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o Where to start?
@ Information-theoretic approach
® Measurement order is irrelevant
@ Phenomenal time
@ Mathematical idealization and physical interpretation
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o Where to start?
@ Information-theoretic approach
@ Measurement order is irrelevant
@ Phenomenal time
@ Mathematical idealization and physical interpretation

9 Algebraic formalism
@ Topologies and algebras
@ States
@ Types of algebras
@ Modular automorphisms

e Time in the algebraic formalism

@ Operational approach is atemporary
@ Modular time

@ An Interpretation
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Where to start? !ﬂfﬂ@aﬁthrﬁc appmgc_h _

Reconstruct QM as information theory

Quantum theory is a general theory of information constrained
by several information-theoretic principles.
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Where to start? quo_.rrnai.lqh.—ﬁeqrenc approgch _

Quantum logical formulation

Table: Quantum logical language

Basic notion | Formal representation

System Physical system S
Information Yes-no question
Fact Answer to yes-no question

atagiventime t
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Where to start? Iﬂfo_rr_nai.l*.:.-h.—ﬁ?e?renc .app.rogczh _

Algebraic formulation

Table: C*-algebraic language

Basic notion | Formal representation
System C*-algebra il

Information State over algebra

Fact Change of state over algebra
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Where to start? saitessuanedio o s
i} Measurement order is irelevant

Order of measurements says nothing about time

@ The formalism of quantum mechanics allows a sequence
of measurements not ordered in the time in which the
system evolves.
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@ The formalism of quantum mechanics allows a sequence

of measurements not ordered in the time in which the
system evolves.
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Order of measurements says nothing about time

@ The formalism of quantum mechanics allows a sequence

of measurements not ordered in the time in which the
system evolves.

@ One can measure B(t) and later measure A(t'), with t’ < t.

@ |In the standard Copenhagen interpretation we say that the
wavefunction is projected twice: first on the eigenstate of
B(t) and then on the eigenstate of A(t').

@ This sequence of projections describes the conditional
probability of finding at A(t’) the system that will have been
detected at B(t).
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Where to start?

Phenomenal time

Where to start? Try phenomenal time

@ Phenomenal time is not sharply defined. It comes to us
strangely by way of words with fuzzy meanings, and with a
non-linear structure.
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Where to start?

Phenomenal time

Where to start? Try phenomenal time

@ Phenomenal time is not sharply defined. It comes to us
strangely by way of words with fuzzy meanings, and with a

non-linear structure.
@ Compare with Husserl, Ideen |.
@ Compare with Weyl as rephrased by Ryckman:

Exact time points are not given in intuition in any
manner. and so are not absolute, but are concepts
(products of reason), attaining full definiteness only in
the purely formal arithmetico-analytic concept of the
real number.
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Where to start?

Mathematical idealization and physical interpretation

Weyl on method

@ “In order to have some hope of connecting phenomenal
time with the world of mathematical concepts, let us grant
the ideal possibility that time-points can be exhibited.”
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Where to start?

Mathematical idealization and physical interpretation

Dirac on method

@ “The most powerful advance would be to perfect and
generalize the mathematical formalism that forms the
existing basis of theoretical physics, and after each
success in this direction, to try to interpret the new
mathematical features in terms of physical entities.”
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Algebraic formalism

e Algebraic formalism
@ Topologies and algebras
@ States
@ Types of algebras
@ Modular automorphisms
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Topologies and algebras

Algebraic formalism

Topologies

@ In the linear space B (’H ) of bounded operators on a Hilbert
space H consider a system of =-neighbourhoods of
operator A defined by ||A — B|| < =. The topology defined
by this system of neighbourhoods is called the norm

topology in B(H).
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Topologies and algebras

Algebraic formalism

Topologies

@ In the linear space ‘B(’H ) of bounded operators on a Hilbert
space H consider a system of =-neighbourhoods of
operator A defined by ||A — B|| < =. The topology defined
by this system of neighbourhoods is called the norm
topology in B(H).

@ Topology provided by the system of seminorms | Tr (Aw) |
Is called the weak =«-topology on B(H) induced by the set
of states w.

irsa: 06030026 Page 25/107



Topologies and algebras

Algebraic formalism

C*-algebra

@ A concrete C*-algebra is a subspace il of B(’H) closed
under multiplication, adjoint conjugation, and closed in the
norm topology.
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Algebraic formalism

C*-algebra

@ A concrete C*-algebra is a subspace il of B(’H) closed

under multiplication, adjoint conjugation, and closed in the
norm topology.

