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Abstract: Inspired by the notion that the differences between quantum theory and classical physics are best expressed in terms of information theory,
Hardy (2001) and Clifton, Bub, and Halvorson (2003) have constructed frameworks general enough to embrace both quantum and classical physics,
within which one can invoke principles that distinguish the classical from the quantum. Independently of any view that quantum theory is essentially
about quantum information, such frameworks provide a useful tool for exploring the differences between classical and quantum physics, and the
relations between the various properties of quantum mechanics that distinguish it from the classical. In particular, we can ask: on which features of
guantum physics do our familiar possibility/impossibility theorems depend? It turns out that it is possible to extend the no-cloning theorem and other
results, such as the Holevo bound on acquisition of information by a single measurement, beyond the quantum setting.
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From Physics to Information Theory and Back

Characterizing Quantum Mechanics

» Lucien Hardy (2001) and Clifton, Bub & Halvorson (2003)
have taken on the task of characterizing quantum theory.
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From Physics to Information Theory and Back

Characterizing Quantum Mechanics

» Lucien Hardy (2001) and Clifton, Bub & Halvorson (2003)
have taken on the task of characterizing quantum theory.

» Strategy: construct a framework broad enough to encompass
both classical and quantum theory, and invoke principles that,
within such a framework, distinguish the classical from the

quantum.
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From Physics to Information Theory and Back

An Interesting Alternate Project

» Use such frameworks to explore relations between features of
quantum mechanics
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From Physics to Information Theory and Back

An Interesting Alternate Project

» Use such frameworks to explore relations between features of
quantum mechanics

» |If done with a reasonable degree of generality, this will be
informative about possible successor theories.
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From Physics to Information Theory and Back

Some Features of Quantum Mechanics

1. No quantum states that are dispersion-free for all observables.

2. Impossibility of ascertaining the state of a quantum system
via a non-disturbing measurement.

3. No cloning (more generally, no broadcasting).
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- No quantum states that are dispersion-free for all observables.

. Impossibility of ascertaining the state of a quantum system

via a non-disturbing measurement.

- No cloning (more generally, no broadcasting).

a set of pure states is clonable iff they are mutually
orthogonal. Mutually orthogonal states are distinguishable by
a non-disturbing measurement.
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Some Features of Quantum Mechanics
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- No quantum states that are dispersion-free for all observables.

. Impossibility of ascertaining the state of a quantum system

via a non-disturbing measurement.

- No cloning (more generally, no broadcasting).

(2) is closely related to (3). The no-cloning theorem says that
a set of pure states is clonable iff they are mutually
orthogonal. Mutually orthogonal states are distinguishable by
a non-disturbing measurement.

Heisenberg famously tried to relate (1) and (2) via the
light-microscope thought experiment.
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An informal argument

» A pair of states is clonable iff they are distinguishable via
measurement.
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- No quantum states that are dispersion-free for all observables.

. Impossibility of ascertaining the state of a quantum system

via a non-disturbing measurement.

. No cloning (more generally, no broadcasting).

(2) is closely related to (3). The no-cloning theorem says that
a set of pure states is clonable iff they are mutually
orthogonal. Mutually orthogonal states are distinguishable by
a non-disturbing measurement.

Heisenberg famously tried to relate (1) and (2) via the
light-microscope thought experiment.
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» A pair of states is clonable iff they are distinguishable via
measurement.
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An informal argument

» A pair of states is clonable iff they are distinguishable via
measurement.

» If | can clone a state, then | can make multiple copies of it and
discover all that | want about its state via observations on the
coples.
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An informal argument

» A pair of states is clonable iff they are distinguishable via
measurement.
» If | can clone a state, then | can make multiple copies of it and
discover all that | want about its state via observations on the

coples.
» If | can distinguish a pair of states by measurement, | can feed
the result into a state-preparation device to make a copy.
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An informal argument

» A pair of states is clonable iff they are distinguishable via
measurement.

» If | can clone a state, then | can make multiple copies of it and
discover all that | want about its state via observations on the

coples.
» If | can distinguish a pair of states by measurement, | can feed
the result into a state-preparation device to make a copy.

» Nothing particularly quantum about this!
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Heisenberg

» Heisenberg's light microscope thought-experiment has not
been well received.

Pirsa: 06050002 Page 16/105



From Physics to Information Theory and Back

Heisenberg

» Heisenberg's light microscope thought-experiment has not
been well received.

