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Satisfiability I

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.
(Tlg V &5 ] { Taqa VI Vs VITor) A --- A (.Flg} I\ f;.'i’.‘gl V Iq V ,Tt'_'l;g,)

Cook’s Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly £ literals.

k = 2: Pick any variable and set it arbitrarily. (1 choice)
Satisfy any implications (repeatedly).

Either get a subformula or a contradiction.

k > 3: NP-complete
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Satisfiability I

Given a Boolean formula (CNF), decide if a satisfying truth assignment exisis.
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Cook’s Theorem: Satisfiability is NP-complete.

E-SAT: Each clause has exactly k literals.

kE = 2: Pick any variable and set it arbitrarily. (1 choice)
Satisfy any implications (repeatedly).
Either get a subformula or a contradiction.

k > 3: NP-complete
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Satisfiability I

Given a Boolean formula (CNF), decide if a satisfying truth assignment exisis.

(Tu W I5) A (I34 VTIn Vs VTQT} AR A (Ilg) M (I;gl V Tg VT13)

Cook’s Theorem: Satisfiability is NP-complete.

E-SAT: Each clause has exactly k literals.

k = 2: Pick any vaﬁra?ble and set it arbitrarity. (1 choice)
Satisfy any implications (repeatedly).
Either get a subformula or a contradiction.

k > 3: NP-complete
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\tisfiability I

Given a Boolean formula (CNF), decide if a satisfying truth assignment exisis.
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Cook’s Theorem: Satisfiability is NP-complete.

E-SAT: Each clause has exactly k literals.

kE = 2: Pick any variable and set it arbitrarily. (1 choice)
Satisfy any implications (repeatedly).
Either get a subformula or a contradiction._

k > 3: NP-complete



Satisfiability '

Given a Boolean formula (CNF), decide if a satisfying truth assignment exists.

O

(T12Vx5) AN (234 VI VT5VTaz) A --- A (T12) A (T21 V Tg V T13)

Cook’s Theorem: Satisfiability is NP-complete.

k-SAT: Each clause has exactly k literals.
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|

— 2: Pick any variable and set it arbitrarily. (1 choice)
Satisfy any implications (repeatedly).

Either get a subformula or a contradiction.

k > 3: NP-complete
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Random L‘-SATI

e Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let A, ,, be the set of all 2F (:) k-clauses on n variables. [with distinct, non-complementary literals]

Fi(r, m): arandom k-SAT formula with 12 clauses over n variables, formed by selecting

uniformly at random m clauses from A; ,, [with replacement]

Forall &k > 3 and r > 2F, there exists p(k,r) > 0 such that almost surely: Fi.(n.rn)is

unsatisfiable but every resolution proof of its unsatisfiability has at least 2" clauses.

[Chvatal, Szemeredi 88]
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| Random k-SAT'

e Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let Ak, be the set of all g (2) k-clauses on n variables. [with distinct, non-complementary literals]

Fi(n, m) a random Kk-SAT formula with /1 clauses over n variables, formed by selecting
uniformly at random m clauses from Ay, ,, [with replacement]

Forall k > 3and r > 2% there exists p(k.r) > 0 such that almost surely: Fi.(n.rn) is
unsatisfiable but every resolution proof of its unsatisfiability has at least 27" clauses.

[Chvatal, Szemeredi 88]
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Random L?-SATI
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® Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let A, ., be the set of all 2F (:) k-clauses on n variables. [with distinct, non-complementary literals]

Fi(n,m): arandom k-SAT formula with 12 clauses over n variables, formed by selecting

uniformly at random m clauses from A, ,, [with replacement]

Forallk > 3 and r > 2F, there exists p(k,r) > 0 such that almost surely: Fi.(n.rn)is

unsatisfiable but every resolution proof of its unsatisfiability has at least 27" clauses.

[Chvatal, Szemeredi 88]
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Random I.T-SATI

e Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let 4, ,, be the set of all 9k (:) k-clauses on n variables. [with distinct, non-complementary literals]

Fi(n,m): arandom k-SAT formula with 172 clauses over n variables, formed by selecting

uniformly at random m clauses from A4;. ,, [with replacement]

Forall k£ > 3 and r > 2F, there exists p(k,r) > 0 such that almost surely: Fi.(n.rn)is

unsatisfiable but every resolution proof of its unsatisfiability has at least 27" clauses.

[Chvatal, Szemeredi 88]
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Random L?-SATI

® Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let A, ,, be the set of all 9k (:) k-clauses on n variables. [with distinct, non-complementary literals]

Fi(n,m): arandom k-SAT formula with 1 clauses over n variables, formed by selecting

uniformly at random m clauses from A4, ,, [with replacement]

Forall k > 3 and r > 2F, there exists p(k,r) > 0 such that almost surely: Fi(n.rn)is

unsatisfiable but every resolution proof of its unsatisfiability has at least 27" clauses.
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Random L*-SATI

® Since the mid-70s a number of models have been proposed for Random SATisfiability.

Most models generate formulas that are too easy.

