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Abstract: We will look at the axioms of quantum mechanics as expressed, for example, in the book by M. A. Nielsen and I. L. Chung ("Quantum
Computation and Quantum Information”). We then take a critical look at these axioms, raising several questions as we go. In particular, we will ook
at the possible informational completeness property of the family of operators that we measure. We will propose physical solutions based on the
results of guantum mechanics on phase space and the measurement of quantum particles by quantum mechanical means. We illustrate this with both
momentum-position measurements and spin measurements.
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Qutline:

1) Axioms of Quantum Mechanics (from
"Quantum Computation and Quantum
Information™ by M. A. Nielsen and |. L.
Chuang).

2) A critical look at the axioms.

3) A partial solution to the questions that
arose.
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Axiom 1) The objective is to categorize a
vector in a Hilbert space. Frequently we
choose the Hilbert space to be C* or R*. The
Hilbert space is of finite dimension.

Axiom 2) Evolution of a closed quantum
system is described by a unitary
transformation. In the case of a single qubit, it
Is assumed that any unitary operator can be
realized in rezalistic systems.

Axiom 3) Quantum measurements are
described by a countable collection

{M,. | D MM, = 1} of measurement

operators, and
(2) the probability that m occurs in state v
IS
plm)= <y | MiMpy > = || Maw ||-;
(D) the state of the system after
measurementis | M,y ||~ M,w.
Axiom 4) A compaosite system of states
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dim(spin space) = 2. What about the position

and momentum g of the particle?
In Hilbert space H, take a countable basis:
expand any wave function. Truncate. p and g
take you out of this basis.

There is no finite basis providing a
representation of the c.cr’s.

Question 1) What is a basis on which to
choose to truncate?

On Axiom 2) The dynamics of a particle in a
closed quantum system is given by a unitary

operator on phase space. Given any state

“localized within a certain region of phase
space” it may have a slow wave packet
spreading, and then we may concentrate on
the spin by taking the partial trace. We may
not get "any unitary operator” this way.

Question 2) How can we "localize the
particles in a region™?

Question 3) Which (unitary?) operators are
allowed?
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Question 4) Given that you don’'t have
projections in the game, are some or all of the
"results” of the Stern-Gerlach experiment, or
of quantum computing. or - - - valid? How will
we proceed with positive operators?

On Axiom 3 (contin.)) If M, is a positive

operator, then 3(a) remains the same. 3b) is
occasionally wrong. What if the experiment
destroys the state, for example?

Question 5) Can we compute the "results”

based on a) probabilities, b) dynamics alone?

Definition We will take a set of operators {A:}
to be informationally complete if, whenever
p and p' are density operators, then
Tr(pA:) = Tr(p A.) for all a implies
=g
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On Axiom 3 (contin.)) The spectral projectors
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Question 6) What set of operators is
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these to approximate the equality of states.

On Axiom 4) Simply taking the tensor product
of states to obtain multi-particie states is
contrary to entanglement. It is a certain
subspace of the tensor product of the Hilbert
spaces in which we work.
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Via Wigner, we treat quantum mechanics on
phase space as coming from the Poincaré (or
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spaces, Irreducible representations. etc. as
coming from the group itself. The following
definition is one non-surprizing result. See
F.E. Schroeck, Jr., Quantum Mechanics on
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A Possible Solution coming
from Quantum Mechanics
on Phase Space

Via Wigner, we treat quantum mechanics on
phase space as coming from the Poincars (or
Galilei) group and then derive the phase
Spaces, irreducible representations, etc. as
coming from the group itself. The following
definition is one Non-surprizing result. See
F.E. Schroeck, Jr.. Quantum Mechanics on
Phase Space, 1996 Kluwer Academic Pubs.

Definition /o Theor

em) in relativistic quantum
mechnics, ¢

he phase space for massive
spinning particle is R> @ R> @ S( 2). For
massive, spin zero particle — R 3 DR
R* @ R denotes the momentum space

Iimes position space; S(2) is the Spin space.
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particles momentum in 2 box A; (say
around zero) and position in a box A,. Take a
particle with wave function n that has

<1n,Pn>=0,<n.0n> =0.
Translate it with U(p. g) to obtain

< Ulp.gn.PU(p.q)n > =p.

< Up.gn.OU(p.q)n > =gq.
Take the probability for the localization

operator for a general vector w to be in
_“;[ > _\.: to DE

L3 =a.(w)
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Laa:(P.9) |< Ulp.g)n.yw >|? dpd’q

R

Note that we have written just the transition
probability for v with U(p.g)n integrated over
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discrete whenever A, x A is compact, and i)
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- 2av0:(2-9) | Ulp.q) >< Ulp.q)n | &£pd°

(Without generating any problems, you may
replace 47(xzx,.a,) with A7(7),

fe L'(R°) N L=(RS), freal valued.)

