Title: Phase transitions in NP complete problems

Date: Feb 10, 2006 11:00 AM

URL: http://pirsa.org/06020020

Abstract:

Satisfiability

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.

$$(\overline{x}_{12} \lor x_5) \land (x_{34} \lor \overline{x}_{21} \lor x_5 \lor \overline{x}_{27}) \land \cdots \land (x_{12}) \land (x_{21} \lor x_9 \lor \overline{x}_{13})$$

Cook's Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly k literals.

k=2: Pick any variable and set it arbitrarily. (1 choice) Satisfy any implications (repeatedly). Either get a subformula or a contradiction.

k > 3: NP-complete

Satisfiability

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.

$$(\overline{x}_{12} \lor x_5) \land (x_{34} \lor \overline{x}_{21} \lor x_5 \lor \overline{x}_{27}) \land \cdots \land (x_{12}) \land (x_{21} \lor x_9 \lor \overline{x}_{13})$$

Cook's Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly k literals.

k=2: Pick any variable and set it arbitrarily. (1 choice) Satisfy any implications (repeatedly). Either get a subformula or a contradiction.

 $k \geq 3$: NP-complete

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

Pirsa: 06020020

Page 8/70

The Setting: Random CSPs

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

- n variables with small, discrete domains
- · m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

Satisfiability

Som

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.

$$(\overline{x}_{12} \lor x_5) \land (x_{34} \lor \overline{x}_{21} \lor x_5 \lor \overline{x}_{27}) \land \cdots \land (x_{12}) \land (x_{21} \lor x_9 \lor \overline{x}_{13})$$

Cook's Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly k literals.

k=2: Pick any variable and set it arbitrarily. (1 choice) Satisfy any implications (repeatedly). Either get a subformula or a contradiction.

 $k \geq 3$: NP-complete

Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let $A_{k,n}$ be the set of all $2^k \binom{n}{k}$ k-clauses on n variables. [with distinct, non-complementary literals]

 $\mathcal{F}_k(n, m)$: a random k-SAT formula with m clauses over n variables, formed by selecting uniformly at random m clauses from $A_{k,n}$ [with replacement]

For all $k \geq 3$ and $r > 2^k$, there exists $\rho(k, r) > 0$ such that almost surely: $\mathcal{F}_k(n, rn)$ is unsatisfiable but every resolution proof of its unsatisfiability has at least $2^{\rho n}$ clauses.

[Chvátal, Szemerédi 88]

- n variables with small, discrete domains
- m competing constraints

- Random bipartite graph:
- Sparse graph, i.e. $m=\Theta(n)$

Som

Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let $A_{k,n}$ be the set of all $2^k \binom{n}{k}$ k-clauses on n variables. [with distinct, non-complementary literals]

 $\mathcal{F}_k(n, m)$: a random k-SAT formula with m clauses over n variables, formed by selecting uniformly at random m clauses from $A_{k,n}$ [with replacement]

For all $k \geq 3$ and $r > 2^k$, there exists $\rho(k, r) > 0$ such that almost surely: $\mathcal{F}_k(n, rn)$ is unsatisfiable but every resolution proof of its unsatisfiability has at least $2^{\rho n}$ clauses.

[Chvátal, Szemerédi 88]

Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let $A_{k,n}$ be the set of all $2^k \binom{n}{k}$ k-clauses on n variables. [with distinct, non-complementary literals]

 $\mathcal{F}_k(n, m)$: a random k-SAT formula with m clauses over n variables, formed by selecting uniformly at random m clauses from $A_{k,n}$ [with replacement]

For all $k \geq 3$ and $r > 2^k$, there exists $\rho(k, r) > 0$ such that almost surely: $\mathcal{F}_k(n, rn)$ is unsatisfiable but every resolution proof of its unsatisfiability has at least $2^{\rho n}$ clauses.

[Chvátal, Szemerédi 88]

Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let $A_{k,n}$ be the set of all $2^k \binom{n}{k}$ k-clauses on n variables. [with distinct, non-complementary literals]

 $\mathcal{F}_k(n, m)$: a random k-SAT formula with m clauses over n variables, formed by selecting uniformly at random m clauses from $A_{k,n}$ [with replacement]

For all $k \geq 3$ and $r > 2^k$, there exists $\rho(k, r) > 0$ such that almost surely: $\mathcal{F}_k(n, rn)$ is unsatisfiable but every resolution proof of its unsatisfiability has at least $2^{\rho n}$ clauses.