» Heisenberg lacked a theory-neutral framework embracing both
classical and quantum states.
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From Physics to Information Theory and Back

Heisenberg

» Heisenberg's light microscope thought-experiment has not
been well received.

» Heisenberg lacked a theory-neutral framework embracing both
classical and quantum states.

» Armed with such, can we extract a theorem relating dispersion
to indistinguishability and/or impossibility of cloning?
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From Physics to Information Theory and Back

The CBH framework

» Associate with each physical system a C*-algebra, whose
self-adjoint elements represent the observables of the system.
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The CBH framework

» Associate with each physical system a C*-algebra, whose
self-adjoint elements represent the observables of the system.

» A state is a linear functional assigning expectation values to
operators, such that the identity operator gets value 1, and a
self-adjoint operator with spectrum in R™ gets values in R™.
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The CBH framework

» Associate with each physical system a C*-algebra, whose
self-adjoint elements represent the observables of the system.

» A state is a linear functional assigning expectation values to
operators, such that the identity operator gets value 1, and a
self-adjoint operator with spectrum in R™ gets values in R™.

» General evolution a non-selective operation on states: a linear,
completely positive map that preserves norm.
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From Physics to Information Theory and Back

» Comment. The C* assumption imposes nontrivial constraints
on the state space. Nevertheless, these constraints are
satisfied by both classical and quantum theories, so, as long as
we are interested in exploring the differences between classical

and quantum, the assumption is not problematic.
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» Comment. The C™ assumption imposes nontrivial constraints
on the state space. Nevertheless, these constraints are
satisfied by both classical and quantum theories, so, as long as
we are interested in exploring the differences between classical

and quantum, the assumption is not problematic.

» Nevertheless, it is worth considering what can be done with
weaker assumptions.
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» Comment: The C* assumption imposes nontrivial constraints
on the state space. Nevertheless, these constraints are
satisfied by both classical and quantum theories, so, as long as
we are interested in exploring the differences between classical
and quantum, the assumption is not problematic.

» Nevertheless, it is worth considering what can be done with
weaker assumptions.

» [radeoff between: richness of mathematical structure
presumed and generality.
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What is a C*-algebra? |
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» A Banach space is a normed linear vector space that is
complete with respect to the norm. That is, every Cauchy
sequence converges to a limit.

» A Banach algebra 2 is a Banach space that is also an algebra

with identity |, such that the operation of multiplication is
separately continuous. That is,

» foreach B2, if A, — A, then A,B — AB,
» and, foreach A=A

» An involution is a mapping A — A* such that
» (aA+bB)* = 3A* + bB*
» (AB)" = B*A*
» (AF)F=A
» A (C*-algebra is a complex Banach algebra with an involution
that satisfies || A*A ||=|| A ||%. TR
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What is C*-algebra? |l

» For any Hilbert space H, the set of all bounded operators on
H is a C*-algebra.
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What is C*-algebra? |l

» For any Hilbert space H, the set of all bounded operators on
H is a C*-algebra.

» Any subalgebra of B(H) that is closed under adjoints and
complete in operator norm is a C*-algebra.
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What is C*-algebra? |l

» For any Hilbert space H, the set of all bounded operators on
H is a C*-algebra.

» Any subalgebra of B(H) that is closed under adjoints and
complete in operator norm is a C*-algebra.

» For any state p of a C™-algebra 2, there is a representation of
2l an algebra of bounded operators on a Hilbert space, with p
a vector state.
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Generalizing orthogonality

» Consider the norm-distance between states || p —w || .
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Generalizing orthogonality

» Consider the norm-distance between states || p —w || .

» |f there exists an observable A that has distinct definite values
in the states p, w, then || p—w ||= 2.
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Generalizing orthogonality

» Consider the norm-distance between states || p —w || .

» |f there exists an observable A that has distinct definite values
in the states p, w, then || p—w ||= 2.

» Let us say that p. . are orthogonal iff || p — w ||= 2.
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Generalized No-Cloning Theorem

» A pair {p.w} of pure states of a C™-algebra is clonable only if
the states are orthogonal.

(Implicit in proof of CBH Theorem 3).
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Generalized No-Cloning Theorem

» A pair {p.w} of pure states of a C™-algebra is clonable only if
the states are orthogonal.

(Implicit in proof of CBH Theorem 3).

» This generalizes: a pair of states (pure or mixed) is clonable
iff they are orthogonal.
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Generalized No-Cloning Theorem

» A pair {p.w} of pure states of a C*-algebra is clonable only if
the states are orthogonal.

