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The Setting: Random CSPs

Variables

n variables with small, discrete
domains

m competing constraints

Random bipartite graph:

Sparse graph, i.e. m=0Q(n) E

Constraints
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Random Graph k-coloring

Each vertex is a variable with e
domain {1,2,....k} Vertices

Each edge is a "not-equal”
constraint on two variables

G(n,m) random graph: the two
variables are chosen randomly

Random r-regular: each
variable is chosen r times
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Random Graph k-coloring

-
Each vertex is a variable with e
domain {1,2,...,k} Vertices

Each edge is a "not-equal”
constraint on two variables

G(n,m) random graph: the two
variables are chosen randomly

Random r-regular: each
variable is chosen r times
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Random k-SAT

' + Variable nodes
Variables are binary.

Every constraint (k-clause)
binds k variables.

Forbids exactly one of the 2*
possible joint values.

X

Random k-SAT = each clause
picks k random literals.

Clause nodes

Similarly: NAE k-SAT, hypergraph 2-coloring, XOR-SAT ...
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Random k-SAT
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A simple k-coloring algorithm

Repeat
Pick a random uncolored vertex
Assign it the lowest allowed number (color)

[Bollobas, Thomasson 84|
Works when d < klogk "McDiarmid 841

There are no k-colorings for d > 2k log k
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Twice as good is possible

As d grows, G(n.d/n) is k-colorable for

d ~ 2klog k

[Shamir, Spencer 87], [Bollobas 89], [Frieze 90], [L.uczak 91]
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Only two possible values

Theorem. For every d > 0, there exists an integer
k = k(d) such that w.h.p. the chromatic number of

G(n,p =d/n)
i1s either Kk or kK + 1

[Fuczak 91]
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The Values

Theorem. For every d > (), iinenemtssetmmammmsasey

whimmliieimimemee 7.0 .p. the chromatic number of
G(n,p=d/n)

1s either kK or k£ + 1

where k 1s the smallest integer s.t. d < 2k log k.
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Examples

If d = 7, w.h.p. the chromatic numberis 4 or 5 .
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Examples

If d = 7, w.h.p. the chromatic numberis 4 or 5 .

Hd = 106? w.h.p. the chromatic number is

377145549067226075809014239493833600551612641764765068157 O

ol

377145549067226075809014239493833600551612641764765068157 O
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Random regular graphs

Theorem. For every integer d > 0, w.h.p. the
chromatic number of a random d-regular graph

is either k, K+ 1, or k + 2

where £k 1s the smallest integer s.t. d < 2k log k.

[A., Moore ‘04]
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Bounds for the k-SAT threshold

[A., Peres ‘04]

For all &> 3:

"2 —k<rp <2In2

10 20 21

Upper bound | 708.94 726,817 1.453,635
Lower bound | 3.52 4.82 T04.94 726,809 1.453,626
Best algorithm | 3.5 33.23 172.65 95,263 181,453
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For all k&> 3:

22—k <rp<2In?2

k : 5] T 10 20 21
Upper bound I | 708.94 726,817 1.453,635
Lower bound | 3.52 7. 79 84.82 T704.94 726,809 1,453,626
Best algorithm | 3.5: 530S 6% 33 172.65 95, 263 181,453
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Many states Many states

OE=0 @E>0 @E>0
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UNSAT (E , >0)
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UNSAT (E , >0)
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Many states

E=0 @E>0

UNSAT (E , >0)
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e

Many states

@:E>0
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They are right!

For 7 > 2""'1n2 it is easy to prove:

- Small diameter
- Far apart from one another

- Exponentially many

‘Mora, Mezéard, Zecchina '05] [A., Ricci-Tersenghi '05]
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Random 10-SAT, r=700

The expected number of pairs
of satisfying assignments

having overlap drn is

S( k, r )” x poly(n)

The expected number of pairs
of balanced sat. assignments

having overlap an is

B( K, r )7 x poly(n)
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Long-range dependencies

between the marginals over truth assignments

e Approximate the fraction p. of satisfying truth

assignments in which variable x, takes value 1.

e Set x.to 1 with probability p and simplify.
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Long-range dependencies

between the marginals over truth assignments

e Approximate the fraction p. of satisfying truth

assignments in which variable x, takes value 1.

e Set x.to 1 with probability p and simplify.

In general:

00000000

Given boundary A:
compute p,

p,.= ) pa x Ext(A)
A
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How do we overcome this?

SAT (E, =0)

QOE=0

Many states

. E>0

UNSAT (E , >0)

Many states

@:E>0
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