[Chvátal, Szemerédi 88]

Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let $A_{k,n}$ be the set of all $2^k \binom{n}{k}$ k-clauses on n variables. [with distinct, non-complementary literals]

 $\mathcal{F}_k(n, m)$: a random k-SAT formula with m clauses over n variables, formed by selecting uniformly at random m clauses from $A_{k,n}$ [with replacement]

For all $k \geq 3$ and $r > 2^k$, there exists $\rho(k, r) > 0$ such that almost surely: $\mathcal{F}_k(n, rn)$ is unsatisfiable but every resolution proof of its unsatisfiability has at least $2^{\rho n}$ clauses.

[Chvátal, Szemerédi 88]

Satisfiability Threshold Conjecture

Conjecture: For each k, there exists a constant r_k such that for any $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n,m) \text{is satisfiable}] = \begin{cases} 1 & \text{if } m = (r_k - \epsilon)n \\ 0 & \text{if } m = (r_k + \epsilon)n \end{cases}$$

Known Results

• k = 2 : Yes, $r_2 = 1$.

[Chvátal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the "forced choices" branching process.

- \bullet $k \geq 3$: We don't know if r_k exists.
- Easy bounds:

$$\frac{2^k}{k} < r_k < 2^k.$$

ullet [Friedgut 97]: For each $k\geq 2$ there exists a function $r_{m{k}}(n)$ such that

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n,m) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } m = (r_k(n) - \epsilon)n \\ 0 & \text{if } m = (r_k(n) + \epsilon)n \end{cases}$$

Idea: All small subformulas are innocuous.

Known Results

• k = 2 : Yes, $r_2 = 1$.

[Chvátal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the "forced choices" branching process.

- \bullet k > 3 : We don't know if r_k exists.
- Easy bounds:

$$\frac{2^k}{k} < r_k < 2^k.$$

ullet [Friedgut 97]: For each $k\geq 2$ there exists a function $r_{m{k}}(n)$ such that

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n,m) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } m = (r_k(n) - \epsilon)n \\ 0 & \text{if } m = (r_k(n) + \epsilon)n \end{cases}$$

Idea: All small subformulas are innocuous.

Satisfiability Threshold Conjecture

[Mitchel, Selman, Levesque 92]

Conjecture: For each k, there exists a constant r_k such that for any $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n,m) \text{is satisfiable}] = \begin{cases} 1 & \text{if } m = (r_k - \epsilon)n \\ 0 & \text{if } m = (r_k + \epsilon)n \end{cases}$$

Known Results

• k = 2 : Yes, $r_2 = 1$.

[Chvátal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the "forced choices" branching process.

- \bullet $k \geq 3$: We don't know if r_k exists.
- Easy bounds:

$$\frac{2^k}{k} < r_k < 2^k.$$

ullet [Friedgut 97]: For each $k\geq 2$ there exists a function $r_{m{k}}(n)$ such that

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n,m) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } m = (r_k(n) - \epsilon)n \\ 0 & \text{if } m = (r_k(n) + \epsilon)n \end{cases}$$

Idea: All small subformulas are innocuous.

Known Results

• k = 2 : Yes, $r_2 = 1$.

[Chvátal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the "forced choices" branching process.

- \bullet $k \geq 3$: We don't know if r_k exists.
- Easy bounds:

$$\frac{2^k}{k} < r_k < 2^k.$$

ullet [Friedgut 97]: For each $k\geq 2$ there exists a function $r_{m{k}}(n)$ such that

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n,m) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } m = (r_k(n) - \epsilon)n \\ 0 & \text{if } m = (r_k(n) + \epsilon)n \end{cases}$$

Idea: All small subformulas are innocuous.

Known Results

• k = 2 : Yes, $r_2 = 1$.

[Chvátal, Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the "forced choices" branching process.

- \bullet k > 3 : We don't know if r_k exists.
- Easy bounds:

$$\frac{2^k}{k} < r_k < 2^k.$$

ullet [Friedgut 97]: For each $k\geq 2$ there exists a function $r_{m{k}}(n)$ such that

$$\lim_{n \to \infty} \Pr[\mathcal{F}_k(n,m) \text{ is satisfiable}] = \begin{cases} 1 & \text{if } m = (r_k(n) - \epsilon)n \\ 0 & \text{if } m = (r_k(n) + \epsilon)n \end{cases}$$

Idea: All small subformulas are innocuous.

