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Abstract: | will investigate the creation and detection of multipartite entangled states in systems of ultracold neutral atoms trapped in an optical
lattice. These setups are scalable, highly versatile and controllable at the quantum level. Thus they provide an ideal test bed for studying the
properties of multipartite entangled states. | will first present methods exploiting incoherent dynamics for initializing an atomic quantum register.
The immersion of an optical lattice in a Bose-Einstein condensate leads to spontaneous emission of phonons. This process can be used for
irreversibly loading and cooling atoms within the lowest Bloch band of the lattice. | will describe loading and cooling schemes based on this
mechanism and compare them to conventional loading schemes. | will then show how coherent dynamics in a very strongly interacting 1D optical
lattice setup can be used for the efficient generation of arbitrary graph states in the atomic quantum register. This system can be mapped onto an XY
spin chain which itself is equivalent to a system of non-interacting fermions. By exploiting the anticommutation relations between these fictitious
fermions | will discuss how any graph state can be realized in an efficient and robust way. In the final part of my talk | will present a practical
method for detecting and characterizing multipartite entangled states in atomic quantum registers. This scheme is based on measuring violations of
entropic inequalities using simple quantum networks involving only two copies of the quantum state under consideration. | will investigate the
performance of this method under realistic conditions taking into account the most common sources of experimental errors.

Pirsa: 06040004 Page 1/52



Controlled dynamics in
ultracold atomic systems

Dieter Jaksch
University of Oxford

ceSRC

EU networks: OLAQUI, QIPEST




Overview

® Partl: Loading a lattice

=) Cold atoms in optical lattices

=) | oading an optical lattice

® Partll: Entanglement generation

=) Creation of graph states

In a strongly correlated chain

® Partlll: Detection and Characterization of

Multipartite Entanglement

= Simple entanglement detection networks
=$ Realistic in current experiments?
=) Experimental imperfections

=) | imited spatial resolution
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Optical lattice physics

Atomic physics
Quantum optics

Optical lattices

/ \,

Condensed matter Quantum computing

physics and information
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Optical lattice physics
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Atomic physics
Quantum optics

» Toolbox of building blocks
» Clean physical systems
» Well defined properties
= Control on the quantum level
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Optical lattice physics
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Optical lattices

» Controlled interactions
« Strong correlations
» Coherent dynamics

» Controlled decoherence

« Versatile setups

*Highly entangled

multipartite states
-Scalability

Page 6/52




Optical lattice physics

Condensed matter
physics

» Systems of interest
» Quantum simulations
« Phase diagrams
» Thermal properties
« Equilibrium methods
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Optical lattice physics

Quantum computing
and information

« Description of entanglement
« Methods for unitary dynamics
» Descriptions of noise
*Applications
» Desirable architectures
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Optical lattice physics

Quantum computing
and information

« Description of entanglement
Methods for unitary dynamics
» Descriptions of noise
*Applications
» Desirable architectures
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Optical lattice

@® Experimental setup In1,- - M)

Optical lattice
lasers____

)

Ultra-cold atomic gas

® Described by the Bose-Hubbard model

U
H=-J Z (aLaB-I-h.C.)—paaLua+§aLaLa&am
CHE)
Hopping term J and interaction U are adjustable via the lattice depth

® a_ bosonic destruction operator for atoms in site c..
~-Abowomdditional degrees of freedom provided by internal atomic levels 2 qubitsge s




Realization of qubits in optical lattices

® Optical lattice setup

| e)

Q

|a) =|0)

® A Mott insulating state of commensurate filling can be achieved for U>-J

@® In this limit a quantum register of neutral atoms is realized by each column of
the atomic lattice

|00110) = a}a%bgbzag lvac)

Pirsa: 06040004 Page 12/52




Current loading methods

® Adiabatic loading in one sweep with almost no disorder

= Arrange atoms by repulsion between bosons

: D J ., C. Brder J | Cwac, CW.
SU[JEﬂUId H Gardiner, and P. Zoller, Phys. Rev Lett

81,3108 (1998).

Mott insulator | .I I. I ot | ® I M. Greiner, O. Mandel, T. Esslinger, T.W.

