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Abstract: Collapse models are one of the most promising attempts to overcome the measurement problem of quanum mechanics: they descibe,
within one single framework, both the quantum properties of microscopic systems and the classical properties of macroscopic objects, and in
particular they explain why measurements always have definite outcomes, distributed according to the Born probability rule. We will discuss some
recent developments in this field: i) we will show how it is possible to formulate collapse models in such a way that the mean energy of physical
system does non increse indefinitely, atypical feature of the models first proposed in the literature; ii) we will discuss recent experiments aiming at
testing the validity of the superposition principle, thus of collapse models, at the mesoscopic level.
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- The measurement problem
- The Dynamical Reduction Program
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- The experiment of Marshall et al.
- Implications for Collapse Models

Topic 2
- The energy increase in isolated systems
- A new proposal

- Is It possible to restore the energy conservation principle?
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THE VON NEUMANN MEASUREMENT SCHEME

J. von Neumann: “Mathematical Foundations of Q.AL” (1932)
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THE MEASUREMENT PROBLEM

From Linearity of Schrédinger Equation:
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STANDARD SOLUTION

POSTULATE OF WAVEPACKET REDUCTION

“At the end of a measurement process, the wavefunction 1s reduced mto one of
the possible outcomes ...~

| T ‘up}M - ¥ ) ‘down)m

“__. with a probability given by the square modulus of the coefficient associated
to that term.”
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PROBLEMS WITH THE POSTULATE OF
WAVEPACKET REDUCTION

1-TWO “FUNDAMENTALLY DIFFERENT” TYPES OF DYNAMICAL
EVOLUTIONS:
A) SCHRODINGER EQUATION: LINEAR, DETERMINISTIC,
REVERSIBLE.
B) WAVEPACKET REDUCTION: NON-LINEAR, STOCHASTIC,
IRREVERSIBLE.
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2—-WHEN DOES WAVEPACKET REDUCTION APPLY, IN PLACE OF THE
SCHRODINGER EVOLUTION?
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PROBLEMS WITH THE POSTULATE OF
WAVEPACKET REDUCTION

1-TWO “FUNDAMENTALLY DIFFERENT” TYPES OF DYNAMICAL
EVOLUTIONS:

A) SCHRODINGER EQUATION: LINEAR, DETERMINISTIC,
REVERSIBLE.

B) WAVEPACKET REDUCTION: NON-LINEAR, STOCHASTIC,
IRREVERSIBLE.

2—- WHEN DOES WAVEPACKET REDUCTION APPLY, IN PLACE OF THE
SCHRODINGER EVOLUTION?

- MEASURE OR MACRO-OBJECTIFICATION PROBLEM
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DYNAMICAL REDUCTION PROGRAM

IDEA: Jommg the lmear and determunistic Schrodmmger evolution with
wavepacket reduction process (non-linear and stochastic) m a umque unmiversal
dynamics n order to describe both quantum properties of microsystems and
classical properties of macrosystems

Fundamental requests:

1. At the microscopic level there must be no detectable difference with respect
to standard quantum mechanics.

12

At the macroscopic level. one must recover classical mechanics.

3. In measurement processes on quantum systems (interaction between a micro
and a macro system) one must get the comrect outcomes, with the comrect
probabilities.
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GRW MODEL

G.C. Ghirardi. A. Rimini, and T. Weber: Phys. Rev. D 34. 470 (1986)

Each particle of a system of »# distinguishable particles experiences. with
a mean rate ;. a sudden spontaneous localization process (hitting):

locaﬁﬂticn L%x“ﬁr-’} L’L _ (g)gff‘i E_% (qi—x)g

) TEAESN x = \=x

The probability density for the occuirence of a locahization at point x 1s
assumed to be:

Pi(x) = |ILL]w)|l?

