The Bad News

If L and Al are inequivalent Latin squares of the same order, then
X(L) and X (M) are cospectral, but not isomorphic. And there
are lots of inequivalent Latin squares.
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Symmetric Powers

A Construction

We describe a construction due to Terry Rudolph.

Definition

Let & be a positive integer and let X be a graph. The vertices of
the k-th symmetric power X1k} of X are the subsets of V(X))
with size &, and two k-subsets are adjacent if their symmetric
difference is an edge of X.
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Symmetric Powers

Example: C;

<)
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Symmetric Powers

cy?
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Symmetric Powers

Walks

Consider & particles undergoing a random walk on a graph X, such
the particles occupy distinct vertices. At each time interval, one
particle is chosen to move (at random) and it moves (at random)
to an unoccupied adjacent vertex.

These random walks correspond to random walks with one particle

on X ¥}
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Symmetric Powers

Strongly Regular Graphs

Rudolph observed that

m the spectrum of X 12} was better at distinguishing graphs than
the spectrum of X but
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Symmetric Powers

Strongly Regular Graphs

Rudolph observed that

m the spectrum of X 12} was better at distinguishing graphs than
the spectrum of X' but

m it did not distinguish pairs of strongly regular graphs with the
same parameters (for graphs with up to 36 vertices).
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Symmetric Powers

The Spectrum of X {2

T heorem

The spectrum of X 12! is determined by the spectrum of X and the
determinant of the series

)3 Z(:)A*‘oy‘—* £

r z

Here Al o N denotes the Schur product of M and N, defined by

N

t.J+v8,7"

(MoN);; =M

]:’.J
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Svmmetric Powers

Another Failure

Theorem

If X and Y are strongly regular graphs with the same parameters,
then X12} and Y12 are cospectral

(See Audenaert, Godsil, Royle and Rudolph: math.CO/0507251.)
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Symmetric Powers

But. ..

In all cases tested, the spectrum of X 1*/ determines X. (The cases
tested include all strongly regular graphs on 35 and 36 vertices,
and there are 32,548 strongly regular graphs on 36 vertices having
the same parameter set as the graph of a 6 x 6 Latin square.)
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Symmetric Powers

But. ..

In all cases tested, the spectrum of X 1*/ determines X. (The cases
tested include all strongly regular graphs on 35 and 36 vertices,
and there are 32,548 strongly regular graphs on 36 vertices having
the same parameter set as the graph of a 6 x 6 Latin square.)
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Svmmetric Powers

The Spectrum of X {2

T heorem

The spectrum of X 12! is determined by the spectrum of X and the
determinant of the series

(X (f)area)r

r [

Here A o N denotes the Schur product of M and N, defined by

(MoN);; =M;;N;,;

Ji,J i.j4
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In all cases tested, the spectrum of X1*! determines X. (The cases
tested include all strongly regular graphs on 35 and 36 vertices,
and there are 32,548 strongly regular graphs on 36 vertices having
the same parameter set as the graph of a 6 x 6 Latin square.)
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A Common Thread

The incidence graphs in Section 2, the finite orthogonality graphs
in Section 3 and the strongly regular graphs from Section 4 each
give rise in a natural way to an association scheme. For our
immediate purposes, this is a commutative algebra of symmetric
matrices which is also closed under Schur multiplication and
contains .J, the all-ones matrix.
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