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From Trees to Loops and Back

by Andreas Brandhuber

Queen Mary, University of London

based on hep-th/0510253 AB-Spence-Travaglini

and also

hep-th/0412108 Bedford-AB-Spence-Travaglini
hep-th/0410280 Bedford-AB-Spence-Travaglini
hep-th/0407214 AB-Spence-Travaglini
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QOutline

¢ Motivation & Aims
e Scattering Amplitudes in Gauge Theory

® (Colour Decomposition & Spinor Helicity Formalism

® Twistor Space
® MHV Diagrams
® |-Loop Amplitudes from MHY Vertices

® Proof of Equivalence of MHV & Feynman Diagrams
® (Covariance of MHV Loop-Diagrams - Feynman Tree Theorem
® Discontinuities
® Factorisation: Collinear Limits & Soft Limits

e Conclusions
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Witten 2003

weak/weak

Why is that interesting !

® Explains unexpected simplicity of scattering amplitudes
in Yang Mills & gravity

» Simple Geometric Structure in Twistor Space

» New Differential Equations for Amplitudes

® New tools to calculate amplitudes

» MHYV Diagrams for trees and loops
Generalized Unitarity
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Motivation

e |HC is coming
® Precision pert. QCD calculations
® |ong wishlist of processes to be computed
® New techniques are needed
e Textbook methods hide simplicity of amplitudes
® Intermediate expressions are large

® Factorial growth of nr. of diagrams, e.g. gluon scattering

gg=>mg m=5 m=6 m=8

559405 10525900 | 224449225
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Motivation cont’d

e Luckily we do not have to use textbook technigues
e color decomposition
® spinor helicity
® unitarity
® supersymmetry

® string theory

e and since 2004

® twistor string (inspired) techniques
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Color Decomposition

e at tree level Yang-Mills is planar

e only diagrams with fixed cyclic ordering contribute to the
"color stripped amplitudes™ A,

e analytic structure simpler
e At loop level, also multi-traces; subleading in 1/N

e At one-loop simple relation between planar & non-
planar terms
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Spinor helicity formalism

® Responsible for the existence of compact formulas of tree
and loop amplitudes in massless theories

® The 4D Lorentz Group (complexified) SL(2,C) x SL(2,C)
Pu < Paa = P;;Oﬁa il & e 1ﬂ2

massless pup = detpu =0 = pua= )\ﬂl} Note: In Eeal E’Ilnk
on-shell F—T5

® Spinor Products

(i) = NMe® | I =NMe® = 2pi-py= (i) [ji

- - a 3da :
e {p e’} areredundant the spinor variables {7“-;' :7\;‘} contain

just the right d.o.f. to describe momentum & wavefnct./polarization
_ o f massless particles of arbitrary helicity h e 53



n-Gluon Tree MHV-Amplitudes

o o 5 2 -
N N
..... tree
+/- = . *
>4 MHV Amplitude
AE\«’IEI?IV = I'g 2315 45 2 Pi Parke-Taylor;
1 2 < > Berends-Giele

e Very Simple!
e Holomorphic, depends only on A; ,noton A,
® Correct for Super Yang-Mills, pure glue & QCD

® In N=4 SYM similar formulas for amplitudes with two
gluons replaced by fermions/scalars
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Twistor Space

...is a*“1/2 Fourier transform” of spinor space:

(}*-m }“-r'f) =" (}\'ﬂh“c':)

: : - i _2
e Twistor Space is complex 4 dim’l (Mp Mg, it %)
® Amplitudes are homogeneous functions on twistor space

# Projective Twistor Space  C]P?

(M) ~ (t\,1p)
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Twistor Space cont'd

e Relations between Minkowski space and projective T.S.

Incidence Relation: u*+x“A, =0

point in Mink
.. B e

line in proj.T.S.

nullplane in Mink

point in proj. T.S.