@ An abstract C -algebra is given by a set on which addition,
multiplication, adjoint conjugation, and a norm are defined,
satisfying the same algebraic relations as in a concrete
C~*-algebra.
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Topologies and algebras

Algebraic formalism

Von Neumann algebra

@ A concrete von Neumann algebra is a C*-algebra closed in
the weak =-topology.
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Algebraic formalism
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@ A concrete von Neumann algebra is a C*-algebra closed in
the weak =-topology.

@ An abstract von Neumann algebra ora W -algebra is
given by a set on which addition, multiplication, adjoint
conjugation, and a norm are defined, satisfying the same
algebraic relations as in a concrete von Neumann algebra.
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Siates

Algebraic formalism

States over algebra

@ A state w over an abstract C*-algebra il is a normalized
positive linear functional over 4l.
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Algebraic formalism

States over algebra

@ A state w over an abstract C*-algebra il is a normalized
positive linear functional over 4l.

@ A state w is called faithful if, for A € U, w(A) = 0 implies
A=0.

@ A vector x belonging to the Hilbert space 'H on which acts
a C*-algebra iU (H) is called separating if Ax = 0 only if
A=0forall A € il.
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Siates

Algebraic formalism

GNS construction

Given a faithful separating state « over an abstract C*-algebra
i, the Gelfand-Naimark-Segal construction provides a Hilbert
space H with a preferred state (W) and a representation = of il
as a concrete C*-algebra of operators on H, such that

(A) = (Wo|m(A)|Wo).
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Algebraic formalism

Siates

Folium of the state

@ Given a state w on il and the corresponding GNS
representation of U in H, a folium determined by w Is a set
of all states p over il that can be represented as

p(A) = Tr [Ap].

where / Is a positive trace-class operator in H.
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States

Algebraic formalism

GNS construction

Given a faithful separating state «w over an abstract C*-algebra
i, the Gelfand-Naimark-Segal construction provides a Hilbert
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Siates

Algebraic formalism

Folium of the state

@ Given a state w on i and the corresponding GNS
representation of U in H, a folium determined by w Is a set
of all states p over il that can be represented as

J(_}(A) — 4 [Aﬁ]

where p Is a positive trace-class operator in H.
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States

Algebraic formalism

Folium of the state

@ Given a state w on i and the corresponding GNS
representation of U in H, a folium determined by w is a set
of all states p over il that can be represented as

p(A) — 8 [Aﬁ]

where p Is a positive trace-class operator in H.

@ Consider an abstract C*-algebra il and a preferred state w.
Via the GNS construction one obtains a representation of
i1 in a Hilbert space H. The folium of w then determines a
weak topology on il. By closing il under this weak topology
we obtain a von Neumann algebra ‘A.
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Algebraic formalism

Types of algebras

Characterization theorem

@ P(NR) is the lattice of all self-adjoint, idempotent operators
in a von Neumann factor ‘A.
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Algebraic formalism Types of algebras

Classification of von Neumann factors

Table: Classification of von Neumann factors

Range of d Type of R | Lattice P(‘R)

1012 .83 |5 modular, atomic,
non-distributive if n > 2

1012 .ca} | ke orthomodular, non-modular,
atomic

[0, 1] 4 modular, non-atomic

[0, ] |- non-modular, non-atomic

{0, oo} I non-modular, non-atomic
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Algebraic formalism

Types of algebras

Characterization theorem

@ P(R) is the lattice of all self-adjoint, idempotent operators
in a von Neumann factor ‘A.

@ There exists a unique (up to multiplication by a constant)
map d : P(R) — [0. oc] such that

(i) d(A)=0ifandonlyif A=0

(i) fALB,thend(A+B)=d(A) + d(B)

(i) d(A) < d(B)ifandonlyif A < B

(iv) d(A) < xifandonlyif Ais a ) finite projection
(v) d(A)=d(B)ifandonly if A ~ B

(vi) d(A)+d(B)=d(AAB)+d(AVv B)
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Algebraic formalism Types of algebras

Classification of von Neumann factors

Table: Classification of von Neumann factors

Range of d Type of R | Lattice P(‘R)

f0.1.2. .8} | &K modular, atomic,
non-distributive if n > 2

{10.1.2.. .cof | ix orthomodular, non-modular,
atomic

[0, 1] 4 modular, non-atomic

[0. ] |- non-modular, non-atomic

{0, oo} I non-modular, non-atomic
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Algebraic formalism

Modular auiumﬂrphisms

Definition of modular automorphism

@ Consider an operator S defined by SA|V) = A*|U).
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Algebraic formalism

Modular auiumﬂrphisms

Definition of modular automorphism

@ Consider an operator S defined by SA|V) = A*|U).

