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Abstract: The amount of nonlocality in the GHZ state can be quantified by determining how much classical communication is required to bring a
local-hidden-variable model into agreement with the predictions of quantum mechanics. It turns out that one bit suffices, and, of course, nothing less
will do. I will discuss generalizations of thisresult to graph states and its relation to the stabilizer formalism.
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Locality, realism, or nihilism

We consider the consequences of the observed violations of Bell’s
inequalities. Two common responses are (i) the rejection of realism and
the retention of locality and (ii) the rejection of locality and the retention
of realism. Here we critique response (i). We argue that locality contains
an implicit form of realism, since in a worldview that embraces locality,
spacetime, with its usual, fixed topology, has properties independent of
measurement. Hence we argue that response (i) is incomplete, in that its
rejection of realism is only partial.

R. Y. Chiao and J. C. Garrison
“Realism or Locality: Which Should We Abandon?”
Foundations of Physics 29, 553-560 (1999).
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inequalities. Two common responses are (i) the rejection of realism and
the retention of locality and (ii) the rejection of locality and the retention
of realism. Here we critique response (i). We argue that locality contains
an implicit form of realism, since in a worldview that embraces locality,

| spacetime, with its usual, fixed topology, has properties independent of
measurement. Hence we argue that response (i) is incomplete, in that its
rejection of realism is only partial.

|
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Locality,
realism,
or nihilism

Nihilism
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Locality

No influences between spatially
separated parts.
Violation of Bell inequalities.

Local HV models
for product states.
Bell inequalities satisfied.

Nonlocal HV models for
entangled states.
Violation of Bell inequalities.

Realism
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Reductionism

Things made of parts.
No influences between
noninteracting parts.
Violation of Bell inequalities.
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for product states.
Bell inequalities satisfied.
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entangled states.
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Realism
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Quantum
mechanics

or

Soothing
stories about a
reality beneath

quantum

mechanics
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Reductionism

Things made of parts.
Parts identified by the attributes we
can manipulate and measure.
No influences between noninteracting parts.

Attributes do not have realistic values.
Subjective quantum states.

Reductionist HV models
for product states.

Holistic realistic account of states,

dynamics, and measurements.
Holistic HV models.
Objective quantum states.

Realism
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The old story

Local realistic description

Product states

Entangled states

Realistic description
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A new story from quantum information?

Local realistic description

Efficient realistic description
Product states

Globally entangled states

Realistic description
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Modeling _
Measure XYY, YXY, and YYX: All vield result -1.
GHZ (CO"') Local realism implies XXX =-1.

. Quantum mechanics says XXX = +1.
correlations
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Modellng 2ZI=ZIZ = IZZ = XXX = +1; XYY = YXY = YYX = -1.
6 HZ _'_ To get correlations right requires 1 bit of classical
(CO ) communication: party 2 tells party 1 whether Yis

: measured on qubit 2; party 1 flips her resultif Yis
CorrelaT|ons measured on either 1 or 2.
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When party 1 flips her result, this can be thought of as a nonlocal
e osoooor | dIStUrbance that passes from qubit 2 to qubit 1. The communicatign,
protocol quantifies the required amount of nonlocality.
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Assume 1 bit of communication between qubits 1 and 2.
Let S=XX and T=XY be Pauli products for qubits 1 and
2; then we have SYY=TXY=TYX = -1.

Local realism implies SXX =-1.

Quantum mechanics says SXX = +1.
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Assume 1 bit of communication between qubits 1 and 2.
Let S=XX and T=XY be Pauli products for qubits 1 and
2; then we have SYY=TXY=TYX = -1.

Local realism implies SXX =-1.

Quantum mechanics says SXX = +1.
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XXXX,-XXYY, - XYXY, —-XYYX,

{ LINT, ZZIT, ZIZT. ZTEZ. 1221, IZ1Z. TIZ % }
g =
—_YXXY,-YXYX,-YYXX,YYYY

For N-qubit GHZ states, a simple extension of this
argument shows that N-2 bits of classical communication
Is the minimum required to mimic the predictions of.c e

| quantum mechanics for measurements of Pauli products.




Clifford circuits: Gottesman-Knill theorem

e N qubits in an initial product state in Z basis

e Allowed gates: Pauli operators X, Y, and Z, plus H, S, and
C-NOT

e Allowed measurements: Products of Pauli operators
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description of states, dynamics,
and measurements
(in terms of stabilizer generators)

irsa: 06030007 Page 42/69




Clifford circuits: Gottesman-Knill theorem

e N qubits in an initial product state in Z basis

e Allowed gates: Pauli operators X, Y, and Z, plus H, S, and
C-NOT

e Allowed measurements: Products of Pauli operators

Global entanglement
This kind of global entanglement,

but when measurements are restricted
to the Pauli group, can be
Efficient (nonlocal) realistic simulated efficiently and thus
description of states, dynamics, does not provide an exponential
and measurements speedup for quantum computation.

(in terms of stabilizer generators)
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Gr‘aph S'l'a'l'e S All Clifford states are related to graph
states by Z, Hadamard, and S gates.
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4-qubit GHZ graph state
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J. Barrett, C. M. Caves, B. Eastin, M. B. Ellioft,
Gr‘aph STOTeS : LHV mOdel and 5. Fironio, "Modeling Pauli measurements on

graph states with nearest-neighbor classical

communication,” submitted to PRA
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Graph states: LHV model

J. Barrett, C. M. Caves, B. BEastin, M. B. Ellioft,
and 5. Fironio, "Madeling Pauli measurements on
graph states with nearest-neighbor classical

communication,” submitted to PRA.
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Graph states: Communication protocol

For qubit j, let n; be the number of neighbors that measure X or
Y. Certainty (stabilizer element) requires

o — O0mod2, if qubit 5 measures I or X,
7771 1mod2, if qubit j measures Z or Y.

