Title: Limits on efficient computation in the physics world
Date: Mar 15, 2006 04:00 PM

URL.: http://pirsa.org/06030013
Abstract:

Pirsa: 06030013 Page 1/102



Limits. on°Eff|c:|ent Computatlon
% inthe Phy‘smal World

o -
5 ‘
‘ .' | P \
(.
g I
- s
- : |
-
-

Scott Aaronson - -
University of'Waterloo




The Computer Science
Picture of Reality

o= ':_. =:§.= s + detaills

Pirsa: 06030013  Page 3/102



The Computer Science
Picture of Reality

W S 25 F 4 details

Pirsa: 06030013



The Computer Science
Picture of Reality

suns + details

Pirsa: 06030013  Page 5/102



The Computer Science
Picture of Reality

..
sam " + detaills

Pirsa: 06030013  Page 6/102



The Computer Science
Picture of Reality

- __-'='== + details

Pirsa: 06030013  Page 7/102



The Computer Science
Picture of Reality

=-l.
. < _-': . + details

Pirsa: 06030013 Page 8/102



The Computer Science
Picture of Reality

é.éf= am L2}
" N E -
g=y = B + details

Pirsa: 06030013  Page 9/102



The Computer Science
Picture of Reality

_gamm 1 a .
= " =l£-:..lnr . E -+ detans

Pirsa: 06030013  Page 10/102



The Computer Science
Picture of Reality

. . ':E"' =  + details

Pirsa: 06030013



The Computer Science
Picture of Reality

1—.=-= -...§.=.-
ori. . 0 Tpt + details

Pirsa: 06030013  Page 12/102



The Computer Science
Picture of Reality

eipgiefin T w4 details

Pirsa: 06030013  Page 13/102



The Computer Science
Picture of Reality

E + details

Pirsa: 06030013



The Computer Science
Picture of Reality

s + detalls

Pirsa: 06030013  Page 15/102



The Computer Science
Picture of Reality

E + details

Pirsa: 06030013  Page 16/102



The Computer Science

Picture of Reality

+ detaills



The Computer Science
Picture of Reality

Pirsa: 06030013



The Computer Science
Picture of Reality

Quantum computing challenges this picture

That's why everyone should care about it,
whether or not quantum factoring machines
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Quantum Computing

A quantum state of n “qubits” takes 2" complex
numbers to describe:
)

> a,
J‘E{O.l}”

The goal of quantum computing is to exploit

this exponentiality in Nature.

BQP: Bounded-Error Quantum Polynomial-Time

Class of problems solvable efficiently using a
~rgaantum computer



Bernstein-Vazirani 1993:

P < BQP < PSPACE
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Shor 1994: Factoring is in BQP
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Bernstein-Vazirani 1993:

P < BQP < PSPACE

— Interesting

D
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Shor 1994: Factoring is in BQP

- Grover 1996: Quantum algorithm to

search an N-element array in VN steps
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Part J: Limitations of
LDuantum Computers
A lower bound extravaganza
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The

Quantum
Black Box
Model

I do believe 1t

Against an oracle.
N —Shakespeare, The Tempest



We count only the number of queries to an oracle,
not the number of computational steps

Example: Given a function f:{0,1}"->{0,1}, decide if
there’s an x such that f(x)=1
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We count only the number of queries to an oracle,
not the number of computational steps

Example: Given a function f:{0,1}"-=>{0,1}, decide if
there’s an x such that f(x)=1

» Like solving an NP-complete problem by brute force
» Classically, ~2" queries to f needed

« Grover’s algorithm uses only ~2n

- BBBV 1997: Grover is optimal

* Provides evidence that NP « BQP
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Algorithm’s state:

: :aﬂfjl'

X W

X: location to query

x.w) w: “workspace” qubits

After a query transformation:
da ,|xwd f(x))

Between two queries, we can apply an arbitrary
unitary matrix that doesn’'t depend on f

Complexity = minimum number of queries needed

to achieve . z 2
§ ]a >

i X W -~

‘l‘.“‘> J

corresponding to
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Problem: Find 2 numbers that

are the same (each number appears twice)

