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Motivation comes from the motion of magnetic domain walls (DW) under
the influence of an exterior magnetic field.

e How can we describe this in a microscopic model?

e Understand the motion of a DW in terms of microscopic interaction,
applied magnetic field, temperature, etc.




Starting with Alcaraz-Salinas-Wreszinski in 1995, it was realized that a
ferromagnetic Heisenberg Hamiltonian, /, has DW as ground states (GS).

Now, start with such a GS, 4, centered around lattice site A. Then add a
transverse magnetic field, V (¢), which at r = 0 is localized near A, and at

time T localized near B. State at time 1 is

wa(t) = T{exp[—i fﬁ (H+V(s))ds] }ya.

e If we do this slowly (adiabatically), w4 (7) will be close to Vg, which
1s DW centered at lattice site B.

e We want to apply the Adiabatic Theorem. In real applications, a DW
may stretch over 100 atoms. So we need gap estimates uniform in the
size of the whole system. Martingale method.

® There is no hope to compute y, (1) or adiabatic constants explicitly.
In order to get a quantitative numerical picture we have implemented

a ime dependent DMRG algorithm (Vidal). ’
_ — m— e ———
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Background to Martingale Method (MM):

e In the context of “frustration free” quantum spin systems (QSS), MM
was invented by Nachtergaele in 1995. He proved excellent gap
estimates for the Heisenberg chain.

In 2002, jointly with Starr we improved MM and obtained sharp gap
estimates for Heisenberg model and good gap estimate for AKLT
(anti-ferromagnetic spin-1 Heisenberg) model.

Recently, we have used MM for Heisenberg in a magnetic field
(non-translation invariant).

MM is inductive. We have to know GS. Suppose, we know the gap
for QSS on chain [0, L — 1] and how much the GS change(s) if we add
another site. Then we get an estimate about the gap of QSS on chain
[0, L].

N




[ we consider a QSS on the finite chain, [0,L — 1]. We cover this interval
with connected intervals (subsystems), (;, i =0,... N s.t.
N - T

- UJ:”‘{" T inL = II‘

e (wo such intervals share at most 1 lattice point.
g,

o Gi=|ii+ 1] fori=0,...,.L—2.

e For( <xp <yp <L—1 start with (G = [,q;.}'u:. Then define

Ci = xo — 1,x0], G = [yo,y0+ 1], G = [xo—2,x0— 1], etc.

For every subsystem ¢ we have a (local) Hamiltonian, he.

Total Hamiltonian of QSS is

JV
H,fr = Ehf-'r .
i=0
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(“Fmslruti{m free” assumptions on QSS,

(i) he = 0. Hence, H;, > 0.
(i) kerHy # {0}.

Note: ker H, = MY, ker(/ii; ). Therefore, if W € ker(H) i.e., is a GS, then
its restriction to subsystem on ( is also a GS.

® For A C [0,L— 1] define Ga = orth proj(kerY; s fig)-

e Let Aj =|J;<; Cj. Define the projections,

1—Ga, i=0
G, —Ga,, 1<i<N—I

i

G[H,L— 1] i=N

k e Lety; be the gap of hg, i.e., hpy > vi(1 — Gg)-

4]
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THEOREM 1. Lety= minY;. Supppose, that ||Gg,, Ei|| <e < ]/Jffww
0<i<N-—\ Then, if y is orthogonal to the GS of H,

(w,Hoy) > y(1—2ev1—g2)||y|]>.

In order to calculate |G, , Eil|, take ¥ in the range of E; = GA — Gy
Le., wis a GS on the chain A; and perpendicular to all GS of A;;. Then
compute the norm of the incremental projection, G, .

Ajt]

-~ 4

Citl

Very useful to prove gap for infinite systems, which is a subtle business.

As an application we consider the spin-1/2 ferromagnetic Heisenberg
model in a transverse magnetic field on the chain [0,L—1].
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THEOREM 1. Lety= minY;. Supppose, that ||Gq, Ej|| <e < l,fﬁfr;rr\
0<i<N-—1L Then, if yis orthogonal to the GS of Hy,

(W, HLw) > v(1 —2ev1—€2) ||yl?.

In order to calculate ||Gg, , Ei|, take W in the range of E; = G,, — GAjyy-
Le., wis a GS on the chain A; and perpendicular to all GS of A;y;. Then
compute the norm of the incremental projection, G, .

Ajt]

Cit1

Very useful to prove gap for infinite systems, which is a subtle business.

As an application we consider the spin-1/2 ferromagnetic Heisenberg
model in a transverse magnetic field on the chain [0,L— 1].
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THEOREM 1. Lety= minY;. Supppose, that ||Gg, Ej|| <e < ]/ﬁfr;r\
O0<i<N-—1 Then, if yis orthogonal to the GS of Hy,

(W, HLw) > v(1 —2ev1—€2) ||yl.