In the tune mterval between two successive spontaneous processes the
system evolves accordmg to the usunal Schrodinger equation
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LOCALIZATION MECHANISM

Let us consider the superposition of two Gaussian functions. one
centered around position A and the other around position B:

ﬁ—'l':—iil"j —l:—B
L'(:):i-eﬁt )4—-:’.- '2{ )

A4
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Hitting around the middle point
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MATHEMATICAL STRUCTURE OF
COLLAPSE MODELS

dwy = [—% Hdt+ /n (A —r:)dil: — Lj ( A"A— 99, A+ rf )dt} Wy
1 2 .

e —

| =

Vel (A + A7) |wy)

H 1s related to the standard quantum Hamiltonian
A 1s the reduction operator on whose eigenmanifolds one wants to reduce
the state vector (usually a function of the position operator g).

IV, 15 a standard Wiener process defined on a probability space (Q, F,F)
EWJ]=0 E[WZ3 =dt

The equation is nonlinear but preserves the norm of the state vector
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MATHEMATICAL STRUCTURE OF
COLLAPSE MODELS
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EW,]=0 E[W2 —=dt

The equation is nonlinear but preserves the norm of the state vector
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QMUPL MODEL

L. Diosi: Phys. Rev. A 40, 1165 (1989)

d|wy) [ —+ Hdt+ /n(q — (@) AWz — L (g — (g@)+)7dt]| [Ve)

H Hamiltoman
q Position Operator
(@) = (Vs]a|Vs)

Strength of the collapse mechanism
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TOPIC 1

A PROPOSED EXPERIMENT TO TEST
THE VALIDITY OF COLLAPSE MODELS
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Marshall ef al. Experiment Proposal

W. Marshall, C. Simon. R. Penrose. and D. Bouwmeester: Phys. Rev. Lett 91, 130401 (2003)

T

N

A L 1s the Equilibrium cavity Length
PBS W4
Q 2 , B QK/
i ' ‘s 50:50)
M 1s the “Quntum™ Tiny Mirror Mass
|
Nt

H— hw(aa, +ala,) + buw,,b'b — iGal.a (b4 b1
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Marshall ef al. Experiment Proposal

W. Marshall, C. Simon. R. Penrose. and D. Bouwmeester: Phys. Rev. Lett 91, 130401 (2003)
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EVOLUTION OF THE STATE

Initial State:

wo) = 5 [10)all)B + [1)4]0)B][0)m

State attime ¢

10} 12 Mirror at rest m 1ts equilibrium position
|t ) om Mirror oscillating between 0 and 4ro ~ 10 %em = r>
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Marshall ef al. Experiment Proposal

W. Marshall, C. Simon. R. Penrose. and D. Bouwmeester: Phys. Rev. Lett 91. 130401 (2003)
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Marshall ef al. Experiment Proposal

W. Marshall, C. Simon. R. Penrose., and D. Bouwmeester: Phys. Rev. Lett 91, 130401 (2003)
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EVOLUTION OF THE STATE

Initial State:

[wo) = 5 [|0)all)B + [1)4|0)B]|0)m
Vo=
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MAXIMUM INTERFERENCE VISIBILITY v

Full Density Matrix of Photon + Mirror: p = |L'1‘> <L"f
Reduced Density Matrix: Pp — Tl‘m [/)}
Amnalyvtic Expression Standard Quantum Result
v=2-|4(1|5(0|pp|1)5B|0 _4‘ U(t) — e—F*(1—coswmmt)
1

Interference Visibility
o
tn

o
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I
CHOICE OF COLLAPSE MODEL

We have chosen Diosi model for two main reasons:

1. This model allows to get an exact formula for
visibility.
2. QMUPL corresponds to the leading term in the

small-displacement Taylor expansion of more

significant models like GRW or CSL.
%
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QMUPL MODEL

L. Diosi: Phys. Rev, A 40, 1165 (1989)
d|we) [ — s Hdt+ /(g — (q)¢) dW; — j:i (@ — (q)¢)~dt|[Ve)

H — zuc(alaﬁ—l—a%ag) + My b'b — ﬁ(&'ilai(b—l—b'i')

Mirror C.o.M. Position Operator

g=o(b+b")
n > 0 Strength of the Collapse Mechanism
q)e = (velg|vs) Page 47198
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DENSITY MATRIX EQUATION FOR QMUPL