As a function of either x,,.., or 7, these 47s
are informationally complete, form a set of
positive operators, and take the value 1 as

f — 1. (There are some conditions on n here.)

When you spectrally decompose 47( x4, «x.)
you find that (i) the spectrum is purely
discrete whenever A; x A, is compact, and ii)
ordering the spectrum in decreasing order,
the eigenvalues begin just below 1. and then
drop off precipitously to just over 0. We will
take "the vectors in A; x A" to be the
eigenvectors that have eigenvzalues close to
2

This answers questions 1, 2 and 6!
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projection of that unitary operator onto the
part of phase space being considered, and
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momentum, or just position. or just spin. We
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By comparison, if we were to try to localize
Just in terms of position (or momentum), a)
we would not start with informational
completeness and b) we would not get any
discrete spectrum at all. This phase space
ocalization is much different.

To answer questions 3 and 4, we first look at
the full phase space (momentum, position.
and spin) on which we have some
Hamiltonian dynamics. Then we will take the
projection of that unitary operator onto the
part of phase space being considered, and
then take the partial trace to get what we

have to discuss for 3 theory based on just
momentum, or just position. or just spin. We
don’t get a unitary dynamics by this means.

Alternatively, we may expand the Hamiltonian
dynamics in terms of the igenbasis we
obtained from localizing; then truncate the
Dasis; and then look at the relevant variables
for the experiment by marginality. Again we
won’t get a unita erator.
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iImportance of quantum mechanics IS
enormous for deviations from allignment. The
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Two examples.

Stern-Geriach devise: | you take the beam of
(bound) electrons as collumated (which they
are), then place the Stern-Gerlach device in
the beam, and then treat the beam particles
as functions of momentum:. position, and
spin, you find that the "upper” transmitted
beam has z great deal of spin "up”, but not
all. It may be as much as 1 in 25 spin down!
(P- Busch and F. Schroeck, Found. Physics
19 (1989), 807-872.) Spin is a quantity which
is physically not an eigenfunction of any
projection in this experiment, as you can not
allign the direction of measurement of the
spin perfectly. We may have an eigenfunction
of a positive operator with eigenvalue near
but not equal to one. obtained in a manner
similar to our formulation Of A7(ra,xa.)-

The discussion of beam splitters is similar.
See P. Busch. M. Grabowski, and P. J. Lzhti,

Operational Quantum Physics, Springer,
1995, pp. 174 - 177,
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Definition A4 gubit is a vector in a two
dimensional Hilbert space, Hy. Choose an
orthonormal basis {|0 >_|1 >\.

Quantum computing: A CNOT gate is
Supposed to take a control qubit and a target

qubit, and if the control is in state |0=>, then
the target is left alone; if the control is in state
|1>, the target is flipped.

This transition may be described by a unitary
operator in Hy. But, having a system with only
two states is just an approximation, and the
unitary operator you have on that two sizate
System doesn’t come from any Hamiltonian
dynamics!

You consider the states of the control and/or
target as functions of p, g, and s. and the
miltonian as function of P Q, and S.
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As states evolve, they undergo wave-function
spreading. This is a small spreading in terms
of g, but it will change the direction of p
slightly, and thus change the spin which will
have a drastic effect if the angle of change is
appreciable. Said ancther way, as the
evolution takes place, the state goes from
one eigenvector of localization with
eigenvalue near 1 to a state that is a mixture
of eigenvectors; you don’t expect it to go to
just the orthogonal vector in H,.

The transition is

v = AT(ga)y = U(ADAT (za)w

= AT(x 2 JUADA (za)w

where U(Ar) is the unitary time evolution. A is
the set for localizing the particle in the full
phase space before the evolution and A’ is
for localizing after the evolution. which may
be different. Then M, = 47(z, ) U(ADA"(z.).

which is not a unitary operator on the original
Y= s e.
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We have guestion 5 to contemplate. Take the
Stem-Gerlach example, and consider the
collumation descibed by 47(7,). Consider
placing a hole in the screen around one of the
bright spots, and place another Stern-Gerlach
device in the direction of flow immediately

after the hole. You have an operator 47(x,)
that describes the hole. You will get

W = A7 s )UAD AT (7, YUADA () w to
describe the process. You may then compute
the probabilities independent of what we
decide to do with the final electrons. After all,
we only record where the electrons were at
the time if impact by recording flashes of light
where they were approximately.




Conclusion

In order to get a truely quantum mechanical
theory of measurement we must look a little
deeper into the theory of measurement. We
may iake the previous "resulis”™ as just
mathematical, and not necessarily physical.
For example, we take the unitary operators of
time propagation and look at the resultant
when we "project” by means of a positive
operator. What then will be the analog of
Shor’s theorem, for example?




