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Abstract: | will discuss a toy theory that reproduces a wide variety of qualitative features of quantum theory for degrees of freedom that are
continuous. The ontology of the theory is that of classical particle mechanics, but it is assumed that there is a constraint on the amount of knowledge
that an observer may have about the motional state of any collection of particles -- Liouville mechanics with an epistemic restriction. The formalism
of the theory is determined by examining the consequences of this "classical uncertainty principle” on state preparations, measurements, and
dynamics. The result is a theory of hidden variables, although it is not a hidden variable model of quantum theory because it is both local and
noncontextual. Despite admitting a simple classical interpretation, the theory aso exhibits the operational features of Bohr's notion of
complementarity. In fact, it includes all of the features of quantum mechanics to which Bohr appeals in his response to EPR. This theory
demonstrates, therefore, that Bohr's arguments fail as a defense of the completeness of quantum mechanics. Joint work with Stephen Bartlett and

Terry Rudolph
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...present quantum theory not only does not use -- it
does not even dare to mention -- the notion of a “real
physical situation.” Defenders of the theory say that
this notion is philosophically naive, a throwback to
outmoded ways of thinking, and that recognition of
this constitutes deep new wisdom about the nature of
human knowledge. | say that it constitutes a violent
irrationality, that somewhere in this theory the
distinction between reality and our knowledge of
reality has become lost, and the result has more the
character of medieval necromancy than of science.
—-E.T. Jaynes
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But this is not enough to derive quantum theory!
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Much recent foundations work suggests (to me at least) that

Maximal information about reality is incomplete information
Is a foundational principle for quantum theory
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Much recent foundations work suggests (to me at least) that
Maximal information about reality is incomplete information
Is a foundational principle for quantum theory

Caves and Fuchs, quant-ph/9601025
Rovelli, quant-ph/9609002

Hardy, quant-ph/9906123

Brukner and Zeilinger, quant-ph/0005084
Hardy, quant-ph/0101012

Kirkpatrick, quant-ph/0106072

Fuchs, quant-ph/0205039

Spekkens, quant-ph/0401052

But this is not enough to derive quantum theory!
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Previous work:
“In defence of the epistemic view of quantum states: a toy theory”
quant-ph/0401052

Start with an epistemic constraint:

Every system has an internal degree of freedom about which
# questions answered = # questions unanswered

Derive a toy theory
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Quantum phenomena that have analogues
In the toy theory

* Nonorthogonality .

- ambiguity of decomposition of
mixed states -

« Noncommutativity

» Coherent superposition .

» Interference .

* Projection postulate

« Distinction between product and °
entangled pure states

» Distinction between separable °
and nonseparable mixed states

irsa: 06030019

Ambiguity of decomposition of a
CP map

Multiple purifications of mixed
states

The Jamiolkowski isomorphism
Multiple unitary extensions of CP
maps

Multiple Neumark extensions of
measurements
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* No-cloning
« Teleportation

* Dense-coding

* No information gain without
disturbance

« Secure key distribution

* No perfectly secure bit
commitment

« Partially secure coin flipping

irsa: 06030019

No universal state inverter
EPR-type steering

Mutually unbiased bases
tri-partite entanglement

The monogamy of entanglement

Locally immeasurable product
bases (nonlocality without
entanglement)

Unextendable product bases
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* No-cloning * No universal state inverter

« Teleportation « EPR-type steering

» Dense-coding + Mutually unbiased bases

« No information gain without + tri-partite entanglement
disturbance

» Secure key distribution

* No perfectly secure bit
commitment

« Partially secure coin flipping
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+ The monogamy of entanglement

« Locally immeasurable product
bases (nonlocality without
entanglement)

Unextendable product bases

The diversity and quality of the analogy and the fact that the
toy theory is essentially derived from a single principle
provides strong evidence (in my view) that quantum states
are states of incomplete knowledge.
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Quantum phenomena that
do not arise in the toy theory