28 12 18 76 96 82 94 99 21 78 88 93 39 44 64
32 99 70 18 94 82 92 64 95 46 33 16 35 42 72
31 40 75 71 93 32 47 11 70 37 78 79 36 63 40
69 92 10 28 85 41 80 10 52 63 88 65 43 84 67
alf 31 98 39 65 /4 24 90 26 83 60 91 27 96 35
20 26 52 95 57 66 97 54 30 62 79 33 84 50 38
49 17 47 24 54 48 98 23 41 16 66 75 38 13 58
56 86 34 /3 61 /3 21 44 62 34 14 51 74 /6 83
3f 90 38 13 M1 25 29 25 56 68 12 11 51 23 7/
68 72 43 69 46 37 97 45 59 14 30 19 81 81 49
60 85 80 30 61 589 89 67 89 29 86 48 22 15 1/
s 36 27 42 35 /7 19 45 15 53 22 91 87 20=-33



Algorithm’s state:
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X W

X: location to query

x; w> w: “workspace” qubits

After a query transformation:

Ya ,|xw®f (1))
X. W

Between two queries, we can apply an arbitrary
unitary matrix that doesn’'t depend on f

Complexity = minimum number of queries needed

to achieve Z > = %

‘ax‘w for all oracles f
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are the same (each number appears twice)
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Problem: Find 2 numbers that

are the same (each number appears twice)
28 12 18 /6 96 82 94 99 21 /8 88
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Problem: Find 2 numbers that

are the same (each number appears twice)

28 12 18 /6 96 82 94 99 21 78 88 93 39 44 64

3 By “birthday paradox”, a 3 16 35 42 72
31 randomized algorithm must 8 79 36 63 40
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20 26 52 95 5/ 66 97 54 30 62 79 33 84 o0 38

4 Brassard, Hgyer, Tapp: |41 16 66 75 38 13 58
quantum algorithm 62 34 14 51 74 /6 83

(based on Grover) that |20 68 12 11 01 23 77
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Problem: Find 2 numbers that

are the same (each number appears twice)

28 12 18 /6 96 82 94 99 21 78 88 93 39 44 64

3 By “birthday paradox”, a 3 16 35 42 72
31 randomized algorithm must 8 79 36 63 40
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20 26 52 95 57 66 97 54 3E Is that optimal? B
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Motivation for the Collision Problem

55 = 0

Graph Isomorphism:

find a collision In
Hash Functions | |6,(G).....6,,(G).6,(H).....c,,(H)

7! !
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Motivation for the Collision Problem

55 = 0

Graph Isomorphism:

find a collision In
Hash Functions | |o6,(G).....6,,(G).0,(H).,....c,,(H)

4.

What makes proving a lower bound hard is that a
quantum computer can almost find a collision in 1
query:

) [ ©)

Measure 2nd
register
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A. 2002: N> lower bound
on quantum query
complexity of the collision
problem

Improved to N3 and
generalized by Shi, Kutin,
Ambainis, and Midrijanis

1111111111



Proof Sketch (only one in the talk)

T-query quantum
algorithm that
finds collisions In
2-to-1 functions

Pirsa: 06030013
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T-query algorithm that
distinguishes 1-to-1
from 2-to-1 functions
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Proof Sketch (only one in the talk)

T-query quantum T-query algorithm that
algorithm that > distinguishes 1-to-1
finds collisions in from 2-to-1 functions

2-to-1 functions \L
p(X)e[0,1/3] if X is 1-to-1 Beals et al. 1998:

. el Multilinear polynomial p of
B e degree < 2T, such that
Key insight: p(X)<[0,1] p(X) = probability
even if X is 3-to-1, 4-to-1, algorithm says X is 2-to-1

etc.
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Proof Sketch (only one in the talk)

T-query quantum
algorithm that

T-query algorithm that

finds collisions In
2-to-1 functions

o(X)e[0,1/3] if X is 1-to-1
o(X)e[2/3.1] if X is 2-to-1

Key insight: p(X)<[0,1]
even If X I1s 3-to-1, 4-to-1.
etc.

> distinguishes 1-to-1
from 2-to-1 functions

v

Beals et al. 1998:
Multilinear polynomial p of
degree < 2T, such that
p(X) = probability
algorithm says X is 2-to-1 .