Random 3-SAT

- . Upper bounds come from probabilistic counting arguments.
- Pure literal heuristic: satisfy only literals whose complement does not appear in the formula. Exact analysis gives $\gamma_3=1.637...$

Unit-Clause Propagation (and Extensions)

```
then

pick a 1-clause u.a.r. and satisfy it

else

select a literal ℓ and satisfy it
```

- Value assignments are permanent (no backtracking)
- Failure occurs iff a 0-clause is ever generated
- The algorithm goes on to set all the variables even if a 0-clause is generated

select

UC: Pick a variable x u.a.r.; select $\ell \in \{x, \overline{x}\}$ u.a.r. 8/3 UCwm: Pick a variable x u.a.r.; select $\ell \in \{x, \overline{x}\}$ that appears among more 3-clauses. 2.9 Pick a shortest clause $c = (\ell_1 \vee \cdots \ell_q)$ u.a.r.; select $\ell \in \{\ell_1, \ldots, \ell_q\}$ u.a.r. ℓ_q u.a.r. ℓ_q u.a.r. ℓ_q u.a.r. ℓ_q u.a.r. ℓ_q

Uniform Randomness

For all $0 \le i \le 3$ and all $0 \le t \le n$:

The set of i-clauses remaining after t steps is uniformly random conditional on its size.

- Initially, all cards are "face down"; 3 cards per clause.
- We can { Name a variable or Point to a card
- As a result, all cards with the named/underlying variable turn "face up".
- After we set the variable: all cards corresponding to satisfied clauses get removed;

 all cards corresponding to the unsatisfied literal get removed.

 Pirsa: 06020020

 After we set the variable: all cards corresponding to the unsatisfied literal get removed.

Uniform Randomness

For all $0 \le i \le 3$ and all $0 \le t \le n$:

The set of i-clauses remaining after t steps is uniformly random conditional on its size.

- Initially, all cards are "face down"; 3 cards per clause.
- We can

 Name a variable or Point to a card
- As a result, all cards with the named/underlying variable turn "face up".
- After we set the variable: all cards corresponding to satisfied clauses get removed;

 all cards corresponding to the unsatisfied literal get removed.

 Pirsa: 06020020

 After we set the variable: all cards corresponding to the unsatisfied literal get removed.

Flows and Buckets

 $C_i(t)$ is the number of i-clauses remaining after t variables are set.

- Satisfied clauses
- If for some t, $\frac{C_2(t)}{n-t} > (1+\delta)$ the algorithm will a.s. fail.
- The expected number of 1-clauses generated in round t is $\frac{C_2(t)}{t} + o(1)$.
- If for all t, $\frac{C_2(t)}{n-t} < (1-\delta)$ the algorithm succeeds with probability at least $\psi = \psi(\delta) > 0$.

If for some
$$r^*$$
 we can show that $a.s.$ $\frac{C_2(t)}{n-t} < (1-\delta)$ for all t then $r_3 \geq r^*$. Page 45/70

For every Page 46/70 For every

For every Vill age 48/70

Pirsa: 0602 Page 53/70

Flows and Buckets

 $C_i(t)$ is the number of i-clauses remaining after t variables are set.

- If for some t, $\frac{C_2(t)}{n-t} > (1+\delta)$ the algorithm will a.s. fail.
- The expected number of 1-clauses generated in round t is $\frac{C_2(t)}{t} + o(1)$.
- If for all t, $\frac{C_2(t)}{n-t} < (1-\delta)$ the algorithm succeeds with probability at least $\psi = \psi(\delta) > 0$.

If for some
$$r^*$$
 we can show that $a.s.$ $\frac{C_2(t)}{n-t} < (1-\delta)$ for all t then $r_3 \geq r^*$. Page 54/70

Page 59/70

Flows and Buckets

 $C_i(t)$ is the number of i-clauses remaining after t variables are set.

- Satisfied clauses
- If for some t, $\frac{C_2(t)}{n-t} > (1+\delta)$ the algorithm will a.s. fail.
- The expected number of 1-clauses generated in round t is $\frac{C_2(t)}{t} + o(1)$.
- If for all t, $\frac{C_2(t)}{n-t} < (1-\delta)$ the algorithm succeeds with probability at least $\psi = \psi(\delta) > 0$.

If for some
$$r^*$$
 we can show that $a.s.$ $\frac{C_2(t)}{n-t} < (1-\delta)$ for all t then $r_3 \geq r^*$. Page 61/70

Flows and Buckets |

 $C_i(t)$ is the number of i-clauses remaining after t variables are set.