®
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Amplitudes in Twistor Space

e MHV amplitudes are holomorphic (except for momentum
conservation); perform 1/2 Fourier transform

= Aympmv / dx / diief*“*j"*'e*"r}“f}““' ~ am(ﬂf + xA;)
I Il

1

Hence: For MHV amplitudes all points (=ext. gluons)
lie on a line in projective Twistor Space
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Amplitudes in Twistor Space contd

e Witten’s conjecture (2003): L-loop amplitudes with Q
negative helicity gluons localise on curves of
degree=Q-l+L and genus<=L

® |ocalisation properties of amplitudes in proj. 1.S. translate
into differential operators obeyed by the amplitudes in
momentum space: u — id/dA

® For non-MHYV tree amplitudes “experiments” with diff.
operators reveal (curves are actually degenerate):
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MHYV Diagrams

e MHV amplitude = Line in T.S. = local interaction in Mink
® CSW Rules (Cachazo-Svrcek-Witten)
e MHV amplitudes continued off-shell as local vertices

: . |
e Connect MHYV vertices with scalar propagators: 2

2

e Sum diagrams with fixed cyclic ordering of ext. lines
Ex: (172737 47576"
Off-shell continuation of spinor:
}“Pa =P, uﬂ}‘li

n“...reference spinor
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MHYV diagrams cont'd

some of the 5 missing diagrams of

® Reproduce known and obtain new scattering amplitudes in
any massless gauge theory ™» dramatic simplifications

e Correct factorisation:
multiparticle poles & collinear/soft limits

® 1] dependence disappears in sum over diagrams
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MHYV diagrams - applications

e Amplitudes of gluons with fermions/scalars Georgiou-Khoze, Wu-
Zhu

o Amplitudes with quarks Georgiou-Khoze, Su-wu
e nggS p]LIS partons Dixon-Glover-Khoze, Badger-Glover-Khoze
e Electroweak vector boson currents Bern-Forde-Kosower-Mastrolia

® lagrangian Derivation? |Initial Steps have been made using

|ight cone formalism (Mansfield hep-th/051 1264, Gorsky-Rosly hep-th/
0510111)
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From Trees to Loops (AB-Spence-Travagin)

® Original prognosis from twistor string theory was negative
(Berkovits-Witten), "pollution” with Conformal SUGRA modes

e Try anyway:

e Connect V=Q-l+L MHYV vertices, using the same off-
shell continuation as for trees

e Chose measure, perform loop integration (Dim. Reg.)

e Simplest Ex.: MHV |-loop amplitudes in N=4 SYM
m2+ "

/dME

ml:mz:'h
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MHYV one-loop amplitudes in N=4 SYM

e Computed by Bern-Dixon-Dunbar-Kosower (1994) using
four-dim’l cut-constructibility (works for SUSY, massless
theories) = Unitarity

® Result is expressed in terms of “2-mass easy box functions”

|

me(s ¢+ P2.O*) = [ d* =L '
(65, &) / LHL—p)*(L—P—p)*(L+Q)

1 —ir(}'ﬂp = tree

Avpy = Amny X 2
X
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MHYV vertices at one-loop

Loop integration AE‘{?P — 2 /dMAE'“(—L{,mI. vyt Lo
(schematically): my.my,h
XA;;EE(—LE,HIZ_'_I ..... mp — I,Ll)

- dq'Ll d4L2
- LI +iel3+ie

Loop measure: dM 6[“(1,3 — L+ Pp)

Off-shell continutation (as before) L, =1[,+2,

reference null-vector

Hence
d'L dz oy
—— = X d*187(1?)
Lt 2z
dipersive phase space
measure measure
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N=4 SYM one-loop cont'd

Putting everything together and integrating over z =7, + 2>
we find,using z=12, — 2

d
dM = = X dLIPS(!:,—Ji;PL::)
<

PL:;:PL_Z”

dLIPS is the 2-particle Lorentz inv. phase space measure and the

corresponding integral calculates the branchcut or discontinuity of
the amplitude! Note however the shift in P, = P — 7

The remaining integration over z is a dispersion (type) integral,
which reproduces the full amplitude!

=) The Return of the Analytic S-Matrix
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N=4 SYM one-loop contd

After some manipulations we find the result to be the sum over
contributions from all possible cuts of all possible 2-mass easy box
functions (to all orders in DR parameter € )

Note: only after summing over the four cuts dependence on 1]
disappears!