(Implicit in proof of CBH Theorem 3).

» This generalizes: a pair of states (pure or mixed) is clonable
iff they are orthogonal.

» Applies to classical algebras of observables as well as quantum!
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From Physics to Information Theory and Back

An example

» Alice writes down a number from 1 to 10, via one of two
procedures:

1. pg: She picks an even number at random, with all even
numbers equiprobable.

2. p1: She picks an odd number at random. with all odd numbers
equiprobable.
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An example

» Alice writes down a number from 1 to 10, via one of two
procedures:

1. po: She picks an even number at random, with all even
numbers equiprobable.

2. p1: She picks an odd number at random. with all odd numbers
equiprobable.

» Bob wants to duplicate this state, without disturbing the state
Alice has given him. That is, if she used pg, his measurement
should yield no more information than does knowing that she
used pg.
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An example

» Alice writes down a number from 1 to 10, via one of two
procedures:

1. po: She picks an even number at random, with all even
numbers equiprobable.

2. p1: She picks an odd number at random. with all odd numbers
equiprobable.

» Bob wants to duplicate this state, without disturbing the state
Alice has given him. That is, if she used pg, his measurement
should yield no more information than does knowing that she
used pg.

» He asks: Is the number odd or even? and applies the
appropriate procedure.
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An example

» Alice writes down a number from 1 to 10, via one of two
procedures:

1. pg: She picks an even number at random, with all even
numbers equiprobable.

2. p1: She picks an odd number at random. with all odd numbers
equiprobable.

» Bob wants to duplicate this state, without disturbing the state
Alice has given him. That is, if she used pg, his measurement
should yield no more information than does knowing that she
used pg.

» He asks: Is the number odd or even? and applies the
appropriate procedure.

» Unless the supports of the two states are disjoint, he can't do
thiS! Page 38/105
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Dispersion

» Define A,A > 0 by

(A,A)* = p(A%) — p(A)*.
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Dispersion

» Define A A > 0 by
(A,A)* = p(A%) — p(A)*.

» A state p is dispersion-free iff A,A = 0 for every observable A.

irsa: 06050002 Page 44/105



From Physics to Information Theory and Back

Dispersion

» Define A A > 0 by
(A,A)* = p(A%) — p(A)>.

» A state p is dispersion-free iff A,A = 0 for every observable A.

» A dispersion-free state is pure; an algebra 2 is abelian iff all
pure states are dispersion-free.
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Minimal Dispersion

» If two states {p..} are not orthogonal, then there is no
observable that takes on distinct definite values in the two
states.
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Minimal Dispersion

» If two states {p..} are not orthogonal, then there is no
observable that takes on distinct definite values in the two

states.

» However, if they are close to being orthogonal, we would

expect there to be an observable A such that p(A) = «w(A),
and the dispersion of A in both these states is small compared

to the distance between these values.
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Minimal Dispersion

» If two states {p..} are not orthogonal, then there is no
observable that takes on distinct definite values in the two

states.

» However, if they are close to being orthogonal, we would

expect there to be an observable A such that p(A) = «w(A),
and the dispersion of A in both these states is small compared

to the distance between these values.

» Define

Y= in (APA)z—I_(A-*—A)z
o) =inf | B G|
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Dispersion and orthogonality

» For any states p.w of a C™-algebra A, s(p.w) =0 iff
| p—w =2
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Minimal Dispersion

» If two states {p..} are not orthogonal, then there is no
observable that takes on distinct definite values in the two

states.

» However, if they are close to being orthogonal, we would

expect there to be an observable A such that p(A) = «w(A),
and the dispersion of A in both these states is small compared

to the distance between these values.

» Define

L [(BAR + (AAY
(o) = f[ (o(A) = (AP ]
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Dispersion and orthogonality

» For any states p.w of a C™-algebra A, s(p.w) =0 iff
| p—w|l=2.
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Dispersion and orthogonality

» For any states p.w of a C™-algebra A, s(p.w) =0 iff
| p—w|=2.