In order to calculate |G, , Ei||, take ¥ in the range of E; = GA —GAis
Le., wis a GS on the chain A; and perpendicular to all GS of A;y;. Then
compute the norm of the incremental projection, G, .

Aj+1

Ci+1

Very useful to prove gap for infinite systems, which is a subtle business.

As an application we consider the spin-1/2 ferromagnetic Heisenberg
model in a transverse magnetic field on the chain [0, L — 1].




(Lct A > 1 be the anisotropy parameter. Then for two nearest neighbor
sites x,x+ 1 we have the local ferromagnetic Heisenberg interaction,

hert = — 5 (SeSepr +555241) — S Ser1 +3V1—A"Y(S] - Se1) +

The matrices S!,52, 57 are the usual spin-1/2 matrices,

) I

3 1 0
S = N _ , S3=

0 0 -1

The ferromagnetic Heisenberg model on the chain [0,L— 1] is then

L=-21
Hy = Z Agetr .

=()

Facts:

® H; has L+ 1 GS with energy 0 that describe DW.

* Gap above GS is | — ;cos (w/L) > 1 — +. Koma-Nachtergaele, 1995.
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(Lct A > 1 be the anisotropy parameter. Then for two nearest neighbor

sites .x,x+ 1 we have the local ferromagnetic Heisenberg interaction.

heeyr = "£{'5:5i+: +5?ESE+|] _5':'-5":“ = % vV —&"(S_': —5':+i} + i‘.l :

E . 2 . .
The matrices S!,52, 57 are the usual spin-1/2 matrices,

o " 0 i

: . S =
1 0 0

L
The ferromagnetic Heisenberg model on the chain [0, L — 1] is then

L=2
f’.ff__ — h.'l:.t-’-l .

Facts:

® Hj has L+ 1 GS with energy 0 that describe DW.

e Gap above GS is | — le:co:s (/L) > 1— % Koma-Nachtergaele, 1995.
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(Lct A > 1 be the anisotropy parameter. Then for two nearest neighbor
sites x,x+ 1 we have the local ferromagnetic Heisenberg interaction.

hotr = =3 (SeSpit +5252041) — 282 + V1 -A (2 -3, )+ 1.

1

. x . ’. . . .
The matrices S},52, 53 are the usual spin-1/2 matrices,

S! = A =

1 0 : e 0 —1

The ferromagnetic Heisenberg model on the chain [0, L — 1] is then

Facts:

® H; has L+ 1 GS with energy 0 that describe DW.

e Gap above GSis | — -&cu:a (R/L) > 1— ;15 Koma-Nachtergaele, 1995.
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(-Let A > 1 be the anisotropy parameter. Then for two nearest neighbor

sites x,x+ 1 we have the local ferromagnetic Heisenberg interaction.

-

heerr = — 3 (SeSeer +525541) — S8t +3VI—A(S2 =52, ) + 11

The matrices S!, 52, 53 are the usual spin-1/2 matrices,

> 0 1
J}: — - - S ) —

o

0 —1

The ferromagnetic Heisenberg model on the chain [0, L — 1] is then

=3
Hy=Y hecyy.

=)

Facts:

® Hj has L+ 1 GS with energy 0 that describe DW.

* Gap above GS is | — tcos (n/L) > 1 — 1. Koma-Nachtergaele, 1995.
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Transverse magnetic field (for simplicity), V = ¥ B(x)S!. We assume
(1) support of B(x) is finite uniformly in L,
(ii) on support, B(x) > 0.

On the chain [0, L — 1] we define the Hamiltonian,

Hi(B) = H.+ ) B(x)S,.

Example: Let B(x) = B8(x,y). Then, H.(B) has a unique GS with DW
centered at y. This explicitly known GS is gapped uniformly in L.
THEOREM 2. Under the above assumptions on the magnetic field,
Hy(B) has a unique GS with a strictly positive gap, uniformly in L.
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Transverse magnetic field (for simplicity), V = ¥ B(x)S.. We assume
(i) support of B(x) is finite uniformly in L,
(ii) on support, B(x) > 0.

On the chain [0,L — 1] we define the Hamiltonian,

Hi(B) = H.+ Y B(x)S..

Example: Let B(x) = B8(x,y). Then, Hy(B) has a unique GS with DW
centered at y. This explicitly known GS is gapped uniformly in L.
THEOREM 2. Under the above assumptions on the magnetic field,

Hy (B) has a unique GS with a strictly positive gap, uniformly in L.

.
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