X g =XZZZZ
o =ZXIZI
¥ Y gs=2ZIXIZ g19295s = —XYIZY
ga=ZZIXZ
e gs = ZIZZX
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Graph states: Communication protocol

For qubit j, let n; be the number of neighbors that measure X or
Y. Certainty (stabilizer element) requires

e O0mod2, if qubit 5 measures I or X,
777 1 1mod2, if qubit j measures Z or Y.

X = g1 =XZZZZ
o —ZXIZ1
= ¥ Y+ | g=2zIXIZ 919295 = —XYIZY
gs = ZZIXZ
z 1 g =ZIZZX
'(overail) — (—1)(# of X qubits with n =2mod4)
sign

“ (_1)(# of Y qubits with n =3 mod4)

irsa: 06030007 Page 57/69




Graph states: Communication protocol

+ ¥

X_

VA I

g =XZZZZ
g = ZXIZI

Y+ | g=2zIXIZ 919295 = —XYIZY
ga = ZZIXZ
gs = ZIZZX

Each qubit tells its neighbors if it measures X or Y. A qubit flips
its table entry if it measures X or Y and the number of neighbors
measuring X or Y is 2.3 mod4.

OR

Each qubit tells its neighboring qubits if it measures X or Y. A
qubit flips its table entry if it measures X (Y) and the number of
neighbors measuring X or Y is 2,3mod4 (0,3 mod4).

Pirsa: 06030007

Site-invariant nearest-neighbor
communication protocols
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Graph states: Subcorrelations

Each qubit tells its neighbors if it measures X or Y. A qubit flips
its table entry if it measures X or ¥ and the number of neighbors
measuring X or Y is 2,3mod4.

X~ N —

T+ ¥ ¥+ —3 i
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Graph states: Subcorrelations

Each qubit tells its neighbors if it measures X or Y. A qubit flips
its table entry if it measures X or ¥ and the number of neighbors
measuring X or Y is 2,3mod4.

X — X

+ ¥ ¥+ —<1 e
Z Y . Z A

Each qubit tells its neighboring qubits if it measures X or Y. A
qubit flips its table entry if it measures X (Y) and the number of
neighbors measuring X or Y is 2,3 mod4 (0,3 mod4).

X — X
+ ¥ ¥ + ¥ 5
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Graph states: Subcorrelations

Site-invariant protocols can get all correlations right, but any

such protocol fails on some subcorrelations for some graphs.

¥ ¥ ¥
Y ¥ Y

irsa: 06030007

Random result

Y ¥ ¥
G =

_.

- | —
I b I

Certain result -1
A site-invariant protocol cannot
introduce a sign flip when this
measurement is viewed as a

submeasurement of the one on the left.
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Graph states: Subcorrelations

Each qubit tells its neighbors if it measures X or Y. A qubit flips
its table entry if it measures X or ¥ and the number of neighbors
measuring X or Y is 2,3mod4.

X — X

+ ¥ ) S 2 —<3h s
VA I Z N

Each qubit tells its neighboring qubits if it measures X or Y. A
qubit flips its table entry if it measures X (Y) and the number of
neighbors measuring X or Y is 2,3 mod4 (0,3 mod4).

X — X
+ ¥ ¥ + ¥ o
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Graph states: Subcorrelations

Site-invariant protocols can get all correlations right, but any
such protocol fails on some subcorrelations for some graphs.

Y Y Y X Y Y
- e = -
= S | —

Y b 4 Y I X I

Random result Certain resulit -1

A site-invariant protocol cannot
introduce a sign flip when this
measurement is viewed as a
S — submeasurement of the one on the left. ..o




Graph states: Getting it all right

1. Select a special qubit that knows the adjacency matrix of the graph.
2. Each qubit tells the special qubit if it measures Xor Y.

3. From the adjacency matrix, the special qubit calculates a generating
set of certain submeasurements (stabilizer elements) each of which
has a representative qubit that participates in none of the other
submeasurements. Since these submeasurements commute term by
term, the overall sign for any certain submeasurement is a product of
the signs for the participating submeasurements.

4. The special qubit tells each of the representative qubits whether to
flip the sign of its table entry.

M. E. Elliott, B. BEastin, and C. M. Caves, B. Eastin,
"Local-hidden-variables models assisted by classical
communication for stabilizer states,” in preparation.
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Clifford circuits: Gottesman-Knill theorem

e N qubits in an initial product state in Z basis

e Allowed gates: Pauli operators X, Y, and Z, plus H, S, and
C-NOT

e Allowed measurements: Products of Pauli operators

Global entanglement This kind of global entanglement,

when measurements are restricted
to the Pauli group, can be
simulated efficiently because it
can be described efficiently by
local hidden variables assisted by
classical communication.

but

Efficient (nonlocal) realistic
description of states, dynamics,
and measurements
(in terms of stabilizer generators)
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“Ohhhhhh...Look at that, Schuster... Dogs are so cute when
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It's not only dogs that can't
understand quantum mechanics,
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It's not only dogs that can't
understand quantum mechanics,
and ...

Quantum information
science is the discipline
that explores information
processing within the
quantum context where the
mundane constraints of
realism and determinism no

longer apply.
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