» If p. w are any two states, then

s(p.w) = inf

(ALA)? + (AQ.A)j
(p(A) —w(A))?

b

(Css)

N | = N =
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Dispersion and orthogonality

» For any states p.w of a C™-algebra A, s(p.w) =0 iff
| p—w =2
» If p. w are any two states, then

(ALA)? + (ALA) 1/(4—|lp—u|?
(mm@umz} = 2(pwH2)

*ali i)

» When p. «w are pure states, the equality holds.

s(p.w) = inf
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Discernibility

» We defined

)= o [ (A= BAT]

(p(A) —w(A))?
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Discernibility

» \We defined

s(p.) = inf {(%A)Z + (A;A)Z]

(p(A) — «(A))?

» When p, w are orthogonal, s(p.«) =0, and s(p.w) — x as
| p—w|—0.
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Discernibility

» \We defined

T . s (‘3--*'4)2]

(p(A) — «(A))?

» When p, w are orthogonal, s(p.) =0, and s(p.w) — x as
| p—w|—0.
» |t's useful to define a quantity, called the discernibility o(p..),
that is a monotonically decreasing function of s, with
» d(p.w) =1 when pLlw,
» d(p.w) =0 when p=w.
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Discernibility
» We defined

s(p,w) = inf

(B,A)* + (i\-;A)Z]
(p(A) —«(A))?

» When p, w are orthogonal, s(p.) =0, and s(p.w) — x as
| p—w|—0.
» It's useful to define a quantity, called the discernibility o(p. ),
that is a monotonically decreasing function of s, with
» d(p.w) =1 when pLlw,
» d(p.w) =0 when p=w.

» Define

irsa: 06050002 Page 57/105



From Physics to Information Theory and Back

Cloning and dispersion

» A pair of states {p.w} is clonable iff s(p..) =0, or,
equivalently, 4(p.~) = 1.
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Cloning and dispersion

» A pair of states {p.w} is clonable iff s(p.«) =0, or,
equivalently, 4(p.«) = 1.
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Cloning and dispersion

» A pair of states {p.w} is clonable iff s(p..) =0, or,
equivalently, 4(p.«) = 1.

» Moreover, we can obtain a bound relating maximum
faithfulness of cloning to the value of 4(p. ).
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Cloning and dispersion

» A pair of states {p.w} is clonable iff s(p..) =0, or,
equivalently, 4(p.«) = 1.

» Moreover, we can obtain a bound relating maximum
faithfulness of cloning to the value of d(p. ).
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Cloning and dispersion

» A pair of states {p.w} is clonable iff s(p..) =0, or,
equivalently, o(p.«) = 1.

» Moreover, we can obtain a bound relating maximum
faithfulness of cloning to the value of d(p. ).
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Cloning and dispersion

» A pair of states {p.w} is clonable iff s(p..) =0, or,
equivalently, o(p. ) = 1.

» Moreover, we can obtain a bound relating maximum
faithfulness of cloning to the value of 4(p. ).

» A bound that holds whether or not the algebra of observables
iIs classical!
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A Bound on Fidelity of Cloning

» Suppose we have a pair {pg. p1} of states that we want to
clone. That is, we want a ready state o and an evolution T
such that the action of T is

poRo — poQ& pe =wp
pPrLY0c — p1 X p1 i =wi
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A Bound on Fidelity of Cloning

» Suppose we have a pair {pg. p1} of states that we want to
clone. That is, we want a ready state o and an evolution T
such that the action of T is

poRa — po® po =wo
prLRYOo — p1 @ p1 —wi
» Suppose that, instead, we get

paRoc — Tp

pLRYaT — T1

Pirsa: 06050002 Page 67/105



From Physics to Information Theory and Back

A Bound on Fidelity of Cloning

» Suppose we have a pair {pg. p1} of states that we want to
clone. That is, we want a ready state o and an evolution T
such that the action of T is

poRo — pa@ po =wo
PLRYO — 1 m=wr
» Suppose that, instead, we get
poR®ac — To
prL®0c — T
» [ake as measure of degree of success, the quantity
- 112 _ o112
| o —wo ||+ || 71 — w1 ||

; o ECE
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» One can show that, as long as d(p.w) > 1/9,

o—wol?+llm—wr|® _ 1 ,_1+30(pw
| wo — w1 |2 - 2 4./5(p.w)

(This bound can be improved, | think.)
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» One can show that, as long as o(p.«) > 1/9,

g 2
| 7o —wo ||Z + || 1 — w1 ||? - 1 1_1+3O(p.u.;
4/d(p.w)

| wo —wy |2 2

(This bound can be improved, | think.)