@ S admits a polar decomposition S = JAl:’iz‘ where J is
antiunitary and A_, is a self-adjoint, positive operator.

@ Tomita-Takesaki theorem states that the map oy : 'R — R,
with ¢ real, such that

aZA=A_TAAT

defines a 1-parameter group of automorphisms of ‘A.
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Algebraic formalism

Modular aufumﬂrphisms

Definition of modular automorphism

@ Consider an operator S defined by SA|V) = A*|U).
@ S admits a polar decomposition S = JAl:"iz‘ where J is
antiunitary and A_, is a self-adjoint, positive operator.

@ Tomita-Takesaki theorem states that the map oy : R — R,
with t real, such that

af A = &;’rAAff,.

defines a 1-parameter group of automorphisms of ‘A.

@ This group is called the group of modular automorphisms,
or the modular group, of the state « over the algebra ;.
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Algebraic formalism

Modular auimnﬂrphisms

Inner and outer automorphisms

@ An automorphism «ajnner Of the algebra ‘A is called inner if
there is a unitary U in ‘R such that ajppe,A = UTAU.
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Algebraic formalism

Modular auinmurphisms

Inner and outer automorphisms

@ An automorphism «ajnner Of the algebra ‘A is called inner if
there is a unitary U in ‘R such that ajpperA = UTAU.

@ Call two automorphisms equivalent when they are related
by an inner automorphism ajpper: @ = ajppera’ OF

o/ (AU = Ua" (A).

for every A and some unitary U in ‘A.
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Algebraic formalism

Modular auiumﬂrphisms

Inner and outer automorphisms

@ An automorphism «ajnper Of the algebra A is called inner if
there is a unitary U in *R such that ajpperA = UTAU.

@ Call two automorphisms equivalent when they are related
by an inner automorphism ajpper: @ = ajppera’ OF

& (AU = Ua” (A),

for every A and some unitary U in ‘A.

@ Resulting classes of automorphisms are called outer
automorphisms and they form Out ‘A.
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Algebraic formalism

Modular aufurnurphisms

Canonical group of outer automorphisms

@ Modular group «a; projects down to a non-trivial
1-parameter group a; in Out ‘A.
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Algebraic formalism

Modular aufumurphisms

Canonical group of outer automorphisms

@ Modular group «; projects down to a non-trivial
1-parameter group a; in Out ‘A.

@ The Cocycle Radon-Nikodym theorem states that two
modular automorphisms defined by two states of the von
Neumann algebra are inner-equivalent.
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Algebraic formalism

Modular auiumﬂrphisms

Canonical group of outer automorphisms

@ Modular group «a; projects down to a non-trivial
1-parameter group a; in Out ‘A.

@ The Cocycle Radon-Nikodym theorem states that two
modular automorphisms defined by two states of the von
Neumann algebra are inner-equivalent.

@ Therefore, all states of the von Neumann algebra ‘i, or of
the folium of the C*-algebra il that has defined ‘R, lead to

the same 1-parameter group in Out ‘A.
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Algebraic formalism

Modular auiomﬂrphisms

Canonical group of outer automorphisms

@ Modular group «o; projects down to a non-trivial
1-parameter group a; in Out ‘A.

@ The Cocycle Radon-Nikodym theorem states that two
modular automorphisms defined by two states of the von
Neumann algebra are inner-equivalent.
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@ The Cocycle Radon-Nikodym theorem states that two
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Algebraic formalism

Modular aufumﬂrphisms

Canonical group of outer automorphisms

@ Modular group «; projects down to a non-trivial
1-parameter group a; in Out ‘A.

@ The Cocycle Radon-Nikodym theorem states that two
modular automorphisms defined by two states of the von
Neumann algebra are inner-equivalent.

@ Therefore, all states of the von Neumann algebra ‘i, or of
the folium of the C*-algebra il that has defined ‘R, lead to
the same 1-parameter group in Out *A.