Let A, ., be the set of all 2F (:{) k-clauses on n variables. [with distinct, non-complementary literals]

Fi(r,m): arandom k-SAT formula with 1 clauses over n variables, formed by selecting

uniformly at random m clauses from A4, ,, [with replacement]

Forallk > 3andr > QI", there exists p(k, r) > 0 such that almost surely: Fz(n.rn) is

unsatisfiable but every resolution proof of its unsatisfiability has at least 2" clauses.

[Chvatal, Szemeredi 88]
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Satisfiability Threshold Cunjecture'
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Conjecture: For each k. there exists a constant 7. such that forany € > 0,

1 ifm = (rp —e€)n

lim Pr|F(n.m)is satisfiable] = e
' re + €)n

=300 '[,I if ™
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Known Results '

ok—2: Yesr—1 [Chvatal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the “forced choices"” branching process.

e ik > 3 : We don't know if r; exists.

ok

e Easy bounds: _T <ipc P

e [Friedgut 97]: For each & > 2 there exists a function (7 ) such that

lim Pr[Fi(n, m) is satisfiable] =

T—rOG

I

1 ifm = (rp(n) —e)n
0 ifm=(rp(n)+¢e)n

Idea: All small subformulas are innocuous.
Pirsa: 06020020 Page 30/70
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Satisfiability Threshold Ccnjecture'
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Known Results '

ek—=2: Yes.15 =1 [Chvatal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the “forced choices” branching process.

e i > 3 : We don't know if r;. exists.

ok

e Easy bounds: _T &g 2

e [Friedgut 97]: For each k > 2 there exists a function 1. (712 ) such that

lim Pr[Fi(n, m) is satisfiable] =

—r00

I

1 ifm = (rx(n) —e€)n
0 ifm = (ri(n)+€e)n

Idea: All small subformulas are innocuous.
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Known Results '

ak—2: Y 1—=1 [Chvatal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the “forced choices"” branching process.

e ik > 3 : We don't know if r;. exists.

ok

e Easy bounds: _T << 2

e [Friedgut 97]: For each k& > 2 there exists a function 1. (712 ) such that

lim Pr[Fi(n,m) is satisfiable] =

TE—HOC

I

1 ifm = (rp(n) —e)n
0 ifm = (rp(n)+¢e)n

Idea: All small subformulas are innocuous.
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Known Results '

ek—2: Yes.95=1. [Chvatal,Reed 92], [Goerdt 92], [Fernandez de la Vega 92]

Idea: Look at the “forced choices” branching process.

e i > 3 : We don't know if r; exists.

ok

e Easy bounds: _T <1< 2k

e [Friedgut 97]: For each & > 2 there exists a function (72 ) such that

lim Pr[Fi(n, m) is satisfiable] =

T—rO0

1 ifm = (re(n) —€e)n
0 ifm = (ri(n) +€)n

Idea: All small subformulas are innocuous.
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Random 3-SAT'
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e Upper bounds come from probabilistic counting arguments.

e Pure literal heuristic: satisfy only literals whose complement does not appear in the formula.

Exact analysis gives 73 = 1.637...
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Unit-Clause Propagation (and Extensions}'

If there exist 1-clauses (unit clauses)
then
pick a 1-clause u.a.r. and satisfy it
else

select a literal £ and satisfy it

e \/alue assignments are permanent (no backtracking)
e Failure occurs iff a O-clause is ever generated

e The algorithm goes on to set all the variables even if a 0-clause is generated

Uc: Pick a variable z u.ar.; selectf € {z,T} uar 8/3
UCwm: Pick a variable x u.ar.; selectf {T T} that appears among more 3-clauses. 2.9

"GUC?  Pick ashortestclause c = (£, V ---£,) uar; selectl € {/y,.... lq} u.a.r*3003



Uniform Randomness I

Forall0 <:< 3andall() <t <n:

The set of 7-clauses remaining after f steps is uniformly random conditional on its size.

1 [
1 O [
1 i

[l InE i
CooO0 i I:I i

1 0 0 da

e [nitially, all cards are “face down"; 3 cards per clause.

e \We can

Name a variable

or
Point to a card

e As a result, all cards with the named/underlying variable turn “face up”.

e After we set the variable: all cards corresponding to satisfied clauses get removed;

Pirsa: 06020020

all cards corresponding to the unsatisfied literal get removed.
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Forall0 <:<3dandall) <t < n:

The set of 7-clauses remaining after 7 steps is uniformly random conditional on its size.