The answer is not a local noncontextual hidden variable theory.
What then is the knowledge about?
Ildentifying and studying the missing phenomena provides the best
clues for answering this question S
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Quantum phenomena that
do not arise in the toy theory

- Nonlocality (Violations of Bell inequalities)
» Contextuality (the Kochen-Specker theorem)

* The continuum of quantum states, measurements, and
transformations

» The fact that convex combination and coherent superposition are
full rather than partial binary operations

« The fact that two levels of a qutrit behave like a qubit

» The possibility of an exponential speed-up relative to classical
computation

The answer is not a local noncontextual hidden variable theory.
What then is the knowledge about?
Ildentifying and studying the missing phenomena provides the best
clues for answering this question e



In this toy theory, the motional degree of freedom was treated
classically

Can we do something similar for the motional degree of
freedom?

Yes.
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TOM HANKS TIM ALLEN
‘stugf - PIXAR

Coming soon to a
quant-ph arxiv
near you'!




Outline

» A quantum uncertainty principle

» A classical uncertainty principle

» Epistemically restricted Liouville mechanics
» Bohr's response to EPR

» Discussion
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What is a good epistemic restriction to apply to a continuous
degree of freedom?

-- look to quantum theory
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Quantum particle mechanics

Consider n canonical degrees of freedom H — (ﬁz)@m
ex: n particles in 1d, n/3 particles in 3d

[ffk,ﬁz] = ‘Zh:f(skl k,l € {1.}. ,n}

2= (Z1,P1,%9,P2,-.,%n, On)
[EZ,EJ] = Zﬁfzw 3.1 € {1, ...,2?’1}

(0 —1 3
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Page 21/82



Define
<ﬂ p = Tr(pf)
The “covariance matrix” v is defined by

vi(P) = 2Re((Z; — (£:)p) (Z; — (Z5)p))p

General form of the uncertainty principle is:

v(p) +ihE >0

Pirsa: 06030019



For a single canonical degree of freedom

.
() = ( g

(Zp + pZ) — 2(Z)(P)

(P + PT) — 2(Z) <;6>)
2(Ap)?

(Az)? = ((Z —(2))?)

The condition v(p)+:hRX > 0 for a 2x 2 matrix

IS equivalent to det(~(p)

ihE) >0

4(Azx)?(Ap)? > ((@p + pz) — 2(2) (B))? + B2

AzAp > /2

irsa: 06030019
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Define
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For a single canonical degree of freedom

2
() = ( o

(Zp + PZ) — 2(Z)(D)

(P + pT) — 2(Z) (ﬁ))
2(Ap)?

(Az)? = ((2 —(2))?)

The condition v(p)+:RX > 0 for a 2x 2 matrix

IS equivalent to det(~(p)

ihX) >0

4(Azx)?(Ap)? > ((@p + pz) — 2(2) (B))? + B2

AzAp > /2
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Quantum particle mechanics

Consider n canonical degrees of freedom H — (£2)®”
ex: n particles in 1d, n/3 particles in 3d

[Eﬁk,ﬁz] == ‘th(skl k,l € {1.}. ,n}

2 — (El;ﬁlj 523132? - e aiﬂjﬁﬂ)
[Eiagj] = ’ahfzzj 2. ] {1, ...,2?’1}

( 0 —1 3
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Define
(ﬂ p = Tr(pf)
The “covariance matrix” v is defined by

vi(P) = 2Re((Z; — (Zi)p) (Z; — (Z5)p))p

General form of the uncertainty principle is:

v(p) +ihZ >0
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For a single canonical degree of freedom

2
() = ( P

(Zp + pZ) — 2(Z)(P)

(&P + pE) — 2(Z) <;6>)
2(Ap)?

(Az)? = ((2—(2))?)