From the stochastic differential equation:

dl|ve) = { - %H di +mla— (g ) dW:— (g — (@)¢)?dt | |1s)
Using [to calculus the evolution of density matrix p = | (14] is
dp = —+[H, pldt — /7lp, [p, qlldW: + 3nlg, [g, pl]dt

Since to observe interference fringes requires passing to an ensemble of identi-
cally prepared photons, the relevant density matrix is the ensemble expectation
p = E|[p], which obeys

dp i 1 i

| [ -
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DENSITY MATRIX EQUATION FOR QMUPL

From the stochastic differential equation:

dl¢e) = { —+ Hdt+ /(g — (@)+) dW; — 3 (g — (g)+)*dt | |¥)
Using [to calculus the evolution of density matrix p = | (0] is
dg — _%{H* ﬂ] dt — \/ﬁ[p* [ﬁ* ‘—’}”*é”} - %U{Q* [Q* p”i’lf

Since to observe interference fringes requires passing to an ensemble of identi-
cally prepared photons, the relevant density matrix is the ensemble expectation
p = E[p], which obeys

dp 2 1 i
Pirsa: 06020033 . —_[H. p] — Ef}[g‘ [q”()]] —

]_ 2 -i_ .i.
77 - [H, p] — 5no 6+ b7, [b+ b wfpldes

h 2
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TWO METHODS OF RESOLUTIONS

1. Stochastic Unravellings Method
One uses the following linear stochastic equation to calculate :
dlwe) = { — %H dt + i /nqdW; — 3 qzclf} |Ue )

which has the same evolution equation for p as the QMUPL model.

2. Direct Solution Method

It is possible to get the result by doing the calculation through the master equation:

% = —LH.pl - 3nla.lg.pll = —E[H.p] — 5n0°[b+ b, [b+ b7, o]
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Pirsa: 06020033

DETAILS OF CALCULATION (II)

Visibility can then rewrite as:

i) —2 - | TOR [@?{r}*‘ é%(r)} dx

*

If we reverse the two operations of computing the statistical average [E |- |
and of taking the partial trace Tt | the integration over = gives:

' (p2* +1)? 0+ , _1
400 | oy
= @g(iﬁ) G}{i‘)d{T . B8ay +Ct +Ct
J o

The final step is to take the average with respect to the noise.
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INTERFERENCE VISIBILITY FOR QMUPL

A. Bassi. E. Ippoeliti, and S.L. Adler: Phys. Rev. Lett. 94, 030401 (2005)

I/(t) — {f_'_‘f'f_(_l_f“}i‘r _L‘;,}-L,?_L}E.—-g?ﬂ-{ o (f_ 11 Won = 3 in i )

el I =
D Bwim

Maximum Interference Visibility is the product of two parts:

1. A ‘“deterministic” part (the blue one) which does
not depend on the noise and that coincides with

the result derived from standard quantum
evolution.

2. A “stochastic” part (the red one) which is the

result of the noise terms and that corresponds to
N = the correction to standard result.
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EXPERIMENTAL MEASURE

=N

Interference Visibility
o
n

o
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Pi

IIIII

: 06020033

EXPERIMENTAL MEASURE

=Y =)

27w . —6m ==
I/( ) = J_ - 1
i
Z 1
=
724
>
% 0.5 |
5 T—1mK\ _/
2
= 0 :
0 0{14 6.24 628 6.28
Time
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P[ Recent Developments in Collapse Models

EXTIMATES OF 17 FOR VARIOUS
COLLAPSE MODELS

QMUPL

n ~ 10135~ 1m 2

A
GRW CSL

e A 2 N} 261 a ~ 10%cm—2 v ~ 10~3%1tecm

Nucleon density ‘

mgmﬂ;}mmg v 1014 of the mirror: B~ 16cmi

' : Side length of |
the mirror: 5 — 10 “em

1 |
2 0 10%hemlm

PiEocezses %NQ)\ ~ 10135 1m 2 =S B (2]
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irsa: 06020033

