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A brief history

® Manin, Feynman, early 1980s: Quantum computers should
be good at simulating quantum systems

® Deutsch, 985: Formal model of quantum computers

® Deutsch, Jozsa, Bernstein,Vazirani, Simon, late 1980s/early
| 990s: Examples of problems where quantum computers
outperform classical ones

® Shor |994: Efficient quantum algorithms for factoring and
discrete log
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Quantum bits

® One qubit: H = C?
1Y) = apl0) + a1(1),

o] + |3%] =1
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Quantum circuits
® Prepare n qubits in the state [0---0)

® Apply a sequence of poly(n) unitary operations acting on
one or two qubits at a time

® Measure in the computational basis to get the result

0y — U,

0) Us

0)

0) Ui
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Three major questions

® How can we build a quantum computer?
(Implementations)

® How useful is an imperfect quantum computer?
(Fault tolerance)

® What can we do with a perfect quantum computer?’
(Algorithms)
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B
Hamiltonian dynamics i [¥(8)) = H(#)[v(1))

In the circuit model, we say a unitary operation can be
implemented efficiently if it can be realized (approximately) by
a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?
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Hamiltonian dynamics i [@(1) = H(t)u(1)

In the circuit model, we say a unitary operation can be
implemented efficiently if it can be realized (approximately) by
a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?

® Hamiltonians we can directly realize in the laboratory

H=3 B,

(2,7)
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Hamiltonian dynamics i (1) = H(t)()

In the circuit model, we say a unitary operation can be
implemented efficiently if it can be realized (approximately) by
a short sequence of one- and two-qubit gates.

What Hamiltonian dynamics can be implemented efficiently?
® Hamiltonians we can directly realize in the laboratory

H = ZHU

(2,3)
® Hamiltonians we can efficiently simulate using quantum

circuits
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Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be
efficiently simulated if for any error €>0 and time t>0 there is a

quantum circuit U consisting of poly(n, t, |/€) gates such that
|U— e <e.
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Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be
efficiently simulated if for any error €>0 and time t>0 there is a
quantum circuit U consisting of poly(n, t, I/€) gates such that

|U - e <e.

Theorem.If H is a sum of local terms, then it can be efficiently
simulated. [Lloyd |996]
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Simulating Hamiltonian dynamics

Definition. A Hamiltonian H acting on n qubits can be
efficiently simulated if for any error €>0 and time t>0 there is a
quantum circuit U consisting of poly(n, t, I/€) gates such that

|U - e <€

Theorem. If H is a sum of local terms, then it can be efficiently
simulated. [Lloyd |996]

Basic idea: Lie product formula

e_.i(Hl-!-----+-Hk)t _ (ff—-;zﬂlt/.r - E—'-*lH;ct/-r*)r

+ O(kt” max{||H,|*}/r)
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Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently
compute all the nonzero values of (a|H|b). (In particular,
there must be only polynomially many such values.) Then H
can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs
et al. 2003, Ahokas et al. 2005]
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Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently
compute all the nonzero values of (a|H|b). (In particular,
there must be only polynomially many such values.) Then H
can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs
et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of
colors and simulate each color separately
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Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently
compute all the nonzero values of (@|H |b). (In particular,
there must be only polynomially many such values.) Then H
can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs
et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of
colors and simulate each color separately
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Sparse Hamiltonians

Theorem. Suppose that for any fixed a, we can efficiently
compute all the nonzero values of (@|H |b). (In particular,
there must be only polynomially many such values.) Then H
can be simulated efficiently. [Aharonov & Ta-Shma 2003, Childs
et al. 2003, Ahokas et al. 2005]

Basic idea: Color the interaction graph with a small number of
colors and simulate each color separately
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The adiabatic theorem

Let H (s) be a smoothly varying Hamiltonian for s€[0,1]

D—1
H(s) = E;(s)|E;j(s))(E;(s)|
=0 where Eo(s) < Ei(s) < Ea(s) £ - - - < Ep.i(s)



The adiabatic theorem
Let H (s) be a smoothly varying Hamiltonian for s€[0,1]

- H(ty= H(t/T)
H(0) = H(0) 2 e

H(T)= H(1)

2—
Z $))E;(s)]

where Eo(s) < Ei(s) = Ex(s) = -~ = Ep.i(s)

H{t) = fI(t/T) where T is the total run time



The adiabatic theorem
Let H (s) be a smoothly varying Hamiltonian for s€[0,1]