The condition v(p)+:hRX > 0 for a 2x 2 matrix

IS equivalent to det(~(p)

ihX) >0

4(Azx)?(Ap)? > (3P + pz) — 2(2) (B))? + B2

AzAp > /2
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Liouville mechanics

Consider n canonical degrees of freedom N> — Rzn
ex: n particles in 1d, n/3 particles in 3d
- — (x15p1;$2ap2j .« .o 139?’15}9?1)

Denote a probability distribution over M by (2)

Define
(fiu= Im f(2)u(z)dz

The “covariance matrix” ~ Iis defined by

Yij (1) = 2((z; — (z)p) (25 — () pu))u
It satisfies

— v(p) =0



Liouville mechanics with an epistemic constraint

Assume:

The classical uncertainty principle (CUP):

Liouville distributions describing an observer’'s knowledge

must satisfy
v(p) +iRXZ >0
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For a single canonical degree of freedom

vy =2, 57

(xp) — (z)(p)

(zp) — {x) (P))
(Ap)?

(Az)? = ((z — (2))?)

The condition v(u)+ihX > 0 for a 2 x 2 matrix

is equivalent to det(~y(u)

ih>) > 0

4(Az)?(Ap)? > 4({xp) — (x)(p))? + R

AzxzAp > h/2
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Wigner representation of quantum states
where A, = Q" A,
jz?__ = ;_.]:ﬁ. I e—tpiy/h [il?a _ %y> <$E + %y‘ dy
Theorem (Hudson,Soto,Claverie):

The only quantum states with positive Wigner representation are
the Gaussian states

“Gaussian state” means Gaussian characteristic function
P o
Xp(z) — _l_e—(1/4)z yz—id! z

where Xp(2) = Tr(pD-)

where D. — e'? 2=

Wigner fn’ is the symplectic Fourier transform of characteristic fn’

T
(27)2;,1 [eiz" 22 xp(2)dz’ a——



If a quantum state satisfies the quantum uncertainty principle
Its Wigner function satisfies the classical uncertainty principle

Thus, the Wigner functions for Gaussian quantum states are
valid epistemic states

Examples:
coherent states
Squeezed states
quadrature eigenstates
EPR state

[EPR) = [dq; dg2 6(q1 — q2)|q1)|92)
e WEPR(G1, P11 42, P2) = 0(q1 — ¢2)5(P1 + P2 )hrse



Epistemic states
pu(A) >0
Jr(N)dx =1

irsa: 06030019

» P

> P
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Valid epistemic states
pn(A) >0
Jr(N)dx =1

v(p) +ihZ > 0

’.

p

irsa: 06030019

» P

> P
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all epistemic states

v all valid epistemic states

Wigner functions of

Pirsa: 06030019 Page 37/82



measurements and transformations

irsa: 06030019 Page 38/82



Most general measurements

Quantum
POVMs {E:} Such that

E, >0
> rbEp=1

Probability of outcome k
pr = Tr(Egp)

irsa: 06030019

Liouville
Sets of indicator functions {fk} s.t.

£.(z) > 0 for all z
b fk(Z) — 1 for all z

Probability of outcome k

pr = [&(2)p(z)dz
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Sets of Indicator functions

£(z) >0 FaraTerevere: s

R ST
>k &k(z) =1 for all 2 %w@aé ‘h\

e — e
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Epistemically restricted Liouville mechanics

Theorem: the valid indicator functions are the
£(z)  suchthat K5(2) = |§E§§|
satisfies '}/(ug) + A >0
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Valid sets of Indicator functions
&z) =@ ;ﬁsﬂ;‘;‘f@‘ .. b
Spér(z) =1 for all z fﬁ*’éﬁ%‘h%*
v(&k/1€k]) + iR > 0 SERD R
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Transformations

Quantum Liouville
Amap & such that Amap [ such that
The state updates to The epistemic state updates to
o = E[p] wW(z) = (=2 )ulz)d
trace-preserving normalized
Tr(p) =1 iz 2z —1
positive

Completely positive
EA R IB[pAB]) > 0 rk(Z, Z!) == 0
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Transfer functions