Pirsa: 06050006 Page 21/53



Summary of N=4 SYM at |-loop
e Agrees with result of (Bern-Dixon-Dunbar-Kosower)
® Incorporates large numbers of conventional Feynman diags
® Naturally leads to “dispersion integrals”
® Non-trivial check of MHV diagrammatic method
® covariance (no dependence on 1] )
e non-MHYV amplitudes (later in the talk)

e Simpler form of “2-mass easy box function”

| | ;
F™(6F.0)= —E—z[(—s)“‘ e T (—Qz)"‘}
(1 —alT) - L{l —a@’) — Liz(1 —as) — Lix(1 —at),

PPy F—s—t u
a = ety — Y
P2Q?% — st P2Q% — st
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Generalisations

® In principle our approach can readily be applied to non-
MHYV amplitudes and theories with less supersymmety

e MHYV, one-locp amplitudes in N=1 SYM (Bedford-AB-Spence-

Travaglini)

e Contribution of a chiral multiplet (susy decomposition)

A%zlﬁvecmr - A:?(:-l 5 3A:7(:[.chiral
® Result involves scalar box & triangle functions

e MHYV diagram method agrees with BDDK

® Works despite the absence of Twistor String Dual of
N=1 SYM
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MHYV, one-loop in N=1 SYM

1 —-loop MHV __ tree MHV
Achirm’ =A x 1

m.s

Fe 2 pid dj finite

m.s

a+l da TR j_
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MHYV, |-loop amplitudes in Yang-Mills

non-supersymmetric theories are not “4D cut-
constructible”

e Amplitudes contain rational terms that are not linked to
terms containing cuts (can be obtained from new on-
shell recursion relations (Bern, Forde, Dixon, Kosower) )

From MHYV vertices we obtain cut-containing terms

SUSY decomposition
A = (A5 +4A7 +3A%) —4(AT + A5) + A°

To be computed
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Yang-Mills, 1-loop cont’d

e Result is expressed in terms of

e finite box functions: Iinize = B(s,1.P*,0°)
: log(Q*/P*
e triangle functions: T F(Prp- Q) = (Sg = ;;2)3
e Coefficient of B is: (bf;flmz)z

e Agrees with 5-point result and the case of adjacent negative
helicity gluons of (BDDK)

e New Result for negative helicity gluons in arbitrary position

® First new result for QCD from MHV diagrams !
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Evidence for MHV diagrams so far

® Tree Level Amplitudes === several proofs (CSW. Britto-
Cachazo-Feng-Witten, Risager)

® One-Loop Amplitudes in (S)YM
e MHYV 1-loop Amplitudes in N=4 SYM (AB-Spence-Travaglini)

e MHYV 1-loop amplitudes in N=1 SYM (Bedford-AB-Spence-
Travaglini, Quigley-Rozali)

e Cut-Constructible Parts of MHV 1-loop Amplitudes in
pure Yang-Mills (Bedford-AB-Spence-Travaglini)

Q: Do MHYV Diagrams provide a new, complete,
perturbative expansion of SUSY Yang-Mills ?
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From Loops Back to Trees
via the Feynman Tree Theorem (FTT)

e We want to show that MHV diagrams are equivalent to
Feynman diagrams for generic one-loop amplitudes in SYM
e Step 1: Proof of Covariance
® Step 2: Discontinuities
e Step 3: Kinematic Limits

e Stepl:proof of covariance using FTT

e FTT is based on the decomposition of the usual Feynman

tor: -
PrOPAgator-  Ap(P) = Ag(P) + 26 (P2 — m?)

8 N(P? —m?) = §(P* —m?)O(—PRy)

irsa: 06050006 Page 28/53



irsa: 06050006

FTT cont'd

e Assume we use Feynman rules with Az(P) instead of Ar(P)

e Since Ag(P) is a causal propagator (contrary to Ag(P) )
any loop integral with local vertices has support for:

fl}fz}"'::’f”}ﬁ

Since there are no closed time-like curves in Minkowski
space this integral vanishes!