= — - I."
H(0) = H(0) H(t) = H(t/T)

H(T) = H(1)

2—
Z $))E;(s)]

where Eo(s) < Ei(s) £ Ex(s) = - - - < Ep.i(s)
H(t) = fI(t/T) where T is the total run time
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The adiabatic theorem

Let H (s) be a smoothly varying Hamiltonian for s€[0,1]

H(0) = H(0) H(t) = H(t/T)
H(T) = H(1)
3
H(s) = Y E;(s)|E;(5))(E;(s)]
=0 where Eo(s) < Ei(s) < Ex(s) £ - - < Ep.i(s)

H{t) = fI(t/T) where T is the total run time
Suppose |¢(0)) = |En(0))

Then as T, [(Eo(1)[v(T))|* — 1

For large T, W(T)) = |Eog(1)). But how large must it be?
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Approximately adiabatic evolution

The total run time required for adiabaticity depends on the
spectrum of the Hamiltonian.

Gap: A(s) = Ei(s) — Ep(s), A= 1]:%@]1'11]45(5)
s&|0,
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Approximately adiabatic evolution

The total run time required for adiabaticity depends on the
spectrum of the Hamiltonian.

Gap: A(s) = E1(s) — Eg(s), A = min A(s)

56[0 ].
Rough estimates (see for example [Messiah 1961]) suggest the
condition
1‘*2
> —, ——
= ma ||[(5))|
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Approximately adiabatic evolution

The total run time required for adiabaticity depends on the
spectrum of the Hamiltonian.

Gap: A(s) = Ei(s) — Ep(s), A= n%{l]nl A(s)
s€
Rough estimates (see for example [Messiah 1961]) suggest the

condition 2
§ g AZ 2 — Hl[g,}%]H[ 5)]

Theorem. [ Teufel 2003 + perturbation theory]
4

HO)|  |HO)| (= |H]|
TEE A(O) A(l)z +/0 ds (10 A3 -+ A)

Tiigties ||[V(T)) — [Eo(1))|| < e

|

=




Satisfiability problems

® Given h:{0,1}" — {0,1,2,...}, is there a value of z € {0, }"
such that h(z)=0?

® Alternatively, what z minimizes h(z)?

® Example:3SAT. (21 V22V Z3)A---A(Z17 V 237 V Z242)
hiz) = Zh{.(z)
where h.(z) = {

0 clause c satisfied by 2z

1 otherwise
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Adiabatic optimization

® Define a problem Hamiltonian whose ground state encodes
the solution:
Hp = Z h(z)|z)(z
z€{0,1}™

® Define a beginning Hamiltonian whose ground state is easy
to create, for example

rL.
Hp = —ZJE)
7=1

e Choose H(s) to interpolate from Hg to Hp, for example
H(s)=(1—-s)Hg +sHp

® Choose total run time T so the evolution is nearly adiabatic
Pirsa: 06020016 [Fal-hi et alP%@@O]
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Adiabatic optimization

® Define a problem Hamiltonian whose ground state encodes
the solution:
Hp = Z h(z)|z)(z
z€{0,1}™

® Define a beginning Hamiltonian whose ground state is easy
to create, for example

rL
Hp = —ZJ&;")
j=1

e Choose H(s) to interpolate from Hs to Hp, for example
H(s)=(1—-s)Hg +sHp

® Choose total run time T so the evolution is nearly adiabatic
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Please mind the gap

Recall rough estimate:

| i : - 2
T> 33, = max ||[H()]]

For H(s)=(1—s)Hg + s Hp,
|H| = |Hp — Hal|
< ||Hg| + |[Hp|
Crucial question: How big is A?
® 2|/poly(n): Efficient quantum algorithm

® |/exp(n): Inefficient quantum algorithm
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Unstructured search

Finding a needle in a haystack: /(z)
(here h:{0,I,..,N-1}—{0,1})
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Unstructured search

Finding a needle in a haystack: h(z) = {
(here h:{0,1,..,N-1}—{0,1})

=
&
|
= B

Query complexity (given black box for h)
® Classically, ©(/N) queries

® Quantumly, O(1/N) queries are sufficient to find w
[Grover 1996] (|z)|a) — |z)|a ® h(z)))

® This cannot be improved: €2(Vv V) queries are
necessary |Bennett et al. |997]
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Example: Adiabatic unstructured search

h.(;:):{o é:u: =% Hp=zh( )|2)(z| =1 — |w)(w]
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Example: Adiabatic unstructured search

A w

0 = w
h(z) = {1 75 = Hp = Zh(3)|3><:| =1 — |w)(w|

Start in |s) ﬁ2| zy Ay
Hp =1—|s)(s| .