F(z.2) >0
(2", z)d’ =1 for all »
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Epistemically restricted Liouville mechanics

Theorem: the valid transfer functions are the
I_(;z:’g.zc)

r(z/,z) suchthat ' (2,2)= HEES]
satisfies Y(u' ) +iAXZ >0
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Valid transfer functions
F(:' =) >@
T (2, z)dz’ =1 for all z
(r/|Irp)+4< >0
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Epistemically restricted Liouville mechanics

Valid epistemic states

u(z) satisfying () +ih= > 0O

Valid transfer matrices:

FC
b (#,2) = ]

(2/,2z) such that
satisfies ’y(ur) th> >0

— [F("2%)|

Valid indicator functions
£(z) suchthat & (=) = |§Ez)|
satisfies ~v(uS) + ihX > O
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Epistemically restricted Liouville mechanics

Valid epistemic states

p(z) satisfying v(pn) +ihZ >0

Valid transfer matrices:

_
(2,z) such that #r(zfa = ’rgzécgl
satisfies v(u' ) +iRE > 0

Valid indicator functions
£(z) such that Mg(z) = éggl
satisfies ~v(uS) + ih= > 0
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Epistemically restricted Liouville mechanics

Valid epistemic states

u(z) satisfying () + A= > 0

Valid transfer matrices:

ey (]
(z',z) such that p' (2, 2) = [FEE’EC%I

satisfies ’y(pr) ih> >0

Valid indicator functions
£(z) suchthat & $(2) = |§Ez)|
satisfies ~v(uS) + ih= > O
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A change of canonical coordinates

& = ($13p19$23p23 (== 1$?’ljpn)

2/ = Az where A isa symplectic transformation

Theorem: If the covariance matrix defined w.r.t. one choice of
canonical coordinates satisfies the inequality, it does so w.r.t. all

GhOICeS y(u) +iRE >0 —>  ~'(u) +ihE >0
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A change of canonical coordinates

Z = (33]_;}91;5132;,}92; e, 13:?’11}971)
2/ = Az where A isa symplectic transformation

Theorem: If the covariance matrix defined w.r.t. one choice of
canonical coordinates satisfies the inequality, it does so w.r.t. all

ChOICES y(u) +ihRE >0 —> /() +ihE >0

Proof: The covariance matrix transforms as

’Yz‘j(ﬂ) = 2((2z; — (%)#)(Zj — <Zj)#)>#
— (1) = 2((2] — (D) — (Z)u))u

Thus ~ = A~AT
so Y(p) + iRZ > 0 implies 7 () +iRAZ AT > O
=Bt AYAT=3X  QED.



Hamiltonian evolution
Is a canonical

transformation
Therefore, the CUP is X
preserved under 7
Hamiltonian evolution r
\ > D1
X1

This is simply Liouville’s theorem Page sele2



Theorem: the CUP is satisfied by a distribution 1. over a phase space M
If and only If
it is satisfied for the marginal of . on any canonical subspace N C M

v(p) +ihZ >0 <« Forall N c M
Y(pln) + A 2 0
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Theorem: the CUP is satisfied by a distribution 1. over a phase space M
If and only If
it is satisfied for the marginal of . on any canonical subspace N C M

v(p) +ihZ >0 «—> Forall N Cc M
Y(uln) + Ay = 0

Proof ( —» ): | B
i (’V(Miv) )

BT '}‘(ML.VL)

- (3 22
O Z ‘,,,-"VJ‘

: 'Y(M|_N") + ’ihz‘ A B
= : >
)Rt ( BT ’Y(H‘N’L) tha yri ) — .