A 4

Univariate polynomial g such that deg(q)<deg(p), and
wfoons Q(g) = average of p(X) over all g-to-1 functionsr%




Proof Sketch (only one in the talk)

Bounded in [0O,1
a(9) /\\ el

ol | Lqrge gieriyativle | | | | | | |

Markov’s Inequality implies such a polynomial
must have large degree
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Direct Product Theorem for
Quantum Search

N items, K of them marked

A. 2004: With few (<VN) queries, the probability of
finding all K marked items is 2K

Proof uses polynomial method

Corollary 1: Exists oracle relative to which

NP « BQP/qgpoly

(BQP/qgpoly = BQP with polynomial-size “quantum advice”)

Corollary 2: Fixes flawed result of Klauck on

irsa: 06030013 e e e e Page46/102

quantum time-space tradeoffs for sorting



Proof Sketch (only one in the talk)

Bounded in [0O,1
a(9) /\\ il

ol Large derivative |

Markov’s Inequality implies such a polynomial
must have large degree
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Direct Product Theorem for
Quantum Search

N items, K of them marked

A. 2004: With few (<VN) queries, the probability of
finding all K marked items is 2K

Proof uses polynomial method

Corollary 1: Exists oracle relative to which

NP « BQP/qpoly

(BQP/qgpoly = BQP with polynomial-size “quantum advice”)

Corollary 2: Fixes flawed result of Klauck on

irsa: 06030013 .  _a sy e amwe Page48/102

quantum time-space tradeoffs for sorting



Can quantum ideas help us prove
classical lower bounds?
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Can quantum ideas help us prove
classical lower bounds?

Quantum Generosity ... Giving back because we care™

Examples: Kerenidis & de Wolf 2003, Aharonov & Regev 2004
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Can quantum ideas help us prove
classical lower bounds?

Local Search: Given oracle
access to f:{0,1}"-=>7Z, find a local

minimum of f using as few
gueries as possible

Pirsa: 06030013
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Can quantum ideas help us prove
classical lower bounds?

Local Search: Given oracle =/ f)
access to f:{0,1}"=>Z, find a local 4_/ S

minimum of f using as few 4\ /2
queries as possible \(C/ "

Gr—(

Pirsa: 06030013



Can quantum ideas help us prove
classical lower bounds?

Local Search: Given oracle g FD
access to f:{0,1}"—=>7Z, find a local GD/C\ d
minimum of f using as few 1) (2
gueries as possible \(C/
G—G

Aldous 1983: Randomized

algorithm needs 272-0(") queries
Upper bounds:

A. 2004: Quantum algorithm 2n2\'n randomized.
needs 2"4/n queries 2n3n16 quantum

= PLS (Polynomial Local Search) IS
hard for BQP relative to oracle

PPPPPPPPPP



Can quantum ideas help us prove
classical lower bounds?

Proof technique based on Ambainis’ quantum

adversary method
O-inputs 1-inputs

Each queryonly i N
separates O-inputs  2NPUts
from 1-inputs by so
much 1-inputs - -
s L4

Technique also yields
e 22/n2 randomized lower bound

* First lower bounds (randomized or quantum)
~sfor constant-dimensional grid graphs



Can quantum ideas help us prove
classical lower bounds?

Proof technique based on Ambainis’ quantum
adversary method

O-inputs 1-inputs

Each query only
separates O-inputs
from 1-inputs by so
much

O-inputs

1-inputs

Technique also yields
« 2"2/n2 randomized lower bound

* First lower bounds (randomized or quantum)
~wfor constant-dimensional grid graphs



Can quantum ideas help us prove
classical lower bounds?

Proof technique based on Ambainis’ quantum
adversary method

O-inputs 1-inputs

Each query only
separates O-inputs
from 1-inputs by so
much

O-inputs

1-inputs

Technique also yields
« 22/n2 randomized lower bound

* First lower bounds (randomized or quantum)
~sfor constant-dimensional grid graphs



Can quantum ideas help us prove
classical lower bounds?

Proof technique based on Ambainis’ quantum
adversary method

O-inputs 1-inputs

Each query only
separates O-inputs
from 1-inputs by so
much

O-inputs

1-inputs

Technique also yields
« 22/n2 randomized lower bound

* First lower bounds (randomized or quantum)
~wfor constant-dimensional grid graphs



Can quantum ideas help us prove
classical lower bounds?