EXPERIMENTAL MEASURE

| o
o) _ —{_;;_:;-'r“_rj_
I/( 2m ) = J_ o l “ 11
W
[
2 1
=
7]
>
g 05
5
5
£ o - 4 - -
0 0.02 0.04 6.24 6.26 6.28
Time
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H Recent Developmments in Collapse Models

EXTIMATES OF 77 FOR VARIOUS
COLLAPSE MODELS

QMUPL

g~ 1035 L2

GRW CSL
i B0 2 A\ ~ 10-165-1 a ~ 1019%cm—2 v ~ 1073%1cm
Nucleon density .
ﬂ}lw:i:iﬁ;?}mems N o 1014 of the mirror: D ~ 10**cm™3
' : Side length of |
the mirror: S — 18 Ycm

¢ ) > 2 . .
s L N\~ 1013571 =2 n=~vS"D"(2)2 ~ 10%hsm'm
) T
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P[ Recent Developments in Collapse Models

EXTIMATES OF 1) FOR VARIOUS
COLLAPSE MODELS

QMUPL

R~ 1013571y 2

GRW CSL
o~ 10®cin—2 N~ 10-164—1 o ~ 101%m—2 v ~ 10730 tem
Nucleon density ‘
m%tm:mg;pumemﬁ N - 1014 of the mirror: D ~ 10*cm 3
' : Side length of |
the mirror: S — 10 Yem

¢ o > : i i
Piejoccesess INaX ~ 10%3s 1ip 2 n =yS°D*(2)2 ~ 10 %hemelyyy
) T
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MOTIVATIONS
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DETAILS OF CALCULATION (II)

Visibility can then rewrite as:

v(t) =2 - H [{jg{'r}* cﬁ%(r)} dx

*

If we reverse the two operations of computing the statistical average [E |- |
and of taking the partial trace Tt ,,| | the integration over = gives:

(b?*+b%)2 D+ 1
f—x Gg {I) : G}(i) dr — e Be: T 1€

The final step is to take the average with respect to the noise.
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TWO METHODS OF RESOLUTIONS

1. Stochastic Unravellings Method
One uses the following linear stochastic equation to calculate :
dlwe) = { — %H dt + i /nqdW;— 3 qzdf} |Ue )

which has the same evolution equation for p as the QMUPL model.

2. Direct Solution Method

It is possible to get the result by doing the calculation through the master equation:

% = —iH.ol - Snla.la.pll = —41H,p] — 5no’b + b7, [b+ 7, p]
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P[ Recent Developments in Collapse Models

QMUPL MODEL

L. Diosi: Phys. Rev. A 40, 1165 (1989)

d|vs) [ — L Hdt+ /(g — (@) AWz — L (q — (g)¢)2dt]| |ts)

H — ﬁuc(f{.laﬁ—l—a%ag) + Ay b'b — ﬁGulaA(b—l—b_i)

Mirror C.o.MN. Position Operator

g=oc(b+b")
n > 0 Strength of the Collapse Mechanism
q L= Ef‘@l Ut ) Page 62/98
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QMUPL MODEL

L. Diosi: Phys. Rev. A 40, 1165 (1989)

djve) = [ ) %H dt + /m(q — (q):) dW: — B (g — (@) )?dt||ve)

 — zuc(a;f{._&—l—aj'BaB) + My b'b — ﬁGulaA(b—l—b'i')

g=oc(b+b") Mirror C.o.M. Position Operator
n > 0 Strength of the Collapse Mechanism
Pirsa: 06020033 g | t = L‘t ‘ ql L‘t :
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P[ Recent Developments in Collapse Models

QMUPL MODEL

L. Diosi: Phys. Rev, A 40, 1165 (1989)
d| ) [ — s Hdi+ /(g — (q)¢)dW: — 3 (g — (q)+)"dl||¥)

H = hwe(aya,+agag) + hwm,b'b— hGa'ya ,(b+b7)

Mirror C.o.M. Position Operator

g=oc(b+b')
n > 0 Strength of the Collapse Mechanism
q g — Et‘@l (o Page 64/98
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P[ Recent Developmments in Collapse Models