1 [
T T
1 [

[l i i
COoOCa0 [ | I:I i

[1 0 0 dQ

e [nitially, all cards are “face down"; 3 cards per clause.

e We can

Name a variable

or
Point to a card

e As a result, all cards with the named/underlying variable turn “face up”.

e After we set the variable: zall cards corresponding to satisfied clauses get removed;
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& Flows and Buckets I

3 2 1 0
| g Ly Ci(1) is the number
£ g - ==
I o - of 7-clauses remaining
e SO ¢
R - Fs after 7 variables are set.
2 —» = —» - S
v v T

Satisfied clauses

C5() : o |
e |f for some 1, ; > (1+4) the algorithm will a.s. fail.
—1
. _ Cs(t) ‘
e The expected number of 1-clauses generated in round  is : + o(1).
n e
Cs(1)

< (1—49) the algorithm succeeds with probability at least 1> = 1(d) > 0.

e [f for all 7,
R

Ca(t | _
If for some 7™ we can show that | a.s. 2(?) < (1l —0)forallf|thenr; = r~.
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] Flows and Buckets I

3 2 1 0
| /5/ a2 Ci(1) is the number
l == of 7-clauses remaining
Al W e @ . )
| > - Fs after I variables are set.
. ®- — r;::%.:: — ® >

1|; v v

Satisfied clauses

e If forsome f, —
n—t

> (1+4) the algorithm will a.s. fail.

Ca(t
e The expected number of 1-clauses generated in round 7 is 2( i
i —
Co(t)

5 < (1—0) the algorithm succeeds with probability at least 1" = 9(
n —

+ o(1).
e If for all £,

d) > 0.

Ca(t)

, If for some 7* we can show that|a.s. —
Pirsa: 06020020 n — t
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| Flows and Buckets I

3 2 1 0
| /{;5/ (T Ci(1) is the number
!;T‘“;: :'_';5 . of 7-clauses remaining
| ;/} Hi_ﬂ. ? after 7 variables are set.
|F®2- —p e —» - »
Lpet Suet gt =

1||r v v

Satisfied clauses

Cs(t)

e If forsome f, —
n—t

> (1+4) the algorithm will as. fail.

Cs(t
e The expected number of 1-clauses generated in round 7 is 2( ;
B —
Cs (1)

3 < (1—4) the algorithm succeeds with probability at least 1> = /() > 0.
n—

+ o(1).
e [f for all 7,

Co(t)

n—t

, If for some ™ we can show that| a.s.
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l Flows and Buckets I

Ci(1) is the number

= 5 of 7-clauses remaining
= S -

| — ? after 7 variables are set.

N ——

Satisfied clauses

C(2)

e |f forsomef, —
n—t

> (1+4) the algorithm will a.s. fail.

Co(t
e The expected number of 1-clauses generated in round 7 is 2(t)

7 —1
Cs(1) : : . z |
; < (1—4) the algorithm succeeds with probability at least 1
n —

+ o(1).
e [f for all 7,

= () > 0.

Ca(t)

, If for some 7* we can show that|a.s. —
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Differential Equations I

[Kurtz 78, Karp Sipser 81, Wormald 93]

If we have random variables Y. Y5, . . .. Y. evolving jointly such that:

e At each step 7,
EIAY; | H]l = E(b/n.- .., Yi./n,t/n) + o(1)

where the f; are all Lipschitz continuous.

e The r.v. AY,; have reasonable tail behavior.

» | f dy; )
Then w.hp. Y; () = y;(t) - n + o(n) where y; (%) is the solution of = fi.

dt

The evolution is stable under small perturbations of the state.
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Differential Equations in action I

ucC
3C5(t) 35 :
E(AC5(t)) = — J so(x) = — B }_ r =t/n]
n—t (1 —2)-n ;
C5(0) = rn s3(0) =17
1 3C5(t) 2C5(t) 353 2so(x
Iﬂi il;f?l}[f} } = — X 3 - 2\t 55[_;:} — 3 — _{ L)
2 n—t n —§ 2(1 — ) 1—2a
C2(0) =0 s2(0) =0
UC
i 3Cs(t) 2C5(t) ' Ca(t) 3s3(x) so(x)
BACyy) = SO 260 _(;_ Ca ) = 2le) _ m@
{ 2(%) 2(n —t) n—t n—f) 2(%) 2(1 — x) (1 —:r)
Ca2(0) =0 s2(0) =0
“prr(l—x) <1 = r <8/3 ucC
C5(t) Sa(x) - .S '
= c—e ~— o =
n —t (1—x)-1 3 -
sre(l—z/2) +In(l—2) <1<+ r <3.003... . GUG
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Differential Equations I

[Kurtz 78, Karp Sipser 81, Wormald 95]

If we have random variables Y. Y5, .. .. Y. evolving jointly such that:

e At each step 1,
EIAY; | H] =00/ -, Yi./n,t/n) +o(1)

where the f; are all Lipschitz continuous.

e The r.v. AY,; have reasonable tail behavior.

i | dy;
Then w.h.p. Y;(#) = y;(t) - n + o(n) where y; (%) is the solution of i—‘; — %
L

The evolution is stable under small perturbations of the state.
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]
Getting better algorithms I

e Use a model for the analysis that allows explicit access to degree information: formulas are

now uniformly random, conditional on their entire degree sequence.

® Dispense with “uniform-randomness” for the 2-clauses. Since 2-SAT is tractable, we can afford

a less naive approach for 2-clauses.

General k
2=
UC.: T [Chao, Franco 85]
2.1:'.
Sk 1.12. = [Chvatal, Reed 92]
a2k
[Frieze, Seaen®5]
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