@ In other words a; does not depend on the normal state w.
The von Neumann algebra possesses a canonical
1-parameter group of outer automorphisms.
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Algebraic formalism

Modular auiomnrphisms

Invariant set 7

@ From the Cocycle Radon-Nikodym theorem follows the
intertwining property

(Dwi @ Dup)(t) (ag?) = (af") (Dwr = Dw3)(t).

where (Dwq : Dwo)(t) is the Radon-Nikodym cocycle.
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Algebraic formalism

Modular auﬁ:-nmrphisms
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@ Modular group «a; projects down to a non-trivial
1-parameter group a; in Out ‘A.

@ The Cocycle Radon-Nikodym theorem states that two
modular automorphisms defined by two states of the von
Neumann algebra are inner-equivalent.

@ Therefore, all states of the von Neumann algebra ‘R, or of
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@ In other words a; does not depend on the normal state w.
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Algebraic formalism

Modular auiumurphisms

Invariant set 7

@ From the Cocycle Radon-Nikodym theorem follows the
intertwining property

(Dwr : Dun)(t) (af?) = (af") (Dwr : Dun)(t).

where (Dwq : Dws)(t) is the Radon-Nikodym cocycle.
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Algebraic formalism

Modular automorphisms

Invariant set 7

@ From the Cocycle Radon-Nikodym theorem follows the
intertwining property

(Dw1 @ Dup)(t) (af?) = (ag") (Dwr = Dw3)(t).

where (Dwq : Duwo)(t) is the Radon-Nikodym cocycle.

@ If, for a particular value of ¢, the modular automorphism ay
is inner, then it is inner for any other normal state ’.
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Algebraic formalism

Modular aufomnrphisms

Invariant set 7

@ From the Cocycle Radon-Nikodym theorem follows the
intertwining property

(Dwi @ Dup)(t) (af?) = (a7") (Dwr : Dw3)(t).

where (Dwq : Dwo)(t) is the Radon-Nikodym cocycle.

@ If, for a particular value of t, the modular automorphism ay
Is inner, then it is inner for any other normal state ’.

@ Therefore the set of f-values
7 = {t : ayf is inner}
Is a property of ‘R independent of the choice of w.
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Algebraic formalism

Modular aufumnrp-hisms

7 and spectrum of modular operators

@ Noticethat0 =7 and, ifty. 7 ,thenty £t 7. So7
Is a subgroup of K.
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Algebraic formalism

Modular auiumnrphisms

7 and spectrum of modular operators

@ Noticethat0 =7 and,ifty.6 7 ,thenty £t 7. So7
Is a subgroup of K.

@ Connes showed that 7 is related to the spectrum of the
modular operators A ..
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Algebraic formalism

Modular auiomﬂrphisms

7 and spectrum of modular operators

@ Noticethat0 7 and,ift4. c7,thenty £t 7. S0 7
Is a subgroup of K.

@ Connes showed that 7 is related to the spectrum of the
modular operators A .

@ Define the spectral invariant S(R) = () Spect A,,. where w
ranges over all normal states of ‘i, and the set
R} —{\cR - &®*—1 YEcT)
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Algebraic formalism

Modular auiumﬂrphisms

7 and spectrum of modular operators

@ Noticethat0 7 and, ifty.6 7, thenty £t 7. So7
Is a subgroup of K.
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Algebraic formalism

Modular auiommphisms

Alain Connes’s classification

Type /Il von Neumann algebras are classified according to the
value of S(*R).

Table: Connes’s classification of von Neumann factors

Range of S(1) | Type of factor ‘K
{1} | and /I

QuUXN. neZ} | Ill, (O<A<1)
R Il

{0,1} I

irsa: 06030026 Page 73/107



Time in the algebraic formalism

e Time in the algebraic formalism

@ Operational approach is atemporary
@ Modular time
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Operational approach is atemporary

Time in the algebraic formalism

Operational approach

@ Start with algebra elements corresponding to observation
procedures. They form a C*-algebra il.
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Operational approach

@ Start with algebra elements corresponding to observation
procedures. They form a C*-algebra il.
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Operational approach is atemporary

Time in the algebraic formalism

Operational approach

@ Start with algebra elements corresponding to observation
procedures. They form a C*-algebra il.

@ Consider the set & of states over il and the complex linear
span of &, denoted as 2.
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Operational approach is atemporary

Time in the algebraic formalism

Operational approach

@ Start with algebra elements corresponding to observation
procedures. They form a C*-algebra il.