A B
irsa: 06030019 But (B_i_ C) Z O —» A > 0 Page 58/82



Proof ( «— ):

By Willlamson's theorem, there is a symplectic transformation that
diagonalizes the covariance matrix

f".r'(#g,m-’l) O i 1 o o O
7(#’) — "‘r’(ﬁ|_\f’2) o 1 O
L O (ke |,-’\..-"”) ! O ?

v(ula) +ihE|y; >0 —» A(u) +iAZ >0  QED.
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A AT
K\\\" P1 K\\h p2
71 o
ﬁ but

ossce 1 1€ MiNIMal uncertainty can be moved around but cannot he...
decreased



Bohr's defence of the Heisenberg
uncertainty principle
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The challenge:

By passing a particle through a slit, we learn its position
By taking account of the momentum transferred, we learn its momentum

™

%
iy

irsa: 06030019 Page 62/82



Bohr’'s response

=

Pirsa: 06030019

N

N
=

“... [when] the knowledge of
relative positions of the
diaphragms and the
photographic plate is secured
by a rigid connection, it is
obviously impossible to
control the momentum
exchanged between the

= \\] particle and the separate

S
BN

parts of the apparatus.”

Measure: momentum in vertical
direction w.r.t. support

pd(ti) Initial p of diaphragm
pa(tf)  Final p of diaphragm
ps(t;) Initial p of particle

Infer:
ps(ty) final p of particle

Page 63/82

ps(ty) = ps(t;) + pa(t;) — pa(ty)



It appears as if one thereby comes to learn:

both Ps(tf) and :BS(tf)
But in fact, one only learns

I:S(f;f) = ‘Td(tf)

Sotoinfer zs(tf) we need to know z,4(ty)

However, assuming that the “ .. [the diaphragm] can no longer be used

UP applies to the diaphragm as a measuring instrument for the same

purpose as in the previous case, but must,
as regards its position relative to the rest
We cannot know of the apparatus, be treated, like the
pd(tf) and -’L‘d(tf) particle traversing the slit, as an object of
investigation, in the sense that the
i quantum-mechanical uncertainty relations
So we cannot infer both regarding its position and momentum

v ool (0 f) and zs(t f) must be taken explicitly into accoypt,,

/82



“In fact, even if we knew the position of the diaphragm relative to the space
frame befaore the first measurement of its momentum, and even though its
position after the last measurement can be accurately fixed, we lose, on
account of the uncontrollable displacement of the diaphragm during each

collision process with the test bodies, the knowledge of its position when the
particle passed through the slit.”

Bohr speaks of:

“the position of the diaphragm”
“its momentum”

He never makes use of Hilbert space

His argument goes through verbatim as an argument for the
consistency of the CUP in ERL mechanics
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More generally

Ay A
7 n\}" P1 \ >P2 K\\"’ P1 K\\\" p2
1 L1 L2

L2

@ but
\ » D1 K{\}\‘FPQ
| LD

eossnce 1 1€ MiNIMal uncertainty can be moved around but cannot he...
decreased




The EPR argument and Bohr's
reply

Pirsa: 06030019



EPR criterion of reality:

If, without in any way disturbing a system, we can predict with certainty
(l.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of reality corresponding to that quantity

A B

sl L

& O

[EPR) = [dxy dzo 6(x1 — x2)|®1)|T2)
= [dpy dp2 6(p1 + p2)|p1)|P2)

Either measure x or p on particle 1
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This the experiment has an exact analogue in ERL mechanics

Wepr(q1,p1: 92, p2) = %5031 —q2)0(p1 + p2)
u(g2,p2) =

S i
\ . oF L.
EEd ) | -
Initially A is completely ignorant of 2 \ ........... N
L2
If A measures xon 1, she infers x of 2 \ %pg
N,
If A measures p on 1, she infers p of 2 \ > po
L2

A’s decision does not affect the reality at 2,

Pirsa: 06030019 Page 69/82

the x and p were already elements of reality



Bohr's response:

By learning x,, you disturb p;
So p, is no longer correlated with p,
So a subsequent measurement of p,
does not allow one to infer p,

“By allowing an essentially uncontrollable momentum to pass from the first particle
into the mentioned support, however, we have by this procedure cut ourselves off
from any future possibility of applying the law of conservation of momentum to the
system consisting of the diaphragm and the two particles and therefore have lost
our only basis for an unambiguous application of the idea of momentum in
predictions regarding the behavior of the second particle.”

