Title: Phase transitions in N-SAT

Date: Feb 10, 2006 04:00 PM

URL: http://pirsa.org/06020021

Abstract:

Pirsa: 06020021 Page 1/55

The Setting: Random CSPs

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

Constraints

The Setting: Random CSPs

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. m=Θ(n)

Constraints

Random Graph k-coloring

- Each vertex is a variable with domain {1,2,...,k}
- Each edge is a "not-equal" constraint on two variables

- G(n,m) random graph: the two variables are chosen randomly
- Random r-regular: each variable is chosen r times

Pirsa: 0602002

G(n,p) G-(n,m) complete graft

Random Graph k-coloring

- -
- Each vertex is a variable with domain {1,2,...,k}
- Each edge is a "not-equal" constraint on two variables

- G(n,m) random graph: the two variables are chosen randomly
- Random r-regular: each variable is chosen r times

Pirsa: 0602002

Page 19/55

Random k-SAT

- Variables are binary.
- Every constraint (k-clause) binds k variables.
- Forbids exactly one of the 2^k possible joint values.
- Random k-SAT = each clause picks k random literals.

Similarly: NAE k-SAT, hypergraph 2-coloring, XOR-SAT...

Random Graph k-coloring

- Each vertex is a variable with domain {1,2,...,k}
- Each edge is a "not-equal" constraint on two variables

- G(n,m) random graph: the two variables are chosen randomly
- Random r-regular: each variable is chosen r times

Random k-SAT

- Variables are binary.
- Every constraint (k-clause) binds k variables.
- Forbids exactly one of the 2^k possible joint values.
- Random k-SAT = each clause picks k random literals.

Similarly: NAE k-SAT, hypergraph 2-coloring, XOR-SAT...

A simple k-coloring algorithm

- Repeat
 - Pick a random uncolored vertex
 - Assign it the lowest allowed number (color)

Works when $d \leq k \log k$

[Bollobás, Thomasson 84] [McDiarmid 84]

• There are no k-colorings for $d \ge 2k \log k$

Twice as good is possible

As d grows, G(n,d/n) is k-colorable for $d \sim 2k \log k$

[Shamir, Spencer 87], [Bollobás 89], [Frieze 90], [Łuczak 91]

Twice as good is possible

As d grows, G(n,d/n) is k-colorable for $d \sim 2k \log k$

[Shamir, Spencer 87], [Bollobás 89], [Frieze 90], [Łuczak 91]

Average degree	10 ⁶⁰	10 ⁸⁰	10 ¹⁰⁰	10130	10 ¹⁰⁰⁰
$\times k \log k$	1.01	1.12	1.19	1.31	1.75

Only two possible values

Theorem. For every d > 0, there exists an integer k = k(d) such that w.h.p. the chromatic number of G(n, p = d/n)

is either k or k+1

[Łuczak 91]

Only two possible values

Theorem. For every d > 0, there exists an integer k = k(d) such that w.h.p. the chromatic number of G(n, p = d/n)

is either k or k+1

[Łuczak 91]

The Values

Theorem. For every d > 0, there exists an integer k - k(d) such that w.h.p. the chromatic number of G(n, p = d/n)

is either k or k+1

where k is the smallest integer s.t. $d < 2k \log k$.

[A., Naor '04]

Examples

• If d=7, w.h.p. the chromatic number is 4 or 5 .

Examples

• If d=7, w.h.p. the chromatic number is 4 or 5 .

 \bullet If $d=10^{60}$, w.h.p. the chromatic number is

 $377145549067226075809014239493833600551612641764765068157{\color{red}5}$

or

377145549067226075809014239493833600551612641764765068157

Random regular graphs

Theorem. For every integer d > 0, w.h.p. the chromatic number of a random d-regular graph

is either k, k+1, or k+2

where k is the smallest integer s.t. $d < 2k \log k$.

[A., Moore '04]

Bounds for the k-SAT threshold

For all $k \ge 3$:

[A., Peres '04]

$$2^k \ln 2 - k < r_k < 2^k \ln 2$$

k	275						21
Upper bound	4.51	10.23	21.33	87.88	708.94	726,817	1,453,635
Lower bound							
Best algorithm	3.52	5.54	9.63	33.23	172.65	95,263	181,453

Bounds for the k-SAT threshold

For all $k \ge 3$:

[A., Peres '04]

$$2^k \ln 2 - k < r_k < 2^k \ln 2$$

k	3	4	5	7	10	20	21
Upper bound	4.51	10.23	21.33	87.88	708.94	726,817	1,453,635
Lower bound	3.52	7.91	18.79	84.82	704.94	726,809	1,453,626
Best algorithm	3.52	5.54	9.63	33.23	172.65	95,263	181,453

They say....

They say....

They say....

G(n,p) 211

Pirsa: 060<mark>20021</mark>

Page 40/55

G(n,p) 2m Pirsa: 060<mark>2</mark>0

G(n,p) 6.2/2 Pirsa: 060<mark>2</mark>

They are right!

For $r > 2^{k-1} \ln 2$ it is easy to prove:

- Small diameter
- Far apart from one another
- Exponentially many

[Mora, Mezárd, Zecchina '05] [A., Ricci-Tersenghi '05]

6020021

Random 10-SAT, r=700

The expected number of pairs of satisfying assignments having overlap αn is

 $S(k,r)^n \times poly(n)$

The expected number of pairs of balanced sat. assignments having overlap αn is $B(k,r)^n \times poly(n)$

Long-range dependencies

between the marginals over truth assignments

- Approximate the fraction p_i of satisfying truth assignments in which variable x_i takes value 1.
- Set x_i to 1 with probability p and simplify.

6020021

Long-range dependencies

between the marginals over truth assignments

- Approximate the fraction p_i of satisfying truth assignments in which variable x_i takes value 1.
- Set x_i to 1 with probability p and simplify.

Long-range dependencies

between the marginals over truth assignments

- Approximate the fraction p_i of satisfying truth assignments in which variable x_i takes value 1.
- Set x_i to 1 with probability p and simplify.

Given boundary Λ : compute p_{Λ}

$$p_{_{\! i}} \! = \sum_{\Lambda} p_{\Lambda} \times \operatorname{Ext}(\Lambda)$$

How do we overcome this?

How do we overcome this?