Proof technique based on Ambainis’ quantum

adversary method
O-inputs 1-inputs
& =

Each query only
separates O-inputs
Results generalized to all graphs
Techn by Santha & Szegedy 2004, and |~
£ 20201 tightened by Zhang 2006

* First lower bounds (randomized or quantum)
===for constant-dimensional grid graphs

O-inputs




Summary

*The Art of the Quantum Lower Bound
—Polynomials and adversaries—the dynamic duo
—Techniques even applied classically
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Summary

*The Art of the Quantum Lower Bound
—Polynomials and adversaries—the dynamic duo
—Techniques even applied classically

Quantum computing is not a panacea

—Many problems still intractable: NP, collision-
finding, local search...

—Even with quantum advice
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Summary

*The Art of the Quantum Lower Bound
—Polynomials and adversaries—the dynamic duo
—Techniques even applied classically

Quantum computing is not a panacea

—Many problems still intractable: NP, collision-
finding, local search...

—Even with quantum advice

Quantum computing = exponential parallelism
—Popular articles get this wrong

—Because of linearity, one “parallel universe” can't
s SNOUL @bove theothers e
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PVart JJ: Milooels ano Reality

Is the quantum computing model too
powerful? Or not powerful enough?

222222222




Is quantum computing just
obvious baloney?

Leonid Levin:

“We have never seen a
physical law valid to
over a dozen decimals”

Oded Goldreich:

.= Exponentially long
\ -~ vectors = exponential

a4 time to manipulate
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Sure/Shor separators

My response: What criterion separates the
quantum states that suffice for factoring from
the states we've already seen?

ANITT ONIAIAIQ
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Sure/Shor separators

My response: What criterion separates the
quantum states that suffice for factoring from
the states we've already seen?

Not exponentially small amplitudes or
thousands of coherent qubits

[‘0> by |1> }®10000 ‘0>®10000 n ‘ 1>®10000
V2 V2
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A. 2004 proposes a
complexity classification
of quantum states to help
answer this question

Main result: States
arising in quantum error-
correction take n¢(logn)
additions and tensor
products to express

Proof applies Ran Raz's
breakthrough lower bound on
multilinear formula size

irsa: 06030013
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Are quantum states really
“exponential-sized objects”?

Pirsa: 06030013



Are quantum states really
“exponential-sized objects”?

. I\px> - E y )-f(X,Y)
1-way communication Bob
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Are quantum states really
“exponential-sized objects”?

\®,

1-way communication

A., CCC’04: Given f:{0,1}"x{0,1}m—=>{0,1} (partial or total),
D1(f) = O(m Q'(f) logQ'(f))

D'(f) = deterministic 1-way communication complexity
Q'(f) = bounded-error quantum 1-way complexity

0000000000000



Grover Search of a Physical Region

x
[
'Quantum robot™
vN
Ma rlg item
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Grover Search of a Physical Region

f
“Quantum robot”
3
VN
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Grover Search of a Physical Region

f
I
‘Quantum robot”
\
VN
Maﬂgm
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Grover Search of a Physical Region

Benioff 2001: Each of the YN Grover iterations
takes VN time, just to move the robot across the
grid. So no improvement over classical
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Grover Search of a Physical Region

Benioff 2001: Each of the YN Grover iterations
takes VN time, just to move the robot across the
grid. So no improvement over classical

A. and Ambainis 2003: Sadly, no lower bound...
Using divide-and-conquer, can search d-dimensional
cube in VYN log32N time for d=2, or VN for d>3

Corollary: O(VN)-qubit disjointness protocol
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Grover Search of a Physical Region

Benioff 2001: Each of the YN Grover iterations
takes VN time, just to move the robot across the
grid. So no improvement over classical

A. and Ambainis 2003: Sadly, no lower bound...
Using divide-and-conquer, can search d-dimensional
cube in YN log32N time for d=2, or VN for d>3

Corollary: O(VN)-qubit disjointness protocol

My motivation: What computational limitations are
Imposed by the speed of light being finite?
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Foolproof Way to Solve NP
Complete Problems Efficiently
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Foolproof Way to Solve NP
Complete Problems Efficiently