Hansch, and |. Bloch, Nature 415, 39
{2002}

= Arrange atoms by Fermi blocking

L %ivent, . Menotti, T. Calarco, A
Smerzi, Fhys. Rev. Lett. 93, 110401

Single occupancy m m e m (2004]

Pirsa: 06040004

Page 13/52




Possible Improvements

® Defect suppressed lattices @® Measurement based schemes

\|

|a)
! ib)
Uaa L]
Selective shift operations to close gaps
irreg[_ﬂar o regu|ar ﬂ”ing .e.. mixed J. Vala, AV. Thaplival, 5. Myrgren, U. Vazirani,

D5 Weiss, K.B. Whaley, Phys. Rev. AT1,

state = pure state = cooling 032324 (2005).

F.Rabl, A J Daley, P. O Fedichey, J | Selective measurements of double

Cirac, and P. Zoller, Phys. Rev_ Lett 91, occupancies

110403 (2003). GK_Brennen, G. Pupillo, AM. Rey, C W. Clark,
C.J Wiliams, Journal of Physics B 38, 1687
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Repeatable irreversible loading schemes?

® Can we combine irreversible processes with repulsive and/or Fermi blocking for
irreversible loading schemes?
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Repeatable irreversible loading schemes?

® Can we combine irreversible processes with repulsive and/or Fermi blocking for
irreversible loading schemes?

=) Spontaneous emission of photons

B Large momentum kick = heating
@ Large energies = no selectivity
B Reabsorption = heating
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Repeatable irreversible loading schemes?

® Can we combine irreversible processes with repulsive and/or Fermi blocking for
irreversible loading schemes?
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=) Spontaneous emission of photons
B Large momentum kick = heating
@ Large energies = no selectivity
B Reabsorption = heating

= Spontaneous emission of phonons
B Loading of atoms into lattices
B Cooling within the lowest Bloch band
B Destroy spatial comrelations
B Mediate interactions between sites

Phonon

Page 17/52




Repeatable irreversible loading schemes?

® Can we combine irreversible processes with repulsive and/or Fermi blocking for
irreversible loading schemes?

- N
Reabsorption = heating P H 070 NS

= Spontaneous emission of phonons
B Loading of atoms into lattices
B Cooling within the lowest Bloch band
B Destroy spatial comrelations
B Mediate interactions between sites

Phonon
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Repeatable irreversible loading schemes?

® Can we combine irreversible processes with repulsive and/or Fermi blocking for
irreversible loading schemes?
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- N
Reabsorption = heating P H 070 NS

=) Spontaneous emission of phonons
B Loading of atoms into lattices
B Cooling within the lowest Bloch band
B Destroy spatial comrelations
B Mediate interactions between sites

Phonon
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Initialization of a fermionic register

A Gnessner ef g/, Phys. Rey. A T2, 032332 (2005).

® \\e consider an optical lattice immersed in an ultracold Fermi gas

Reservoir /

=2 a) Load atoms into the first band
=2 b) incoherently emit phonons into the reservoir
=% C)remove remaining first band atoms
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Hamiltonians: Loading

Fermi sphere: Hyres = ) 1 Ekc;r(ck

Optical Lattice: Hsys = Zaﬂn(wn -+ A)a.gjnaa,n No hopping

Q¢ ;
Raman Hamiltonian:. Hrc = e Z (Rk?ne_'kx“c;r{aa,n—}—h.c.)

k.,a.n

1 :
Rk-,ll — W/d3$e_lkwa(X)

@® Slow loading: We consider the case where |R, | is large compared to the time it takes a
Fermi particle to move between the lattice sites R, |' > /2 v = T, where v: is the
Fermi velocity and 2 the optical lattice wave length

=2 This allows to “locally” increase the particle density in the loading process
=2 \/\e can obtain energy selective loading of the lattice

® Fastloading: IR, ' <T laser is dominant and many bands will be occupied, no increase
in density
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Loading into the band n=1

® Consider the interactions of lattice particles with the Fermi sphere

&
|a

r,\. 1 Aps

n=kl}

Energy
=

V

4

c) L
: Coordinate space «

Filled Fermi sphere

This interaction can cause the creation of particle/hole excitations:

T T
Hint = Z Z Qannfckck’ﬂﬂ n%qy n’
k.k' a,n,n’
Page 22/52
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Loading into the band n=1

® Consider the interactions of lattice particles with the Fermi sphere

&
|a

Energy
=

c)
| ! Coordinate space «

Filled Fermi sphere

This interaction can cause the creation of particle/hole excitations:

1.
Hiny = Z Z Qannfc];ck’ﬂﬂ n%q n’

k. k' a,n,n’
Page 23/52
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Linear sweep to load the whole lattice

Energy
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|c)

Coordinate space

Filled Fermi sphere

® \We change the laser detuning dynamically

a) Sweep through the Fermi sea to load the first band

b) Spontaneously emit phonons

c) Empty remaining atoms by tuning above the Fermi

sSea
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Linear sweep to load the whole lattice

Energy
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|c)

Coordinate space «

Filled Fermi sphere

® \We change the laser detuning dynamically

a) Sweep through the Fermi sea to load the first band

b) Spontaneously emit phonons

c) Empty remaining atoms by tuning above the Fermi

sSea
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Linear sweep to load the whole lattice

Eneray
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|c)

— — / |

SR -
1=Ll

Coordinate space «

Filled Fermi sphere

® e change the laser detuning dynamically

a) Sweep through the Fermi sea to load the first band

b) Spontaneously emit phonons

c) Empty remaining atoms by tuning above the Fermi

sSea
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Linear sweep to load the whole lattice

Energy

Coordinate space

|c)

Filled Fermi sphere
® \We change the laser detuning dynamically
a) Sweep through the Fermi sea to load the first band

b) Spontaneously emit phonons
c) Empty remaining atoms by tuning above the Fermi

S ea Page 27/52
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Linear sweep to load the whole lattice

BN

»

Enaray

Coordinate space «

Ic)

Filled Fermi sphere

® e change the laser detuning dynamically
a) Sweep through the Fermi sea to load the first band
b) Spontaneously emit phonons
c) Empty remaining atoms by tuning above the Fermi
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0
o
&
) —2F
:
)
= 4t « Fyis the filling in
the lower Bloch
band
: t
0.2 « /4, is thefilling in
‘ ' ' ' : ' ' ' : the first excited
Bloch band
L: 0.1

0 10 30 120 160

Pirsa: 06040004 Page 29/52

N =101, M =5, /2 = 0.45¢r. nipA/2 = 14, w =10er and T = 0.1ep




Part |I: Entanglement generation
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Mapping a 1D optical lattice on a XY-model

= R. Clark, C. Moura Alves, and D J, New J Phys 7, 124 (2005)

@® Optical lattice setup

| €) 7
ZQE = @ @
|a) | b) la) |b)

bogdd

® Resulting Hamiltonian for U >J

ey 2 B Y
( -I- ) Z n(ofol 1 +odol )= > (07-1)

H =

L-M. Duan ef af Phys. Rev. Lett. 91, 090402 (2003); M. Chrnistandl ef af Phys. REev. Lett. 92, 187902
(2004) C. Albanese af &/ quantph/0405029 M-H. Yung ef &/ Quantum Inf. & Comp. 4, 174 (2004); 5
Bose, Phys. Rev. Lett. 91, 207301 {2003).
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Finding the general solution

® Perform a Jordan Wigner transformation to obtain a non-interacting Fermi gas
with known one particle spectrum and fermionic destruction operators ¢, and
basis states:

;- - Eng) = ()2 . (el )58 | vac)

® Calculate the one particle dynamics, i.e. the Heisenberg evolution for the
creation operators to find (with k the mirror inverted position of k)

e tHT CI: AHT — i€ CiE' Yk
® This means that the initial state gets swapped and one obtains a nontrivial
entanglement phase depending on the number of fermions

E_iHTlfl,...,fpVI> = ¢ T Ls | &g, - 83 . (1)

>s=35(s—1)/2 L CL%) — e
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Dynamics for all spins up

® Ve solve the dynamics for the special time t==n/J and find:

XXX EEERR.

EE R RN

We get ¢=¢,=0
B 05040004 Where P inverts the spin positions




Dynamics for one spin down

® We solve the dynamics for the special time t==n/J and find:

HHHHHHH+HHH

Cc,' |vac)

+++++++++++++++++:+++

We get ¢=¢,=ntN/2
B 05040000 Where P inverts the spin positions




Dynamics for two spins down

® Ve solve the dynamics for the special time t=n/J and find:

AR EEEEEEEEREEEEEERER.