- Satisfied clauses
- If for some t, $\frac{C_2(t)}{n-t} > (1+\delta)$ the algorithm will a.s. fail.
- The expected number of 1-clauses generated in round t is $\frac{C_2(t)}{t} + o(1)$.
- If for all t, $\frac{C_2(t)}{n-t} < (1-\delta)$ the algorithm succeeds with probability at least $\psi = \psi(\delta) > 0$.

If for some
$$r^*$$
 we can show that $\left| \text{ a.s. } \frac{C_2(t)}{n-t} < (1-\delta) \text{ for all } t \right|$ then $r_3 \geq r^*$. Page 63/70

Differential Equations

[Kurtz 78, Karp Sipser 81, Wormald 95]

If we have random variables Y_1, Y_2, \ldots, Y_k evolving jointly such that:

At each step t,

$$\mathbf{E}\left[\Delta Y_i \mid \mathcal{H}\right] = f_i\left(Y_1/n, \dots, Y_k/n, t/n\right) + o(1)$$

where the f_i are all Lipschitz continuous.

ullet The r.v. ΔY_i have reasonable tail behavior.

Then w.h.p. $Y_i(t) = y_i(t) \cdot n + o(n)$ where $y_i(t)$ is the solution of $\frac{\mathrm{d}y_i}{\mathrm{d}t} = f_i$.

The evolution is stable under small perturbations of the state.

Differential Equations in action

UC

$$\mathbf{E}(\Delta C_3(t)) = -\frac{3C_3(t)}{n-t} \qquad s_3'(x) = -\frac{3s_3(x) \cdot n}{(1-x) \cdot n} \qquad [x \equiv t/n]$$

$$C_3(0) = rn \qquad s_3(0) = r$$

$$\mathbf{E}(\Delta C_2(t)) = \frac{1}{2} \times \frac{3C_3(t)}{n-t} - \frac{2C_2(t)}{n-t} \qquad s_2'(x) = \frac{3s_3(x)}{2(1-x)} - \frac{2s_2(x)}{1-x}$$

$$C_2(0) = 0 \qquad s_2(0) = 0$$

GUC

$$\mathbf{E}(\Delta C_2(t)) = \frac{3C_3(t)}{2(n-t)} - \frac{2C_2(t)}{n-t} - \left(1 - \frac{C_2(t)}{n-t}\right) \qquad s_2'(x) = \frac{3s_3(x)}{2(1-x)} - \frac{s_2(x)}{(1-x)} - 1$$

$$C_2(0) = 0 \qquad s_2(0) = 0$$

$$\frac{C_2(t)}{n-t} < 1 \Longleftrightarrow \frac{s_2(x) \cdot n}{(1-x) \cdot n} < 1 \Longleftrightarrow \begin{cases} \frac{3}{2} rx(1-x) < 1 \Longleftrightarrow r < 8/3 & \text{UC} \\ \frac{3}{2} rx(1-x) < 1 \Longleftrightarrow r < 8/3 & \text{UC} \end{cases}$$
 Pirsa: 06020020

Differential Equations

[Kurtz 78, Karp Sipser 81, Wormald 95]

If we have random variables Y_1, Y_2, \ldots, Y_k evolving jointly such that:

At each step t,

$$\mathbf{E}\left[\Delta Y_i \mid \mathcal{H}\right] = f_i\left(Y_1/n, \dots, Y_k/n, t/n\right) + o(1)$$

where the f_i are all Lipschitz continuous.

 \bullet The r.v. ΔY_i have reasonable tail behavior.

Then w.h.p. $Y_i(t) = y_i(t) \cdot n + o(n)$ where $y_i(t)$ is the solution of $\frac{\mathrm{d}y_i}{\mathrm{d}t} = f_i$.

The evolution is stable under small perturbations of the state.

Getting better algorithms

- Use a model for the analysis that allows explicit access to degree information: formulas are now uniformly random, conditional on their entire degree sequence.
- Dispense with "uniform-randomness" for the 2-clauses. Since 2-SAT is tractable, we can afford a less naive approach for 2-clauses.

General k

UC:

$$\frac{2^k}{k}$$

[Chao, Franco 85]

SC:

$$1.12 \cdot \frac{2^k}{k}$$

[Chvátal, Reed 92]

Pirsa: 06020020

$$1.87 \cdot \frac{2^k}{k}$$

[Frieze, Stage 70/705]