Essentially: You can’'t come to know both x, and p,
But this is just another defence of the uncertainty principle!
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A tension in Bohr’s response to EPR

“In fact, even if we knew the position of the diaphragm relative to the space frame
before the first measurement of its momentum, and even though its position after the
last measurement can be accurately fixed, we lose, on account of the uncontrollable
displacement of the diaphragm during each collision process with the test bodies, the
knowledge of its position when the particle passed through the slit.”

Just in this last respect any comparison between quantum mechanics and ordinary
statistical mechanics,——however useful it may be for the formal presentation of the
theory,-—-is essentially irrelevant. Indeed we have in each experimental arrangement
suited for the study of proper quantum phenomena not merely to do with an ignorance
of the value of certain physical quantities, but with the impossibility of defining these
quantities in an unambiguous way.

My conclusion:
Bohr must believe that two quantities can be jointly well-defined only if
they can be jointly measured

Otherwise, why from the impossibility of two quantities being jointly
measured would he infer the impossibility of their being jointly well-

defined, as opposed to merely inferring the impossibility of their-being
ininthy known



But none of Bohr's arguments are at odds with a hidden variable
interpretation of the EPR experiment
In fact, they resonate nicely with such an interpretation

Bohr's operationalism is assumed in his analysis of EPR
His analysis provides no new argument for his operationalism

irsa: 06030019 Page 72/82






Quantum phenomena that are reproduced in
ERL mechanics

- Jamiolkowski isomorphism

» CV Teleportation

» No information gain without disturbance

» Poisson bracket of two functions determines whether they are
simultaneously measurable (with J. Emerson and F. Girelli)

Presumably, most of what can be done with Gaussian states and
operations alone

- Key distribution

* A large part of entanglement theory

» Bound entanglement

irsa: 06030019 Page 74/82



Improvements to the theory

There is likely to be a better epistemic constraint!

all epistemic states
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Phenomena that are not reproduced
* Nonlocality
» Contextuality
» Exponential speed-up in computation (if it exists)
* many others...

* Quantization??

These phenomena may teach us the way...

irsa: 06030019 Page 76/82






Atomic stability

Standard argument: electron will spiral into nucleus and radiate

But: this would imply certainty about relative x and relative p!
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Conclusion: If CUP is satisfied for the particles, then for
consistency, we must demand that CUP is satisfied for the EM
field as well!
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This Iis reminiscent of the
theory of stochastic
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Stochastic electrodynamics

* L. de la Pena and A. M. Cetto, "The Quantum Dice: An
Introduction to Stochastic Electrodynamics”, Kluwer (1996)

» T. H. Boyer, "A Brief Survey of Stochastic Electrodynamics”,
in Foundations of Radiation Theory and Quantum
Electrodynamics, edited by A. O. Barut, Plenum (1980)

- T. W. Marshall and E. Santos, Found. Phys. 13, 185 (1983);
Phys. Rev. A39, 6271 (1989)

» T. H. Boyer, Found. Phys. 19, 1371 (1989)

* D. C. Cole, Phys. Rev. A42, 1847 (1990); Phys. Rev. A42,
7006, (1990)
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Quantum phenomena which SED reproduces

» Stability of atomic ground states
 Certain features of atomic ground states
* Planck blackbody spectrum

» Einstein A and B coefficients

« Lamb shift

» Casimir effect

» Unruh effect

- various quantum optical phenomena

Further evidence for vacuum substructure (together with Elliot Martin)
Toy field theory has analogues of:

» Spatial interference (of Mach-Zehnder variety)

* Interaction-free measurement

* quantum eraser

» Hardy's “reality of the empty wave” experiment

Next stop: epistemically restricted electrodynamics (fields and pariigles)



“To infinity ... and beyond!”