Ip = /Hd4xf Ap(xy —x2)V (x2)Ap(x2 — x3)V (x3) - - - Ap(x, — 21 )V (1) = 0
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FTT contd

e Now use the decomposition of Ax(P) into Ag(P) and an
on-shell delta-function

&L | |
o= f(2H)4f(L.{fg})H[AF(L'TK,-)—z::a*—}((HKf)z)} — 0

to find the FTT

I — _/ d*L f(L.{K;}) H’ [AF(LJFK,-)—Znai—}((LqLKi]z)}

(2n)* |

In a nutshell: the FTT reduces Loops to Trees! Or more
precisely to the sum of all possible cuts.

IF — Il —cur T I2—cur =¥ I3—r;ur = 14—('14!
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FTT and MHV Diagrams

® Because of the local character in Minkowski space of MHV
vertices we can apply the FT T directly to MHV diagrams.

e This will allow us to find a simple proof of covariance for
the sum of MHV diagrams contributing to generic
(one-)loop amplitudes

® The amplitude is given by a sum of terms in which at least
one loop leg is cut

_,QI — ﬂl—{'uf _+_ ﬁZ—c*ur _l_ -/QIE—('HI —i_ ‘/q'”-l»—f'nf

The key point is that each set of p-particle cut diagrams
sums to a covariant expression!
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FTT and MHV Diagrams contd

e MHYV one-loop amplitudes

The MHV diagrams have the following 1-particle and 2-
particle cuts

The 2-particle cuts give a phase space integral of a
product of on-shell tree amplitudes and hence are
covariant
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FTT and MHV Diagrams contd

-_f+

i . s . 1]
HY) missing diagrams

+/-

® More care needed for 1-particle cuts: sum only over
diagrams with cut legs on different MHV vertices.

e Two alternative justifications to exclude these diagrams

|. In supersymmetric theories the missing diagrams give a
vanishing integrand, after summing over internal particle

species.

2. cut legs are (anti-)collinear =5
“missing diagram” = (splitting function) x (tree diagram)
These tree diagrams sum to an amplitude.
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FTT and MHV Diagrams contd

e more complicated examples can be treated in complete
analogy

e NMHV Amplitudes

MHYV diagrams

2-particle
cut diagrams
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FTT and MHV Diagrams contd

@ B—@

one-particle cut
diagrams

Hi= “missing” diagrams
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Discontinuities

® One-loop MHYV diagrams give covariant expressions

e Step 2: check that these expressions have the correct
discontinuities or unitarity cuts in all channels.

e Straightforward; the diagrammatics is the same for Feynman
2-particle cuts in the FTT and a unitarity 2-particle cuts.

® In a particular channel one fixes two propagators and
replaces them by two on-shell delta functions. Summing all
MHYV diagrams sharing the same 2-particle cut, one obtains
the full tree amplitudes on both sides of the cut. LIPS
integration produces then the expected discontinuity.
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Discontinuities cont'd

e This argument applies also to generalised unitarity cuts.

e Note: although the diagrammatics look the same, a Feynman
2-particle cut is different from a unitarity 2-particle cut.
In particular a Feynman/Unitarity 2-particle cut vanishes
above/below the 2-particle threshold!

In a Feynman cut:
: Lo

L1U-::[}and LZO{D

In a Unitarity cut:

L.IU«:.:Dand LZD}O
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Factorisation

e MHYV one-loop diagrams give covariant formulas with all the
correct (generalised) cuts

e Step 3: Check that all physical poles in possible kinematic
limits are correct. In particular we will check the universal
collinear and some of the soft limits.

® Unphysical, n—dependent singularities (and cuts) can be
excluded by our proof of covariance

® The remaining ambiguity must be a polynomial term, which
can be ruled out on dimensional grounds (as in BCFW)
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Universal collinear factorisation

e Consider a one-loop amplitude 4! '°”7 in the limit when
momenta a and b become collinear (parallel)

Split"™*“(a,b)
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Universal Collinear Factorisation

Involves tree and one-loop splitting functions:
1 1 | |
, Split'*“(a”,b™) = —
v/ z(1 —z){ab) i Vz(1—2z)lab]

With ka = ka, kb = (1 —Z)kp.} k% — 0

Split™(a* b*) =

The one-loop splitting function is

Split' ~'°P (a,b) = Split"™*(a,b) x r(z)

® All order in € expression for r(z) was calculated by
(Kosower-Uwer, Bern-Del Duca-Kilgore-Schmidt)