C;'Cs'|vac)

l'«PD..-'
l Time evolution

S TTYTRTIIIIT NI

Two spins down: |ws = €% Plyy) P b s e
£

o — Where P inverts the spin positions




Dynamics for two spins down

® Ve solve the dynamics for the special time t==n/J and find:

AR R ERREEERERR:

C;'cs'|vac) o)

Time evolution
l Entanglement phase

TSI TIIIITII I

Two spins down: |w: = €% Plyg) et b T s e
x 1

B 05010004 Where P inverts the spin positions




Realizes a useful quantum network

|+:}

[ +.::-

[ +\

: 06040004

IO—T—O—H 3

2 @O -
3 —{Sh—{Ch——11—RF-
4 @——Oh—CHO.h—1 T

5 2 Gz Gz Gz_cz'_i—_

This dynamics corresponds to applying controlled o, between each pair

of spins followed by an inversion of the spin positions

When preparing all of the spins in the state |[+) o |0) + |1} the resulting

state is a fully connected graph state

This model can be extended to realize arbitrary graph states
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Part lll: Detection of Multipartite Entanglement




Detecting entangled states

® Entropic inequalities: For separable states p
23w = Z C-'rf.if[ X ,05 & p{; K... pi,
the reduced density operators satisfy the following inequalities

1r (P%zg,,.n) < Ir (,0:1223,.,n+1) < ir (1021223.,,-”—&)
- < Tr(pfy) < Tr(pf) < 1.

@® Each state which violates these inequalities is entangled. We can find
the tr{p?} of a reduced density operator if we can measure the
symmetric and anti-symmetric components of p

P, = %Tr {1+V)pRp} = %(1 + Tr{p?})

Pirsa: 06040004 Swap Dperatﬂr Page 39/52
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Quantum Networks for detecting entanglement

K. .M. Palmer, C. Moura Alves and D J., Phys. Rev A T2 042335 (2005).
. Moura Alves and D. J., Phys. Rev. Lett 93, 110501 {2004 ).

® We need two copies of a state p in a column of a lattice

I eeee.. 0 .00
s 17017 BN
[ eoo0oe®-- 0 -0 O
1 2 3 4

P j N-1 N

® Beam splitters BS between the different atoms are realized by the hopping

Pirsa: 06040004

S H = —J(alayr + blbyr + h.c)
it where a and b are bosonic destruction operators
w with indices I and II for the two rows.

arrr — arjr — ey J
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Action of the beam splitter

Pi®pP; is symmetric

BS

& N -

BS

& N

® Measuring the occupations after the beam splitters
=) [nterference patterns

=3 Recent experiment by A. Widera, et al. Phys. Rev. Lett. 92, 160406 (2004)
=% Single atom transistor A. Micheli et al. Phys. Rev. Lett. 93, 140408 (2004).

Pi®pP; is antisymmetric

® These technigues can be used to detect violations of the entropic inequalities
e "or entangled lattice states and characterize them
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Measuring the purities of the reduced operators

® By measuring P__for each site | and correlating the respective results, we are
able to determine the expectation value of the symmetric and antisymmetric
projectorson p, . @ p, . foralln<N.

® Example for n=3:

|

Pilirf_@ = 2_3]}'(1_1;:1 (I - T;)pus ®p1:3)

= l(lil Tr(pf)i: Tr(ﬁ;)is Tr(p;)il.z TI‘(pf:)
i1.3T""(10123)i:.3 T;*(p; )im Tr(pf:_% ))

@® This is a set of linear equations relating the purities of the reduced density
operators to the measured lattice site occupations.
® Realistic experiment: No perfect spatial resolution

Errors in atom detection
= Errors in the implementation of the beam splitter§™**




Strength of entropic inequalities for two qubits

@® For two qubits the state can be written as

® A/l Bell (CHSH) inequalities detect
entangled states only if they are
outside intersection of three cylinders

(black lines).

® The entropic inequalities detect all
states outside the sphere (red). They
do not constitute a sharp test.
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1
e=7(1®1+a-001+18b-0+) T;0i®0;

(]

= with T, = diag(t,.t,.t;).