EXTIMATES OF 77 FOR VARIOUS
COLLAPSE MODELS

QMUPL

7y~ 1035 2

GRW C %L

i B 2 N~ 10-164-1 o ~ 1019%cm—2 vy~ 1039 tem
Nucleon density ‘
ﬁﬂ?:i:ﬁ;?}mlems v 1014 of the mirror: D ~ 10#cm3
' ) Side length of

the mirror: S = 10—3cm

b3 b

gz lj\;ﬂ)\ . 10138—1111—'2 n = ";'SQDE (g) 0 10%hameel
2 ™
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DAMPING FACTOR OF THE VISIBILITY

The CSL model gives an extimate of 7 larger than that .
of QMUPL and GRW models by a factor of 10°, so we - n~ 0.6 x 107 s Tm—
will take this more conservative value for our analysis

The mirror excursion 4+ is to be at least equal to its

center-of-mass wave packet spread o in order to - K = %
create a spatially separated superposition states |0 .
and |az) m

If dynamical reductions happen, the mirror maximum interference visibility after one
oscillation period 27 /w,, =2 « 10~3s is damped by a factor e\ with:

A = 30k202(2m/wm) ~ 0.2 x 10"

Pirsa: 06020033

Coherence is maintained to an accuracy of better than one partin 105"



H Recent Developmments in Collapse Models

Perimeder Institute, Waterdoo - 20 February 2006

DAMPING FACTOR OF THE VISIBILITY

The CSL model gives an extimate of » larger than that !
of QMUPL and GRW models by a factor of 10°, so we - 1~ 0.6 x 102s1m—
will take this more conservative value for our analysis

The mirror excursion 4~ o is to be at least equal to its
center-of-mass wave packet spread o in order to - 5= %
create a spatially separated superposition states |0 .,

and |az) m

If dynamical reductions happen, the mirror maximum interference visibility after one
oscillation period 27/ w,, =2 « 10~3s is damped by a factor e\ with:

A — 3?;&{252(27?;-5“;.?”) N 1 M 1)

Pirsa: 06020033

Coherence is maintained to an accuracy of better than one partin 105"
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EXPERIMENTAL BOUNDS

If the Marshall et al experiment were to observe maintenance of coherence to 0.2 percent
accuracy, a realistic value in present-day laboratories, it would set only the weak bound

~v < 10—%cm®s

on the CSL model stochasticity parameter. This would be considerably better than the
bound set by fullerene diffraction experiments, the better one up to now:

v < 10 Yem3g—1

butis still six orders of magnitude away from a decisive test of the CSL model
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P[ Recent Developments in Collapse Models

EXTIMATES OF 77 FOR VARIOUS
COLLAPSE MODELS

QMUPL

17~ 103512

GRW CSL
e A2 N 26,1 a ~ 101%m—2 v ~ 10-3%1cm
Nucleon density ‘
mt,‘[w:i[l-iﬁg?}‘dems v 1014 of the mirror: D~ 10#cm3
' : Side length of |
the mirror: S =10"%cm

¢ o > . - _
g I NaX ~ 10¥3s 1y 2 n=~vS"D>(2)2 ~ 10%hsmim
) T
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DAMPING FACTOR OF THE VISIBILITY

The CSL model gives an extimate of » larger than that !
of QMUPL and GRW models by a factor of 10°, so we - n~0.6x 10%s tTm—
will take this more conservative value for our analysis

The mirror excursion 4+ o is to be at least equal to its

center-of-mass wave packet spread o in order to - o=
create a spatially separated superposition states |0) .,

and |a:) m

|

If dynamical reductions happen, the mirror maximum interference visibility after one
oscillation period 27 /w,, =2 « 10~3s is damped by a factor e\ with:

A — 3?;&{252(27?_,-*’@;.?”) ~ 0.2 x 1078

Pirsa: 06020033

Coherence is maintained to an accuracy of better than one partin 10%°™
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EXPERIMENTAL BOUNDS

If the Marshall et af experiment were to observe maintenance of coherence to 0.2 percent
accuracy, a realistic value in present-day laboratories, it would set only the weak bound

v < 10—*%em®s

on the CSL model stochasticity parameter. This would be considerably better than the
bound set by fullerene diffraction experiments, the better one up to now:

1

v < 107 ¥cm’s—

but is still six orders of magnitude away from a decisive test of the CSL model
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TOPIC 2

A SPACE-COLLAPSE MODEL WITHOUT
INFINITE ENERGY INCREASE
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] i
THE “PROBLEM” OF THE ENERGY

One of the characteristic features of the models that reduce in
position is the violation of Principle of Energy Conservation for
Isolated systems. Such a violation is determined by the stochastic
process responsible for the localization mechanism:

Space localization
mechanism

Fluctuations in the
momentum space

Increase of
the energy
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THE “PROBLEM” OF THE ENERGY

One of the characteristic features of the models that reduce in
position is the violation of Principle of Energy Conservation for
Isolated systems. Such a violation is determined by the stochastic
process responsible for the localization mechanism:

Increase of
the energy

Fluctuations in the
momentum space

Space localization
mechanism

Is that a problem? For typical values of the parameters such an
Increase is very small and undetectable with present-day technology:
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THE “PROBLEM” OF THE ENERGY

One of the characteristic features of the models that reduce in
position is the violation of Principle of Energy Conservation for
Isolated systems. Such a violation is determined by the stochastic
process responsible for the localization mechanism:

Space localization
mechanism

Fluctuations in the
momentum space

Increase of
the energy

Is that a problem? For typical values of the parameters such an
Increase Is very small and undetectable with present-day technology:

o / t~10%eV s’ fora nucleon
For example in the GRW model:

(5T/t 210_15 K y_l for an ideal

monoatomic gas
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MOTIVATIONS
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Pirsa: 06020033

MOTIVATIONS

@ |s the problem of energy “intrinsic” to
localization mechanism and therefore
unavoidable, or this energy growth is just an
additional feature of space-collapse models
analysed in the literature up to now?
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irsa: 06020033

MOTIVATIONS

@ |s the problem of energy “intrinsic” to
localization mechanism and therefore
unavoidable, or this energy growth is just an
additional feature of space-collapse models
analysed in the literature up to now?

@ Any relativistic generalization of such
models devised so far shows divergences
for energy density originating from similar
reasons
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A. Bassi, E. Ippoliti. and B. Vacchini: J. Phys. A 38, 3017 (2005)

duv. = [_% Hdt+ /(A —r:)dW; — i (A';'A — 25 AL rf )df] (R
7

7,

ik —

.;.1'__
& k2 _p
q 7l

i — Hg b

nt .

9

1¢.p}

Pirsa: 06020033
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OUR PROPOSAL

A. Bassi, E. Ippoliti. and B. Vacchini: J. Phys. A 38, 3017 (2005)

] o 7 5
dipy = [—? Hdt+ /n (A—r:)dW;: — ; (A'A — 2riA 413 )df] Ut
1 7.
A — atiy ¢l
o= L & =P H — Hg -+ ——{4.1}
N 2
my — 10w s
m mo i e
7 = —— 10 o= 70 Ta — W m-
mo m So e
gy — M0 Kg
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OUR PROPOSAL

A. Bassi, E. Ippoliti. and B. Vacchini: J. Phys. A 38, 3017 (2005)

diby = [—% Hdt+ /(A —r:)dW; — ?—j (;—11}4 — P A )df} (N
2 2
A =qgt+iry 25
a4 = (4 L= P H — Hg -+ _—1{a.17}
h 2
| . ap o)
= e g — 10 18111 s
i} — 18 T == = ra — 10 ™ o
mo m s
g — 10 =" Kg

In the following we will focus our attention to the case of a free particle:

2

Hy = 2

2m
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ENERGY MEAN VALUE

The equation for the mean value [E[(Hj }:] of the energy is:

d nh
—E|(H — =~ _AnrElH
di [ 0 t] om n [ 0 t]
whose solution is:
ﬁ?