Cr { —Sab\ ¢ z—1 z
g) — — 1 —>F(1,—e,1—¢€, —HF [ 1.—e.1—c¢,
0= G e 2 e
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Collinear Limits from MHYV Diagrams

e At tree level, collinear limits come out as expected (CSVV)
as well as soft limits

e Two types of collinear limits in MHV diagram method
® A-type: ++ =+ and +— = -
® B-type: +—- =+ and —— = -

e Both legs belong to the same MHYV vertex, for B-type this
must be a 3-point vertex

irsa: 06050006 Page 41/53



Collinear Limits from MHYV Diagrams

e Also at |-loop level we have to distinguish A/B-type

® “singular channel” (Kosower) and “non-singular channel” MHV
diagrams

® “non-singular channel”: Tree splitting function

® “singular channel™: 1-loop splitting function

“singular channel”
MHV diagram
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| -loop splitting functions from MHV
diagrams

e If legs @ and b/ end on different MHV vertices
=» no contribution to collinear limit

e A-type collinear limits

e 2|l order 1-loop splitting function from generic “singular
channel” diagram shown before

® requires all order in € form of the 2-mass easy box
function (slight generalisation of calculation in (A2-Spence-
Tr"avaglini])

e tree-level splitting function from “non-singular channel”
diagrams, where legs ¢ and b are a proper subset of legs
attached to MHYV vertex
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Collinear Limits from MHYV Diagrams

e Also at |-loop level we have to distinguish A/B-type

® “singular channel” (Kosower) and “non-singular channel” MHV
diagrams

® “non-singular channel”: Tree splitting function

® “singular channel™: 1-loop splitting function

“singular channel”
MHV diagram
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| -loop splitting functions from MHV
diagrams

e |f legs @ and b/ end on different MHV vertices
=» no contribution to collinear limit

e A-type collinear limits

e 2|l order 1-loop splitting function from generic “singular
channel” diagram shown before

e requires all order in € form of the 2-mass easy box
function (slight generalisation of calculation in (A2-Spence-
Tr"avaglim'))

e tree-level splitting function from “non-singular channel”
diagrams, where legs ¢ and b are a proper subset of legs
attached to MHYV vertex
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One-loop splitting functions cont'd

e B-type collinear limits need special attention

e all order one-loop splitting function from “singular
channel” diagram

® agrees with known results

“non-singular channel”
MHYV diagram, contributes to “singular channel” MHV diagram
tree level splitting function
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Soft Limits

e Behaviour of one-loop amplitudes when one leg s becomes
soft is given by:

ﬂ;_m“”(l,....aﬁs.ab._..._.n) oS

Soft"*“(a,s,b) .ﬂ;:i“ﬂp(l?...,a,b? — )

+ Soft' "*°P(a,s, b) A™(1,...,a,b...,n)

with
(ab)

(as) (sb)
Seft' *Plg. 5. b} — Soff™ (a5 B) ((’T 3 ) (_ ~ }‘2)

g2 sin(7e) S S

Soft"*(a,s*.b) =
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Soft Limits from MHV Diagrams

e For concreteness we discuss the soft limit: ¢ s b ——a b

® Three MHYV diagrams contribute in this case, the first two
being familiar from the collinear limits

e Again the MHV diagrams reproduce the all order, one-loop
soft function

b+
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Summary

e MHYV diagrams are an efficient tool to calculate tree and
I-loop amplitudes in (S)YM

® |n SYM at |-loop we have shown
e covariance (from FTT)
® correct cuts (by construction)
® correct soft and collinear limits, (to all orders in € )
e Multiparticle Poles?
e Further applications of FTT
® rederivation of MHV |-loop measure

e FTT applies also to massive/non-susy theories
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Outlook

e MHYV diagrams work better than expected

® all order in € one-loop splitting and soft functions and
4-point one-loop amplitude in N=4 SYM

e Should work for higher loops (work in progress)

e Connections with integrability (Minahan-Zarembo ...) and

higher loop recursion relations (Anastasiou-Bern-Dixon-
Kosower, Bern-Dixon-Smirnov, Cachazo-Spradlin-Volovich, Bern-Czakon-

Kosower-Roiban-Smirnov) ]
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