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What has WMAP-1 done for us ?

WMAP-1 has improved over COBE by a factor of 45 in sensitivity and 33 in angular resolution
Color codes temperature (intensity), here 100K

Temperature traces gravitational potential at the time of recombination, when the Universe was
372 000 +=14000 years old

The statistical analysis of this map entails detailed cosmological information

The mission met all its requirements after the first year... ... but...




What has WMAP-3 done tor us?
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Cosmological implications
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The CMB is a leftover from when
the Universe was 380 000 yrs old
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Confronting sky maps with theoretical predictions

It is both theoretically sound and observationally supported to consider the CMB

temperature fluctuations as a gaussian random field so that s are Gaussian randor
variables = e P
I'(n) zu oY e P2

Thus sufficient to consider the power spectrum
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Confronting sky maps with theoretical predictions

It is both theoretica
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The CMB is weakly polarized
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WMAP analysis
over the last two years
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Remarks on the analysis over the last 2 years




provement in the analysis over the last 2 years
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Temperature maps
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Polarization maps

V band
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Temperature maps
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Polarization maps
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Polarization maps

K band

Lambert projection of galactic poles
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Polarized toregrounds predictions:
synchrotron radiation

Polarization directions

Polarization amplitude |
K1 Polarization Praediction from Haslam

K1 Polanzation Amplitude

Based on a model in which a
gas of cosmic rays electrons
iNSRLaREMEh 2 magnetic field
following a bisymmetric spiral
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Foreground cleaned ‘maps
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Foreground cleaned maps
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Polarized foregrounds predictions:
synchrotron radiation

Polarization directions
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Due to correlations Conmaasson o v* BETWELN P CLEANED AND CLEANED

between foregrounds, a = v
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Foreground cleaned ‘maps
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Foreground cleaned ‘maps
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Where are we now?
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Robustness of DE constraints
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What is Inflation?
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What are Inflation predictions?
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Testing Gaussianity: pdf distribution

Number
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Testing Gaussianity:
Minkovsky functionals & bispectrum

Res 7 (28’ pix.

e s O(F) = 0(£) + fvrd*(£)




Testing Gaussianity:
4 points function

Claims of large scale deviation from Gaussianity on large scales but no 3 point signal

Could we have a NG signal without a 3 point (bispectrum) signal?

Yes if e.g. Bardeen curvature modeled P(x) = (D({)[l = f,’\,,;_llf(f']
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Testing Gaussianity:
Large scale temperature fluctuations

B Low COBE-WMAP quadrupole ..

Eistathiou 04
Slozar et al. 04
Bielewicz et al. 04 _

B Low / alignments

Tegmark et al. 04

de Oliveira-Costa et al. 04
Eriksen er al. 04

Copi et al. 04

Land & Mageuijo 04

® Low [ power + alignment probability was

estimated at ~4.10->
# This result is a posteriori so potentially strongly

biased, but also potentially significant

eThe v
Pirsa: 060400

at these scales

r3 temperature maps are almost unchanged



Unchanged Temperature maps on large scales
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Testing Gaussianity:
Large scale temperature fluctuations

8 Low COBE-WMAP quadrupole ..
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eThe vr3 temperature maps are almost unchanged
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Unchanged Temperature maps on large scales
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Testing Isotropy
Large scale modulation
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T(n)=T(Hn)[1+ f(n)
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Testing Gaussianity
Large scale modulation

T(A) =T(A)[1+ f(A)]




lesting Isotropy
Large scale modulation
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T(A) = T(A)[1+ f(A)]




Testing Gaussianity
Large scale modulation

T(A) =T(A)[1+ f(A)]




Testing Gaussianity
Large scale modulation

T(n)=T(#n)[1+ f(A)]




Testing Gaussianity
Large scale modulation

T(n)=T(A)[1+ f(A)




Testing Gaussianity
Large scale modulation

T(n)=T(#n)[1+ f(A)]




Testing Gaussianity
Large scale modulation

T(n)=T(AH)[1+ f(A)]
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Conclusions
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