@ Consider the set & of states over il and the complex linear
span of &, denoted as 2.

@ The dual of 2 is a W™-algebra R which is closed in the
weak topology induced by 2, and il is weakly dense Iin i.
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Operational approach is atemporary

Time in the algebraic formalism

How things are seen usually

@ il is the total algebra, i.e. an inductive limit of the algebras
of a net of local algebras

u=|Juo).
&)

where O are finite, contractible, open regions in Minkowski
space, and completion is in the norm topology.
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Operational approach

@ Start with algebra elements corresponding to observation
procedures. They form a C*-algebra il.

@ Consider the set & of states over il and the complex linear
span of &, denoted as 2.

@ The dual of X is a W™-algebra R which is closed in the
weak topology induced by 2, and il is weakly dense Iin A.
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Operational approach is atemporary

Time in the algebraic formalism

How things are seen usually

@ il is the total algebra, i.e. an inductive limit of the algebras
of a net of local algebras

u=|Juo).
&)

where O are finite, contractible, open regions in Minkowski
space, and completion is in the norm topology.
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Operational approach is atemporary

Time in the algebraic formalism

How things are seen usually

@ il is the total algebra, i.e. an inductive limit of the algebras
of a net of local algebras

u=|Juo).
&)

where O are finite, contractible, open regions in Minkowski
space, and completion is in the norm topology.

@G — G0). ¥—I(0), R—RO).
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Operational approach is atemporary

Time in the algebraic formalism

Lessons from Haag

@ “If we look at the efforts to relate the Hilbert space
formalism of quantum mechanics to natural operational
principles it appears that one central assumption is that
any observable can be measured in any state.”
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Time in the algebraic formalism

Lessons from Haag

@ “If we look at the efforts to relate the Hilbert space
formalism of quantum mechanics to natural operational
principles it appears that one central assumption is that
any observable can be measured in any state.”

@ “Since, clearly, we cannot make a measurement before the
state is prepared, this assumption is reasonable only if we
distinguish between observables and observation
procedures and if we can choose for each observable an
observation procedure at an arbitrary time.”
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Time in the algebraic formalism

Need to single out an observable

@ We are looking for an identification procedure that will
allow one to single out an observable A such that it can be
instantiated at different time moments:

Ai. A. At . ..
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Operational approach is atemporary

Time in the algebraic formalism

More lessons from Haag

@ “This means that one needs a dynamical law which
identifies procedures at different times as the same
observable, and this law should not depend on the state.”

@ “General relativity indicates that the dynamical law must
involve the state to some extent.”

@ “The relevance of this within the context of special
relativistic quantum physics is open, but we may take it as
an indication that the dynamical law cannot be regarded as
an algebraic relation in il but arises on the level of von
Neumann algebra R and therefore needs at least the weak
topology induced by states &
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More lessons from Haag

@ “This means that one needs a dynamical law which
identifies procedures at different times as the same
observable, and this law should not depend on the state.”

@ “General relativity indicates that the dynamical law must
involve the state to some extent.”

@ “The relevance of this within the context of special
relativistic quantum physics is open, but we may take it as
an indication that the dynamical law cannot be regarded as
an algebraic relation in il but arises on the level of von
Neumann algebra R and therefore needs at least the weak
topology induced by states &
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Modular time

Time in the algebraic formalism

Need to single out an observable

@ We are looking for an identification procedure that will
allow one to single out an observable A such that it can be
instantiated at different time moments:

Ai. Ay As....

@ Instances of A are observation procedures at particular
time moments and belong to the local R(O).
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Modular time

Time in the algebraic formalism

Need to single out an observable

@ We are looking for an identification procedure that will
allow one to single out an observable A such that it can be
instantiated at different time moments:

A A. At,.. ..

@ Instances of A are observation procedures at particular
time moments and belong to the local R(O).