No spatial resolution

® Ve find inequalities for the average traces

Tr(p2) < Tr < Tr n\]1 ! ;
(pn) = (p(” ]_].) (p{“ 2) ) Tl_p(gk} - !(z):l Z Tl,Ofg
s Tr(p{-g}) < TI‘(,O“}) <1 | |B|=k

® We can only measure the probability of finding j singly occupied sites P(j), and
they allow us to find the averaged traces in the form

- (O] £oE ()G

® This is a linear relation and thus the average traces are uniquely defined by the
P(j)’s.
® This calculation still assumes that there is no error in the measurement.
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Detection: No spatial resolution

® We look at some states of interest with n=10 particles

06 :
05 =
_ 04 a) S s
= 03 e e
= 0.2 = 04
0.1 0.2
0 0
012345678921001234567 8910 12345678 910 12345678910
0.6
05 : _
~ 04 b) d) s ] D) d)
= 03 ' e 06
X =
0.2 = 04
= A_HL ge
0
012345678910012345678910 : 12345678910 12345678910
7 ] k k
a) (;Jais'((:ﬂg ,?c(’;rﬁi;a’fdl fs}’;@it? b[")/2 a') totally mixed state
b) GHZ state

b) GHZ state
& Clisiessini c) Cluster state

: . _
d) Cluster state with 10% phase noise d) Cluster state with 10% phase noise
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Characterization: Cat states

® If the form of the entangled state is known, 1.e. if it is determined by only a
small number (< n) of parameters we can characterize the state without spatial

resolution in the experiment.
® We consider a macroscopic superposition state

(7]0) 4 /1 = |72 1))"
2+

Tn) = |0}ﬂ - -

see W, Duer ef &f Phys. Rev. Lett. 89, 210402 (2002)

® This is product state for y=1 and a maximally entangled state v=0 and we find

s B s W 0 i o e o
e~ 7Y e+ 7P

Trp%k) —
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Characterization: Cluster states

® Similar calculation allows to measure the entanglement ¢ phase in a 1D cluster

state.
® Experimental setup ® Resulting traces for n=15
N
‘\.‘\\L{“ ; f/f
i 08 “Nw.\‘g r"f‘w
o = 06 “'n. \ Lo !f/;;‘
E 'y 1\'\ T e = ,/J’
= = Lyt i
= 04 SN F
\' \ .\'1-;_________.-"{ / Ly
0.2 \ e -
e
0 }r e
0 T 2 g A4m 35m 34
e 3 3 3 3
position © | Bloch &

dofted: k=1,14; dashed k=2 ,13; dash dotted 3,12.
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Errors

® We investigate beam splitter errors q and detection errors p as well as effects
of limited spatial resolution. In general we find that the variance V, in a single
run has exponential bounds in the errors

@® There is strong numerical evidence that the second bound can be made
o exp(a kp) instead of « exp(8np) and thus the practical limit for admissible

errors which still allow a relatively small number of runs N is

prq=1/k
® Figure shows worst case variance (left) 1000
and variance for a cluster state with -
n=15 as a function of q "

® The number of runs required to get accurate 0.1
probabilities scales like 1/V,
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Limited spatial resolution

® A particle which should be detected at x will be found at y with probability f(x,y)
@® The probability of detecting particles at sites described by the “set” A is then
given by

Poan{A) = ZZ HfA\M i) f(As(i)» Bi)P(B)

icB ¢ - =1

where B are the positions where the atoms should be found and _ are all
possible permutations

® We invert this set of equations to find

P(B) 10% _

® The variance V; of P(B) is (b)
shown for the worst case ===
In as a function of the spatial VB 10° - "
resolution o in f(x,y) e

® Significant improvement compared
to no spatial resolution is only
achievable with ¢ == X e
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Summary

® Initialization of a quantum register in optical lattices

=) [rreversible scheme similar to optical pumping
=) \/ery high fidelities achievable

® Optical lattices as a test bed for entanglement engineering

=% Creation of multipartite quantum gates for the efficient creation of graph
states

= Physical system ideally adapted to creating graph states

® Detection and characterization of multi partite entangled states

=) [Jses entropic inequalities (stronger than Bell) to detect entanglement
=3 Only limited resources are needed

=) \/Vorks (to some extent) without spatial resolution in the presence of errors
saosons @Nd IMperfections
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Strength of entropic inequalities for two qubits

® For two qubits the state can be written as

® A/l Bell (CHSH) inequalities detect
entangled states only if they are
outside intersection of three cylinders

(black lines).

® The entropic inequalities detect all
states outside the sphere (red). They
do not constitute a sharp test.
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