» When the states to be cloned are pure we get a better bound:

2
lo—wo P +llm—wr|?® _ 1 - 1
| wo — w1 ||2 - 2 V2 —d(p.w)

)
- Vi+plp.w))

Page 70/105

irsa: 06050002



From Physics to Information Theory and Back

To do next

» Relate this bound to existing bounds on fidelity of cloning
and /or broadcasting in the literature.
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To do next

» Relate this bound to existing bounds on fidelity of cloning
and /or broadcasting in the literature.

» Barnum et al. (1996) use as measure of fidelity between two

density operators,

F(p. &) = Tr[p12 & 112
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To do next

» Relate this bound to existing bounds on fidelity of cloning
and/or broadcasting in the literature.

» Barnum et al. (1996) use as measure of fidelity between two
density operators,

F(p. 8) = Try/p2 & 112

» Why is this a “natural” choice?
» Can it be related to norm-distance || p — w | or some other

representation-independent concept?
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Distinguishability and measurement

» Let S be a physical system, and let .4 be another physical
system, regarded as a measurement apparatus. Let & and 2
be their respective algebras of observables. Let {pg.p1} be

(pure or mixed) states of &. We say that {pg. p1} can be
distinguished by a non-disturbing measurement iff there are:
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Distinguishability and measurement

» Let S be a physical system, and let .4 be another physical
system, regarded as a measurement apparatus. Let & and 2
be their respective algebras of observables. Let {pg.p1} be

(pure or mixed) states of &. We say that {pg. p1} can be
distinguished by a non-disturbing measurement iff there are:

» a ready-state o of A

» pointer states 7, m; of A,
» a pointer observable P < 2 such that P has distinct definite

values in 7 and 7;. and
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Distinguishability and measurement

» Let S be a physical system, and let .4 be another physical
system, regarded as a measurement apparatus. Let & and 2
be their respective algebras of observables. Let {pg.p1} be
(pure or mixed) states of &. We say that {pg. p1} can be
distinguished by a non-disturbing measurement iff there are:

» a ready-state o of A

» pointer states mp, m; of A,

» a pointer observable P < 2 such that P has distinct definite
values in 75 and 7. and

» a non-selective operation T, such that the action of T is

T (ppo20c) = po@mo

T!(Pl : {T) = 21 §.9 iny-
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Distinguishability and measurement

» Let S be a physical system, and let .4 be another physical
system, regarded as a measurement apparatus. Let & and 2
be their respective algebras of observables. Let {pg.p1} be
(pure or mixed) states of &. We say that {pg. p1} can be
distinguished by a non-disturbing measurement iff there are:

» a ready-state o of A

» pointer states 7, m; of A,

» a pointer observable P < 2 such that P has distinct definite
values in 75 and 7. and

» a non-selective operation T, such that the action of T is

T (po20) = po2mo
T“'(pp2o) = prom.

» More generally, we say that {pg. p1} can be distinguished by
P02 measurement iff the pointer observable P has distinct defiffit&®
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Measurement Distinguishability and Cloning

» [heorem. Two states p, w are distinguishable by
measurement iff o(p. ) = 1.
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Distinguishability and measurement

» Let S be a physical system, and let .4 be another physical
system, regarded as a measurement apparatus. Let & and 2
be their respective algebras of observables. Let {pg.p1} be

(pure or mixed) states of &. We say that {pg.p1} can be
distinguished by a non-disturbing measurement iff there are:
» a ready-state o of A
» pointer states 7, m; of A,
» a pointer observable P < 2 such that P has distinct definite
values in 7 and 7. and
» a non-selective operation T, such that the action of T is

T (po20) = po2 7o

T‘(ﬂl : {T) = 21 X iny.

» More generally, we say that {pg. p1} can be distinguished by
Pt measurement iff the pointer observable P has distinct defiffit&®
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Measurement Distinguishability and Cloning

» [heorem. Two states p, w are distinguishable by
measurement iff o(p. ) = 1.
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Distinguishability and measurement

» Let S be a physical system, and let .4 be another physical
system, regarded as a measurement apparatus. Let & and 2
be their respective algebras of observables. Let {pg.p1} be

(pure or mixed) states of &. We say that {pg. p1} can be
distinguished by a non-disturbing measurement iff there are:

» a ready-state o of A
» pointer states 7y, m; of A,
» a pointer observable P € 2 such that P has distinct definite

values in 75 and 7. and
» a non-selective operation T, such that the action of T is

T (po20) = po2 7o
TJF(’OI : {T) = £1 : i

» More generally, we say that {pg. p1} can be distinguished by
Pt measurement iff the pointer observable P has distinct defiffit&®



From Physics to Information Theory and Back

Measurement Distinguishability and Cloning

» [heorem. Two states p, w are distinguishable by
measurement iff o(p. ) = 1.
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From Physics to Information Theory and Back

Measurement Distinguishability and Cloning

» [heorem. Two states p, . are distinguishable by
measurement iff o(p. ) = 1.