@ So we need to forget the individual differences between ff\g,.!
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Modular time

Time in the algebraic formalism

Connes-Rovelli thermodynamic time hypothesis

@ In nature, there is no preferred physical time variable t.
There are no equilibrium states preferred a priori. Rather,
all variables are equivalent; we can find the system in an
arbitrary state. If the system is in state «, then a preferred
variable is singled out by the state of the system. This

variable is what we call time.
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Modular time

Time in the algebraic formalism

KMS condition

@ Consider a system with a finite number of the degrees of
freedom. In thermodynamics, one uses the Gibbs condition

- Ne—_::l'H
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Time in the algebraic formalism

KMS condition

@ Consider a system with a finite number of the degrees of
freedom. In thermodynamics, one uses the Gibbs condition

iy Ne—_.:l'H

@ For a system with infinitely many degrees of freedom, call
a state w over U a KMS state at inverse temperature 3,
with respect to ¢, if, forall A.B < U

F(t) = w(B(1tA))
Is analyticinthe strip 0 < Im £ < 3 and

((7¢A)B) = w(B(rt+i5A))-
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Time in the algebraic formalism

KMS condition

@ Consider a system with a finite number of the degrees of
freedom. In thermodynamics, one uses the Gibbs condition

w = Ne=PH.

@ For a system with infinitely many degrees of freedom, call
a state w over il a KMS state at inverse temperature 3,
with respect to ¢, if, forall A.B < U

F(t) = w(B(1tA))
Is analyticinthe strip 0 < Im £ < 7 and
w((tA)B) = w(B(1t+isA))-

@ KMS condition generalizes both the Gibbs condition and
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hk}dula{ time

Time in the algebraic formalism

KMS and the Tomita-Takesaki theorem

This is arguably one of the most important and profound
theorems in all 20th century physics!

@ Any faithful state over a C*-algebra is a KMS state at the
inverse temperature 7 = 1 with respect to the modular
automorphism ~; that it itself generates.
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Time in the algebraic formalism An Interpretation

State-dependent time

@ Using KMS formalism via Tomita-Takesaki theorem, define
time as modular flow. It is state-dependent. Unless the
state is changed, time does not change. A change in the
state means a change in information. If the change of state
takes one out the folium of the previous state, then
state-dependent time “restarts.”
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Time in the algebraic formalism An Interpretation

Correct time spectrum

@ If the algebra is a type /l/4 factor, the spectrum of ¢ is from
0 to +oc. Internal, state-dependent time behaves
“correctly”: it is a real positive one-dimensional parameter.
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Time in the algebraic formalism An Interpretation

State-independent time is ignorance

@ Factorization by inner automorphisms |leads to the
state-independent notion of time. This factorization
corresponds to neglecting the difference between states. It
Is also a condition of possibility of the notion of observable.
Thus, the concept of time arises due to the possibility to
ignore certain information.
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Time in the algebraic formalism An Interpretation

State-independent time is ignorance

@ Factorization by inner automorphisms leads to the
state-independent notion of time. This factorization
corresponds to neglecting the difference between states. It
Is also a condition of possibility of the notion of observable.
Thus, the concept of time arises due to the possibility to
ignore certain information.

@ Time is not knowing the details.
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o Where to start?
@ Information-theoretic approach
@ Measurement order is irrelevant
@ Phenomenal time
@ Mathematical idealization and physical interpretation

e Algebraic formalism
@ Topologies and algebras
@ States
@ Types of algebras
@ Modular automorphisms

irsa: 06030026 Page 101/107



Where to start?

Phenomenal time

Where to start? Try phenomenal time

@ Phenomenal time is not sharply defined. It comes to us
strangely by way of words with fuzzy meanings, and with a

non-linear structure.
@ Compare with Husserl, Ideen |.
@ Compare with Weyl as rephrased by Ryckman:

Exact time points are not given in intuition in any
manner. and so are not absolute, but are concepts
(products of reason), attaining full definiteness only in
the purely formal arithmetico-analytic concept of the
real number.
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Time in the algebraic formalism An Interpretation

State-dependent time

@ Using KMS formalism via Tomita-Takesaki theorem, define
time as modular flow. It is state-dependent. Unless the
state is changed, time does not change. A change in the
state means a change in information. If the change of state
takes one out the folium of the previous state, then
state-dependent time “restarts.”
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Time in the algebraic formalism An Interpretation

State-independent time is ignorance

@ Factorization by inner automorphisms |leads to the
state-independent notion of time. This factorization
corresponds to neglecting the difference between states. It
Is also a condition of possibility of the notion of observable.
Thus, the concept of time arises due to the possibility to
ignore certain information.
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Time in the algebraic formalism An Interpretation

State-independent time is ignorance

@ Factorization by inner automorphisms |leads to the
state-independent notion of time. This factorization
corresponds to neglecting the difference between states. It
Is also a condition of possibility of the notion of observable.
Thus, the concept of time arises due to the possibility to
ignore certain information.

@ Time is not knowing the details.
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