SmT

A2 N\
)€4}-.ﬂﬁ+

E[(Ho):] — (En—

SmT

IE[{Hp,)+] is notconserved but it does not diverge in time:

?—2 1—2
B BIERY] — - — "

t—=-+co SmT SMgTo
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ENERGY MEAN VALUE

The equation for the mean value [E[(Hj }:] of the energy is:

d nh*
— | ( — —  _ _AnTtE|(H
di [ Dt] 9 n [ Dt]

whose solution is:

L\\i oOmT omT

IE[{Hp,+] is notconserved but it does not diverge in time:

lim E[Hyiz] = —— =

t—=-+co SmT SMmgTo
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A USEFUL COMPARISON

The equation for the statistical operator p; = E||w+)(v+|] for our model is:

El -f 1 UT.') : _ f?}’x_
e [Ho, pt] — - 2, g, p]] — k2 [, [P, pe]] — >

g, {p, pt}]
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A USEFUL COMPARISON

The equation for the statistical operator p; = E||v+)(w+|] for our model is:

d 2 n r;’r'-j' T
= —— [Ho.pe] — = a.[g,p2ll — =5 [p. [0, pel] —
- - [Ho, p] . 2, [, pt]] — [p, [P, pt]] =

la, {p, p+}]

The master-equation for the quantum Brownian motion is:

d - 2
ct h

2M A 3
= g [, pe]] —

2

ir 2o 1popell — = g, {p. pe)]

[Ho-ﬂr] —
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A USEFUL COMPARISON

The equation for the statistical operator p; = E[|w+ ) v+|] for our model is:

d ) n nT> T
= = s H L . e - - - g J = / L -

g, {p, pt}]

The master-equation for the quantum Brownian motion is:

d ] 2M~A 3~ 27 : =

s — —— | Hg, — — @ 14, — ———|p i — — |, 1P Pt ¢

T Pt B [Ho, pt] 372 [, q, ptl] 3N/ b, [p, p] - 9, 1P, pt }]
¥ = mFr — mygg oo 10Ps

They are the same It _ " :
g — 4;:5‘_ — 4”;23'“ ~10=F " (T~ 10_11&)
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It is easy to prove that the dynamics of the

HD - Hﬂ HD
TOT cm + Hpgy == two types of degrees of freedom decouples

So we have for the dynamics of the center of mass:

! S i
duR) = {_?z Hepe dt + Mo ( Aoy — T A1 — '?M _—LLMAGM ey LT GM* )i h‘l vl R

Hem = H§M+W{Q-P}

rons = 3 (WellAbs + Acadllés tewe = (1) M0
Aew = Q+iTgM P e ("’%)m
W, = TN, VET

that is the same equation for the case of a single particle except for the
value of the mass which is A/
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Pirsa: 06020033

MICROSCOPIC LEVEL

Microscopic systems can be observed only by resorting to
suitable measurement procedures

All physical predictions have the form Ep| v:|O|v: )| = Tr|Op4]

The testable effects of the stochastic process on the wavefunction
are similar to the effects induced by quantum environment on the
particle, when both friction and diffusion are taken into account

With our choice of the parameters 17 e rthe measurable effects of
stochastic process are of the same order of magnitude of those
iInduced by the interaction of the system with particles and radiation of
intergalactic space: such effects are very small and masked by most
other source of decoherence, so that they cannot be tested by present-
day technology
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A USEFUL COMPARISON

The equation for the statistical operator p; = E||w+)(v+|] for our model is:

o — : . ] nE - T
— e = —= [Ho.pd — 3 [a.l0.pedl - 5 [ [p el — —

g, {p, pt}]

The master-equation for the quantum Brownian motion is:

d 2

clt - h

2MA 39 2 : .
[HO‘JOT] - 3ﬁ2 [{I‘[g‘ﬁf” iy 8_._-11_{ I:-p"l:p‘pt]] - % [{I‘ _{_p‘pf_ll*]

¥ = wFr = myggo- M0 Pst

They are the same It N " N
{ ¢ -L;:;.— = —l??‘?;g-o = 10_3 J_l (T = 10—1}:&)
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ENERGY MEAN VALUE

The equation for the mean value [E[{Hj }:| of the energy is:

d nh*

— B (H = — _ __ Ao EllI
di [ Dt] 9 Ji E[ Dt]