» Also, {p.w} is a clonable set iff d(p.w) = 1.
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From Physics to Information Theory and Back

Distinguishing states

» Alice prepares a system in one of two states {pg. p1 }, with
equal probability.
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Distinguishing states

» Alice prepares a system in one of two states {pg. p1 }. with
equal probability.

» How much information can Bob extract about which state
Alice prepared, using a single measurement?
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Distinguishing states

» Alice prepares a system in one of two states {pg. p1 }. with
equal probability.

» How much information can Bob extract about which state
Alice prepared, using a single measurement?

» Answer: Bob's expected information gain, for an optimal
measurement, Is

1 + a logya + (1 — a) log,(1 — a).

bits, where a(1 —a) = +p(po. p1) = (1 —d(p.w)).
(cf. Holevo bound).
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Distinguishing states

irsa: 06050002

» Alice prepares a system in one of two states {pg. p1 }. with
equal probability.

» How much information can Bob extract about which state
Alice prepared, using a single measurement?

» Answer: Bob's expected information gain, for an optimal
measurement, Is

1+ a logya + (1 — a) logy(1 — a).

bits, where a(1 —a) = 1p(po. p1) = (1 —d(p.w)).
(cf. Holevo bound).
» Distinguishing with certainty (1 bit of info) requires
s(po.p1) = 0.  ——



From Physics to Information Theory and Back

Abner’s question

» No entanglement without potentiality?
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Abner’s question

» No entanglement without potentiality?

» Let 2, B be kinematically independent C*-algebras. No
entangled state of U v *B is dispersion-free.
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Abner’s question

» No entanglement without potentiality?

» Let A, B be kinematically independent C*-algebras. No
entangled state of U v *B is dispersion-free.

» Proof. Let p be a state of A v B. By CBH Lemma 3, if p|g or
p|lss is pure, then p is a product state. In other words: if p is
entangled, then p/o and p|x are mixtures, hence not
dispersion-free. Therefore, p is not dispersion-free.
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From Physics to Information Theory and Back

No-broadcasting theorem

» Broadcasting:

such that

Pirsa: 06050002

poRXxoe — Tp
prLG — T

T{Jlﬂl s TDl?B — Po

T{}|~m Tl|fB =
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No-broadcasting theorem

» Broadcasting:

pXRXo — 70
prLOo —T

such that
Tola = Tols = po
ola = Tils=p1

» No-broadcasting theorem says that a pair of states is

broadcastable iff the corresponding density operators
commute.
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No-broadcasting theorem

» Broadcasting:

ppXRXo — 70
prRe —T

such that
Tola = 7ol = po
ola = Tils=p

» No-broadcasting theorem says that a pair of states is
broadcastable iff the corresponding density operators

commute.

» Conjecture. Let {pg.p;1} be a broadcastable pair of states of a
C*-algebra 2. Then there exists a set K = {w;} of mutually
mosce | OFthogonal pure states, such that pg and p1 are both mixtuges.

of elements of the set



From Physics to Information Theory and Back

Cloning and indiscernible mixtures

» Barrett quant-ph/0508211 : Clonig is impossible in any theory
in which there is a mixed state with more than one
decomposition into pure states.
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Cloning and indiscernible mixtures

» Barrett quant-ph/0508211 : Clonig is impossible in any theory
in which there is a3 mixed state with more than one
decomposition into pure states.

» In the C* framework:
Let {po. p1.w0.w1} be a clonable set of distinct states, and let

p = wpo+(1l—w)p
o — /\w'{} —E‘— (]. == /\)w']_.

Then p #£ w.
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And Beyond?

» How many of the limitative results of quantum information
theory can be similarly generalized?
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And Beyond?

» How many of the limitative results of quantum information
theory can be similarly generalized?

» Pick your favourite result, replace representation-dependent
concepts (e.g. state vector, density operator, trace) with
representation-independent concepts (e.g. s(p.w),
norm-distance between states), and ask whether there is a
generalized analogue of the quantum theorem (may involve
weakening of bounds).
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