Guess a random solution by measuring electron
spins. If solution is wrong, kill yourself
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Foolproof Way to Solve NP
Complete Problems Efficiently

Guess a random solution by measuring electron
spins. If solution is wrong, kill yourself
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Foolproof Way to Solve NP
Complete Problems Efficiently

Guess a random solution by measuring electron
spins. If solution is wrong, kill yourself

11010)
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Foolproof Way to Solve NP
Complete Problems Efficiently

Guess a random solution by measuring electron
spins. If solution is wrong, kill yourself

Let PostBQP (Postselected Bounded-Error Quantum Polynomial-Time)
be class of problems solvable this way

A. 2004: PostBQP = PP

Corollary: Numerous “small” changes to quantum
mechanics would let us solve PP-complete
problems—nonunitary matrices, |«|P for p=2, ...
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Foolproof Way to Solve NP
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Guess a random solution by measuring electron
spins. If solution is wrong, kill yourself

Let PostBQP (Postselected Bounded-Error Quantum Polynomial-Time)
be class of problems solvable this way

A. 2004: PostBQP = PP

Corollary: Numerous “small” changes to quantum
mechanics would let us solve PP-complete
problems—nonunitary matrices, |«|P for p=2, ...
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Foolproof Way to Solve NP
Complete Problems Efficiently

Guess a random s \tipn by m’ 3suring tron
spins. If solution | \g\,/ki/

Let PostBQk. Immediately implies Z/'/"/%Ze )
e, Beigel-Reingold-
be cla. )
\ Spielman Theorem from

A. 20043 classical CS:

Co PP Is closed under tum
mechanic Intersection
problemsW /\ /E\fb\



Quantum
mechanics




Stochastic Hidden-Variable Theories

Time o "|1)+a,"|2)+a"[3)+a,"[4)+a|5)
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s 06030013 Quantum state of the universe -’



Stochastic Hidden-Variable Theories
5)
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Suppose your whole life history flashed before you
In an instant

Let DQP (Dynamical Quantum Polynomial-Time) be the

class of problems you could then solve efficiently

(assuming transition probabilities satisfy two reasonable
axioms—symmetry and locality)

A. 2002: DQP contains Graph Isomorphism

(indeed all of Statistical Zero Knowledge)

collision lower bound,
strong evidence that

X

\%(‘ o—) + ‘r}) ‘ o (G)> Together with
\ 7/

1, kN BQP — DQP
o) e@) T



Quantum vs. Classical Proofs

QMA: Quantum version of NP

QCMA: Same as QMA, but with quantum
verification of classical proofs
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Quantum vs. Classical Proofs

QMA: Quantum version of NP

QCMA: Same as QMA, but with quantum
verification of classical proofs

Does QMA = QCMA?

A. and Kuperberg 2006: “Quantum oracle
separation” between QMA and QCMA

A. 2006: QMA/gpoly = PSPACE/poly
teontrasts with result of Raz that QIP/qpoly=ALL......
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Quantum vs. Classical Proofs

QMA: Quantum version of NP

QCMA: Same as QMA, but with quantum
verification of classical proofs

Does QMA = QCMA?

A. and Kuperberg 2006: “Quantum oracle
separation” between QMA and QCMA

A. 2006: QMA/gpoly = PSPACE/poly
teontrasts with result of Raz that QIP/qpoly=ALL.......



Current Work

« Quantum copy-protection and quantum
software obfuscation

« Learning of quantum states / quantum
Occam’s Razor theorem
AvgBQP/gpoly = AvgQMA/poly

« BQP with closed timelike curves =
PSPACE (with John Watrous)
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Concluding Remarks
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Concluding Remarks
 The Ogre of Intractability:

— Not even quantum computers escape
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Concluding Remarks
The Ogre of Intractabillity:

— Not even quantum computers escape
Lower bound techniques “unreasonably effective”

Challenge for quantum computing skeptics

— Give us a better picture of the world

Computer science and fundamental physics: a
match made in Hilbert space

— New perspective forces us to take QM seriously

— Insights into hidden variables, postselection,
holographic entropy bound, ...

— Computational input to quantum gravity?
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