0.6+

-

H(s) =(1—s)Hp
+sHp

- - - - -
—_— _ — — o
' § ' i .

L]
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Example: Adiabatic unstructured search

h(z) = {0 T o Hp =Y h(2)|2) (2l =1 -

o (2
1 z#w Hw

i

1 0.l
Startin [s) = Z

Hp =1—|s)(s 1) /

H(s S Hp ol
+SHp &

g(f)) — [1 - f(:S)]HB -”{p nj: 0.4 0.6 0.8 |
+ f(s) Hp
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Example: Transverse Ising model

1
Hp = Z (1 — 50(”03“)) “agree”

JE€ELN

||
T
s

Hp = — Z Jiﬁ with ground state  |s)
¢ ——

] i - Y 2

H(s)=(1—s)Hg +sHp 2e{0.1}"

Diagonalize by fermionization (Jordan-Wigner transformation)

1 = : =
Result: A ~ — (at critical point of quantum phase transition)
n

[Eo(s =~ 0)) = |+---+)
tets ~ 1)) =~ 5=(/0---0) +[1--- 1)) [Farhi et al."2800]



Example: The Fisher problem

1
Hp = Z J; (1 = EUU) ,(_JH)) J=1 or 2, chosen randomly
JELN
Hp=-) o
j=1

Then typically A ~ exp(—cy/n)

pisa 06020015 [Fisher 1992; Reichardt2004]



Example: The Fisher problem

1
Hp = Z J (1 N 50(” ,(_JH)) J=1 or 2, chosen randomly
JELN
Hp=-) o@
=1

Then typically A ~ exp(—c\/n)

b ]

0000000 10000000)
+1111111) +[1111111)

pisa: 06020015 [Fisher 1992; Reichardt "2004]



Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact
cover, ...) with a fixed ratio of clauses/bits.

Few clauses: underconstrained. Many solutions, easy to find.
Many clauses: overconstrained. No solutions, easy to find a contradiction.
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Random satisfiability problems

Consider random instances of some satisfiability problem (e.g. 3SAT, Exact
cover, ...) with a fixed ratio of clauses/bits.

Few clauses: underconstrained. Many solutions, easy to find.
Many clauses: overconstrained. No solutions, easy to find a contradiction.

Simulation results for random exact cover instances with unique satisfying
assignments:

i T
L4 b 2
=
—— — g
=y >
= s T A A
= o L
= A
= o} T 4
= E=
) e
(i 1% b - -
L A
ot } e -
= o
B 5= f"'- - =
= ~L
= w0} ~F ]
— 3_,—' —
- =
= | —  New Quadratc Fu
5 15 5
e —
e’ Ok Quumdranic Faut
_"_.t r—"f el € i
= 10 _
|
0]
§ 12 13 14 15 16 17 IX 19
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Universal quantum computation

Adiabatic evolution with linear interpolation between local
beginning and ending Hamiltonians can simulate arbitrary QC.
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Universal quantum computation

Adiabatic evolution with linear interpolation between local
beginning and ending Hamiltonians can simulate arbitrary QC.

k
[Feynman 1985]: H = Z[Ui 7+ DI+ U, @ |5)F +1]]
j=1
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Universal quantum computation

Adiabatic evolution with linear interpolation between local
beginning and ending Hamiltonians can simulate arbitrary QC.

L.
[Feynman 1985]: H = Y [U; ® |7 + 1){j| + U} ® |5)(j + 1]]
j=1

Basic idea [ Aharonov et al. 2004]: Use this as -Hp.
k
1
Final ground state: — U;U;_1---U4110) ® |3
g \/E Jzzjl 5 a—3 1| ) |J>

Hs enforces correct initial state.
Add energy penalties to stay in an appropriate subspace.
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Universal quantum computation

Adiabatic evolution with linear interpolation between local
beginning and ending Hamiltonians can simulate arbitrary QC.

[Feynman 1985]: H =Y [U; ® |j + 1){j| + U} ® |5)( + 1]

=1

Basic idea [Aharonov et '1I 2004]: Use this as -Hp.
Final ground state: Z U;U;j—1---U1|0) ® |7)

Hs enforces correct |n|t|al state.
Add energy penalties to stay in an appropriate subspace.

Note: This is adiabatic, but not adiabatic optimization.
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