/ ﬁﬂ , ﬁﬁ
E[(Hg):] = (En— )€_4}‘ﬁ+—

SmT SmT

IE[{Hp)+] is notconserved but it does not diverge in time:

lim E[ Hyj;] = — =

t—=—+oco SmT SMmgTo
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A USEFUL COMPARISON

The equation for the statistical operator p; = E||w+)(v+|] for our model is:

qg.\d. p : D.|\P. 0

d 2

&’ " " n

[Ho, pt] — 9, {p. p1]]

1 e
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A USEFUL COMPARISON

The equation for the statistical operator p; = E||w+ ) v+|] for our model is:

, T2 T
[Ho, ps] — j_; 4. [, p¢]] — ;hg 2. [P, pel] - ;i

{Zl ?

dt -~ h

g, {p, pt}]

The master-equation for the quantum Brownian motion is:

d 2 2M A 3 11

Elof N h [HO‘fJf] - jﬁ;} [Q‘[g‘ﬁf” - 8_._-11_[ I:.p"l:p"pt]] - % [{I‘ {p‘ Pt_J’I
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A USEFUL COMPARISON

The equation for the statistical operator p; = E[|v+) v+|] for our model is:

d ; n T inT
ekt £ [Ho,pt] — = la.la, pell — - 3 [p, [P, pe]] —

q.<{p., o+
- 5 K2 = g P f:fj]

The master-equation for the quantum Brownian motion is:

- ' [Hovpdd — gt [a:[a, pel] = 22 . [opell — 2 lg, {2 o}

— pr = —— Pl — == 4, 1a, ptl] — — — lg,{p, p+}

a Pt j L0, Pt 3h2 g, 19, Pt 3N/ Pt n 4 PPt
Y = mE = g~ 10Ps?

They are the same If: y o | _
3 = 4mz—dmgn 0B 71 (T - 107'K)
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THE EQUATION FOR ¢,

mw smésmh(wit +¢1) + cos@sm(wat + ¢2)

R

a. — _ _ |
: 2V 2h cosh(wit + ¢1) + cos(wst 4 o)

E.  OWITEETE 6 sinh(w1t + 1) — sinfsin(wat +¢2) 2V onT
' 2v'2h cosh(wit + ¢1) + cos(wat + ¢2) W

where we have introduced the following mass independent parameters:

1 1 n T —
f = —tan : — S w1 = V2w cos @
2 21075 Mo 4
| 229
— ngh~ o _—
e — 2 i;’ér}d‘rﬁl 1 o o i P e wo = V2w sinf
mg
0
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FUTURE DEVELOPMENTS

The stochastic process acts like a dissipative medium which, due to
friction, slowly thermalizes all systems by absorbing or transferring energy
to them according to their initial state.
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FUTURE DEVELOPMENTS

The stochastic process acts like a dissipative medium which, due to
friction, slowly thermalizes all systems by absorbing or transferring energy
to them according to their initial state.

! ]

This suggests that we can developed our model by promoting 117 to a real
physical medium with its own equations of motion, having a stochastic
behavior which can be treated, with good accuracy, like a Wiener process.
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FUTURE DEVELOPMENTS

The stochastic process acts like a dissipative medium which, due to
friction, slowly thermalizes all systems by absorbing or transferring energy
to them according to their initial state.

! ]

This suggests that we can developed our model by promoting 117 to a real
physical medium with its own equations of motion, having a stochastic
behavior which can be treated, with good accuracy, like a Wiener process.

1 1

So by taking into account the energy of both the quantum system and the
stochastic medium one could restore perfect energy conservation not only
on the average but also for single realizations of the stochastic process.
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A REMARK

Whatever its nature can be, the stochastic medium cannot be quantum in
the usual sense since its coupling to the particle is not a standard coupling
between two quantum systems, I.e. the equation of evolution for the particle

. ] A - i} ar : TR :
d'b‘f — [—E Hdt = v/ 1] (:l — Tz ) di + — 3 (:1 v — _)'?‘-ffi = T4 )(lf:| Ut

iIs not a standard Schrédinger equation with a stochastic potential.
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